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  بسم الله الرحمن الرحيم

  الحمد � الذي ما كنا لنھتدي لو� ھداه 

  والص ة على خير البرية محمد المصطفى عليه افضل الص ة واتم التسليم

  

  إھداء

  دم قلبي وإحساسي الصادق ، كلمات ملؤھا شكر وعرفان   مدادھااخط كلمات 

  تفيض حب وامتنان

   ھاائقطرة في بحرھا ونجمة في سم أنا*إلى من 

  يءوھي لي كل ش يءإلى من أنا لھا ش

  إليك..أمي الحبيبة ..إليك أھدي تعبي وجھدي وفرحتي وحياتي كلھا

  عھدي بأن أبرك ما دام الدم يسري في شراييني إليك

إلى من علمني الصبر والثبات ،*إلى سندي وساعدي ،إلى الشعاع الذي أنار دربي 
  ...الغالي أبيوالصمود مھما تبدلت الظروف ..إلى 

  ..إلى اSحبة أخوتي وأخواتي� يتجزأ،إلى عزوتي وملوك وجداني*إلى جزأي الذي 

منھا علما  *إلى المنار الوضاء إلى من صاغت عبارات من ذھب إلى من تعلمنا
  فاطمة جمجوم ..أثمن من علم الكتب ..إلى الدكتورة الرائعة 

  ا�حترامسفينة شكر يحملھا بحر  الك من

  إلى جامعتي الحبيبة... تجولنا في رحابھا لنقطف من بستان العلم زھوره من *إلى 

  *إلى كل من يحب العلم ويسعى لتحصيله
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Introduction 
     

      Particularly useful and important metric spaces are obtained 

if we take a vector space and define on it a metric by means of a 

norm .The resulting space is called a normed space. If it is a 

complete metric space, it is called a Banach space. The theory  

of normed spaces, in particular Banach spaces, and the theory of 

linear operators defined on them are the most highly developed 

parts of functional analysis. 

     Inner product spaces  are special normed spaces, as we shall 

see. Historically they are older than general normed spaces. 

Their theory is richer and retains many features of Euclidean 

spaces, a central concept being orthogonality. In fact, inner 

product spaces are probably the most natural generalization of 

Euclidean spaces, The whole theory was initiated by the work of 

D. Hilbert (1912)on integral equations. The currently used 

geometrical notation and terminology is analogous to that of 

Euclidean geometry and was coined by E. Schmidt (1908), who 

followed a suggestion of G. Kowalewski. These spaces have 

been, up to now, the most useful spaces in practical applications 

of functional analysis. 
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CHAPTER 1 

 

1.1  Metric Space  

In calculus we study functions defined on real line  R . A little 

reflection shows that in limit processes and many other 

considerations  we use the fact that on R we have available a 

distance function, call it d, which associates a distance 

d(x,y)=│x−y │for every pair of point  x ,y ∈  R  

1.1-1 Definition  (Metric space , metric).  

A metric space is a pair (X,d),where X is a set and d is a metric 

on X space (or distance function on X), that is, a function 

defined on X × X  such that,  for all x, y ,z ∈X we have:  

        d is real-valued, finite and nonnegative .)M1(  

(M2)    d(x,y)=0      if and only if     x=y.  

(M3)    d(x,y)=d(y,x)                         (symmetry).  

(M4)    d(x,y) ≤ d(x,z)+d(z,y)           (Triangle inequality) 

  

Examples: 

1.1-2  Real line R. This is the set of all real numbers, taken with 

the usual metric defined by   

,  x ,y∈ � d( x, y)=│x−y│  

 

 



 
4 

1.1-3 Euclidean plane R². The metric space  R² ,space called 

the  Euclidean plane, is obtained if we take the set of ordered 

pairs ( )1 2
,ξ ξ   of real numbers, Then d:R

2×R
2→R is defined by 

2 2

1 1 2 2( , ) ( ) ( )d x y ξ η ξ η= − + −  

Where ( )1 2, ,x ξ ξ= ( )1 2,y η η=  

 

1.2    (Hőlder inequality). 
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This inequality is called Hőlder inequality. 

If p = 2 , then q =2. This inequality yields the Cauchy – Schwarz 

inequality. 
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1.3  (Minkowski inequality) 

For any 
p

ii l∈)(),( ηξ  , p >1. We have:
 

p

i

p

i

p

i

p

i

p

i

ii

/1

1

/1

11

)()()( ∑∑∑
∞

=

∞

=

∞

=

+≤+ ηξηξ 

Proof:  

Put Niiii ∈+= ,ηξω 

111
)(

−−−
+≤+==

p

iii

p

iii

p

ii

p

i ωηξωηξωωω

Then for each Nn ∈ 

1

1

1

1

1

11

)((
−

=

−

=

−

==

∑∑∑∑ +=≤
p

i

n

i

i

p

i

n

i

i

p

ii

n

i

i

pn

i

i ωηωξωηξω

 

Note that  ∑∑∑
=

−

=

−

=

≤
n

i

qqp

i

n

i

pp

i

p

i

n

i

i

1

/11

1

/11

1

))()( ωξωξ (From 

Hőlder inequality) 



 
7 

Where Rq ∈  and p
qp

=+
11

 

since  ppqppq
qp

pq

qp
=−⇒=+⇒=

+
⇒=+ )1(11

11
, 

we have  

∑∑∑
==

−

=

≤
n

i

qp

i

n

i

pp

i

p

i

n

i

i

1

/1

1

/11

1

)()( ωξωξ 

Also, 
1 11/ 1/

1 1 1

( ) ( ) ,
n n n

p p pp q

i i i i

i i i

η ω η ω
− −

= = =

≤∑ ∑ ∑  form Hőlder 

inequality 

This implies that  
1 1/ 1/

1 1 1

( ) ( ) .
n n n

p p pp q

i i i i

i i i

η ω η ω
−

= = =

≤∑ ∑ ∑  

1/ 1/ 1/

1 1 1 1

( ) [( ) ) ]

pn n n n
p p pq p p

i i i i

i i i i

Therefore ω ω ξ η
= = = =

≤ +∑ ∑ ∑ ∑  

∑∑∑
===

+≤⇒
n

i

pp

i

n

i

pp

i

pn

i

i

1

/1

1

/1

1

)()( ηξω, for each n∈ � 

∑∑∑
===

+≤+⇒
n

i

pp

i

n

i

pp

i

p

pn

i

ii

1

/1

1

/1/1

1

)()()( ηξηξ, for each n∈ � 

Since   
1 1

;

p p

i i

i i

andξ η
∞ ∞

= =

< ∞ < ∞∑ ∑  we have 

p

i

p

i

p

i

p

i

p

i

ii

/1

1

/1

11

)()()( ∑∑∑
∞

=

∞

=

∞

=

+≤+ ηξηξ
 

 

 

  

  

  

  



 
8 

CHAPTER 2  

 

2.1: Normed spaces, Banach Spaces.  

We first introduce the concept of a norm (definition below), 

which uses the algebraic operations of vector spaces. Then we 

employ the norm to obtain a metric d that is of the desired kind 

 

2.1-1.Definition: 

A norm on a vector space X (over Κ )  

a scalar field K is a real valued function, RX →:.  which 

satisfies the following properties: 

1) Xxx ∈∀≥ ,0  

2) Xxxx ∈∀=⇔= ,00 

3) , ;x x x X Kα α α= ∀ ∈ ∈  be any scalar. 

4) Xyxyxyx ∈∀+≤+ ,. 

A Banach space is a complete normed space it is complete in the 

metric defined by the norm 
yxyxd −=),(  

 

2.1.2. Lemma: The norm is continuous function.  

Let X be a norm space and note that for any  x,y .X∈  

                              
yxyx −≤−
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Proof: Let , ,x y X then∈ 

xxy +−≤+−= xxyy 

yyxyyxx +−≤+−= 

yyxx +−≤    Χ∈∀ yx , 

yxyx −≤−⇒    --------- (1) 

Replacing x by y we have 

y x y x x y− ≤ − = −     

i.e.  yxxy −≤− 

⇒yxyx −≤−− )(
  

⇒yxyx −−≥− ---- (2) 

yxyxyx −≤−≤−− 

Hence 
x y x y− ≤ − 

Examples: 

1) Consider the space  
p

l={ 1( ) : ;
pn

i i i ix Cξ ξ ξ== ∈ < ∞∑ } 

   

Define ║.║:
p

l → R by  

 (*)                                       ║x║= 

1

1

| |
p

p

j

j

ξ
∞

=

 
 
 
∑  

  

Then (
p

l ,║.║) is a normed space.  
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Proof:  

 first, we have to prove that (*) is well defined. So, 

let ( ) p

j
x ξ= ∈l 

       
1

| |
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=

⇒ < ∞∑  

Since the sum of a convergent series is unique , 

 (*) is well defined  

α β=              

  1) Since 1 2 3, ,| |,.....,| |,..... 0nξ ξ ξ ξ ≥   

1 2 3
| | ........ | | ...... 0

n
ξ ξ ξ ξ⇒ + + + + + ≥   

0x⇒ ≥ 

2) 

1

1

0 | | 0 0
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j j

j
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p p p

p p p

j j j j

j j j

x y ξ η ξ η
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                                                          (by Minkowski inequality)  

x y≤ +� � � �  
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2)Space 
∞
l : This space is a Banach Space with norm given by   

sup | |
j

j

x ξ=� � 

We have to prove is well defined 

( ) ( ){ }: , . . .
j j j

x is a bounded sequansξ ξ ξ∞ = = ∈l �  

( )j
ξ is a bounded sequence 0 | |

j
M Mξ⇒ ∃ > ∋ ≤             j∀ ∈ �       

{ }| |:jA jξ= ∈�  is a bounded subset of �  

⇒supA exist   

⇒ sup | |
j

j

ξ
∈�

  exist and is uniqe  

To each ( ) ,jx ξ ∞= ∈l sup | |j
j

ξ
∈�

is uniqe 

Now, Let 
∞∈= lx )(ξ then 

1) 0sup0sin0 ≥⇒≥≥ iicex ξξ 

2) 0 sup 0 0 1,2,...

0 1, 2,... 0

i i

i

x i

i x

ξ ξ

ξ

= ⇔ = ⇔ = ∀ =

⇔ = ∀ = ⇔ =  

3) For any R∈α 

sup sup sup
i i i

x xα αξ α ξ α ξ α= = = = 

4) Let 
∞∈= ly i )(η 

sup
i i

x y ξ η+ = + 
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sup( )

sup sup

i i

i i x y

ξ η

ξ η

≤ +

≤ + = +
 

Hence  
∞

l  is a normed space.  

 

2.2. Some properties of normed spaces. 

2.2-1 Definition:  

A subspace Y of a normed space X is a subspace of X 

considered as a vector space, with the norm obtained by 

restricting norm on X to the subset Y. 

If Y is closed in X , then Y is called a closed subspace of X. 

2.2-2: Definition (convergence of sequences) 

(i) A sequence ( nx ) in a normed space X is said to be convergent 

if X contains an x  such that 

0lim =−
∞→

xx n
n

 

Then we write )( nx → x  and call x  the limit of ( nx ). 

(ii) A sequence ( nx ) in a normed space X is Cauchy if for every 

0>ε  there is an N such that  

ε<− nm xx for all m, n >N  
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2.2-3: Definition  (infinite series) . 

A series ....21

1

++=∑
∞

=

xxx
k

k in normed space (X, ║.║) is said 

to be convergent if the sequence (Sn) of the partial sums 

convergent ,where 
1

n

n i

i

S x
=

=∑   

In this case  ....21

1

++== ∑
∞

=

xxxS
k

k 

∑
∞

=1n

nx is said to be absolutely convergent, if ∑
∞

=1n

nx  is 

convergent. 

Lemma (2.2.4) Let X is a Banach space if ∑ nx  is absolutely 

convergent then ∑ nx  is convergent. 

Proof: 

Suppose ∑ nx is absolutely convergent. 

∑⇒ nx is convergent 

⇒ the sequence (tn) of partial sums of ∑ nx  is convergent, 

where
 

∑
=

=
n

j

jn xt
1

 

nt⇒ is a Cauchy sequence. 

Let 0>ε  be given 
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Since ( nt ) is a Cauchy sequence εε NmnNN ≥∀∋∈∃ ,: . 

hence ε<− mn tt 

Nmn ≤∀ ,  , n > m 

∑ ∑
= =

−=−
n

j

m

j

jjmn
xxSS

1 1

∑
+=

=
n

mj

jx
1

j

n

mj

x∑
+=

≤
1

 

j

mj

x∑
∞

+=

≤
1

 ε
ε

<≤ ∑
∞

+=
j

Nj

x
1

     

)( nS⇒ is a Cauchy sequence in X 

Since X is complete 

)( nS⇒ convergence in X 

∑⇒ nxis convergence 

2.2.5. Definition: 

Let X be a normed space. The space X is said to be complete if 

every Cauchy sequence in X converges. 

Remark: 

If a normed space X contains a sequence (en) with the property 

that for every x∈X there is a unique sequence of scalars ( nα ) 

such that 

0).....( 11 →+− nneex αα  as ∞→n 

Then (en) is called a Schuder basis for X 

Then we write, ∑
∞

=

=
1i

iiex α  
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2.2.6. Definition : (Dense set, separable space)  

A subset M of a normed space X is said to be dense in X if 

XM = ,where M is the closure of M. 

X is said to be separable if it is has a countable subset which is 

dense in X. 

2.2.7: Theorem (complete subspace): 

 A subspace M of a complete metric space X is itself complete if 

and only if the set M is closed in X. 

Proof: 

Suppose M be complete ⇒every Cauchy sequence in M is 

Convergent 

Let x M∈ ⇒ ∃ a sequence ( ) .n nx in M s t x x→    

Since (xn) is convergent nx⇒  is Cauchy sequence in M. 

Since M is complete )( nx⇒  converges in M, say (xn) � y0

M∈ 

By the uniqueness of the limit MMMyx ⊆⇒∈= 0  --(1) 

MM ⊆ ----(2) (Clearly by definition) 

From (1) and (2), we have  M M= ,hence M is closed.  

Conversely, suppose M is closed, and let (xn) be a Cauchy 

sequence in M.  

)( nx⇒ is a Cauchy sequence in X. 

Since X is complete )( nx⇒ convergence to x0 Mx ∈⇒ 0    
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Since M is closed MMx =∈⇒ 0 

⇒ every Cauchy sequences in M convergent in M 

⇒ M is complete 

2.2-8   Theorem  (Completion).  

Let  ( , )X X= ��� be a normed space. Then there is banach space 

X
∧

 and an isomerty . A from X onto a subspace W of X
∧

 which is 

dense in X
∧

. The spaceX
∧

 is unique, except for isometries.  

2.3.Linear Operators 

2.3-1 Definition  (Linear Operators ) 

A linear operators T is an operator such that  

(i ) the domain D(T) of T is a vector space real or complex 

and the range R(T) lies in a vector space over the same field 

ii) for all x, y ∈D(T) and any scalars α,( 

T(x +y)=T x +Ty 

T( α x)=  α T x                  (1) 

By definition , the null space of T is the set of all x ∈ D(T) such 

that T x = 0 

Clearly , (1) is equivalent to  

T(α x+ β y ) =  α T x + β Ty, ∀�, 
 ∈ ���	���	�, �����	���� 

Examples:  

2.3-2: Identity operator . 

Let X be a vector space over K(R or C). 

The identity operator I: X  →  X is defined by Ix = x for all x∈ X  
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For all x, y ∈ �, �, �� ∈ � 

I(α x + β y) = α x + β y   

                   = α I(x)+β I(y) 

Hence , I is  an operator 

2.3-3:Zero operator. 

The zero operator O:X →  X is defined by Ox =0 for all x∈ X 

O(α x +β y ) = 0 

                   = 0 + 0 

                   = α Ox + β O y 

Hence, O is an operator . 

 

2.3-4: Integration. 

The function space C[a, b],  as a set X we take the set of all real-

valued functions x, y, …which are functions of independent real 

variable t and are defined and continuous on a given closed 

bound interval J=[a, b]  

Now,  A linear operator T from C[a, b]into itself can be defined 

by  

T x(t) = � ����		���
            t∈ [a, b] 

Proof: 

Since any continuous  function on [a , b ] is integrable on [a , b ] 

   ⇒   T is well-defined  
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T((α x +β y)(t)) = � ��� + �
����			���
   

                        =� ����� + �
���			���
  

                         =� �����				���
  + � �
���				���

  

                          =α� �����
 		�� + β� 
���			���

  

                          =α T x(t) + β Ty(t) 

Hence , T is an operator 

2.3-5: Multiplication by t. 

 Another linear operator T from C[a , b] into itself is defined by  

(T x)(t)=T x(t) = t x(t) ,          ∀ t ∈[a , b]           (*) 

Proof: 

I want proof (*) is well-defined 

Let x, y   C[a ,b]    s.t x = y 

                ⇒ x(t) = y(t)     for all t ∈ [a , b] 

                ⇒  t x(t) = t y(t) 

                ⇒     T x(t) + Ty(t) 

Hence , (*)  is well defined 

Now I want to prove (* )is an operator  

T(α x +β y)(t) = t(α x +β y)(t) 

                     = t(α x(t)) + t (β y(t)) 

                     =α (t x(t)) + β (t y(t)) 

                      = α T x(t) + β Ty(t) 
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Hence , T is an operator  

  

2.3-5 Theorem ( range and null space ). 

Let T be a linear operator . 

Then: 

The range R(T) is a vector space .)a( 

If dim D(T) =n < ∞ , then dim R(T) ≤ n .)b(  

(c)The null space N(T) is a vector space . 

                                        : proof 

  (a)We take any y1, y2∈R(T) and show that αy1+βy2∈R(T) for 

any scalars α, β    

Since y1,y2∈R(T), we have y1=Tx1 , y2=Tx2 for some x1,x2∈D(T) 

and αx1+βx2∈D(T)  (since D(T) is a vector space).  

The linearity of T yields 

           T(αx1+βx2) = α Tx1 + β Tx2 

                                                =αy1+βy2 

Hence αy1+βy2∈R(T).   (since y1, y2∈R(T) were arbitrary and so 

were the scalar )  

 (b) We choose n+1 elements y1,y2,…,yn+1 of R(T) in an 

arbitrary Fashion.  

Then we have y1 =Tx1,…,yn+1=T x n+1 for some x1, …,x n+1 in 

D(T).  

Since dim D(T) = n, this set {�#, … , �%&#} must be linearly 

dependent. Hence �#x 1+…+αn+1xn+1 = 0 for some scalars 

α1,…,αn+1 , not all zero.  
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Since T is linear and T0 = 0, application of T on both sides gives 

T(α1x1+…+αn+1xn+1) = α1y1+…+αn+1yn+1=0 

This shows that {
#, … , 
%&#} is a linearly dependent set .   

(since the αi s are not all zero ).  

Remembering that this subset of R(T) was chosen in an arbitrary 

fashion , we conclude that R(T) has no linearly independent 

subsets of n+1 or elements .By the definition this means that 

dim R(T) ≤ n  

(c)We take any x1,x2∈ N(T) . then Tx1 = Tx2 =0. 

Since T is linear , for any α, β we have 

   T(αx1+βx2) = αTx1+βTx2 = 0 

This shows that αx1+βx2∈ N(T).Hence N(T) is a vector space. 

2.3-6 Theorem (Inverse operator). 

Let X,Y be vector spaces, both domain D(T) complex. Let 

T:D(T) → Y be a linear operator with domain D(T) X  

and range R(T) Y. then: 

The inverse T
-1 

:R(T)  → D(T) exists if and only if)a( 

Tx = 0 ⇒  x = 0 

If T
-1

 exist, it is a linear operator. )b( 

(c)If dim D(T) =n < ∞ and T
-1

 exists, then dim R(T) = dim 

D(T) 

Proof: 

)a(  ( ⇐ ( 	�			I want to prove T
-1 

 is exist ⇔T is 1-1 

Now , suppose T(x) = 0 ⇒  x = 0 
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Let T(x1) = T(x2) 

	⇒  T(x1) – T(x2) = 0 

  ⇒T(x1 – x 2) = 0        ( since T is a linear operator ) 

  ⇒ x1 - x2 = o                 ( from given ) 

 ⇒x1 = x2  

⇒T is 1 – 1 

⇒T
-1 

is an exist  

(⇒ ) I want to prove if T(x) = 0 ⇒  x =0  

Let T
-1 

 is an exist then, T(x1) = T (x2) ⇒ x1= x    

Take x2 = 0, T(x1) = T(0) ⇒x1= 0 

  ⇒T(x1) = 0 ⇒ x1 = 0       ( since T(0) = 0  ) 

This completes the proof of (a) 

(b)We assume that T
-1 

exists and show that T
-1

 is linear.  

T
-1

: R(T)   → D(T) 

 Y1= Tx1 and y2 = Tx2 ,      where x1, x2∈D(T) 

Then  x1 = T
-1

y1   and   x2 = T
-1

 y2 

T is linear, so that for any scalars α and β we have  

 �y1 +βy2 = αTx1+ βTx2= T(αx1+βx2) 

Since x1= T
-1 

y2, this implies 

T
-1

(αy1+βy2) = αx1+βx2 = α T
-1 

y1+ β T-1 
y2 

Hence, T
-1

is linear.                                                              
  

( c)  we have dim R(T) ≤ dim D(T)          (1)( by theorem 2.3-5) 
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And T
-1

:R(T)		→ D(T) 

  ⇒ dim R(T
-1

)=dim D(T) ≤ dim D(T
-1

) = dim R(T)     (2) 

Then from (1) , (2) dim R(T) = dim D(T)  

2.3-7 Lemma ( inverse of product ). 

Let T:X  →  Y and S:Y  →  Z be bijective linear operators, 

where X,Y,Z are vector spaces .Then the inverse (ST)
-1

:Z  →  X 

of the product ST exists, and (ST)
-1

=T
-1

S
-1

 

 

Applications  

Application(1):Let T:D(T)  →  Y be a linear operator whose 

inverse exists. If {x1,…, xn } is a linearly independent set in 

D(T), Then the set {Tx1,…,T xn} is an linearly independent.  

Suppose α1Tx1+…+αn T xn=0   for some scalars α1,…αn 

⇒T(α 1x 1+…α nxn)= T(0) =0    (since T is linear ) 

⇒α1x1+…+αn xn= 0           (since T is 1-1) 

But x1,…,xn are linear independent  

⇒α1=…=αn=0 

Hence the set {Tx1,…,T xn}is linearly independent  

  

Application(2):Let T:X →Y be a linear operator and 

dimX=dimY=n<∞ Show that R(T)=Y if and only if  

T
-1

exist  

Suppose T:X  →Y is onto T(X)=Y, dim X=dim Y=n 

E={e1,…,en}is a basis for X 
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Let y∈Y =T(X) 

y=T x     for some x�X 

x∈X=span{e1,…,en} 

 ⇒ x=∑ �+		%+,# -+   , for some α1,…,αn 

 ⇒y=T x=T(∑ �+%+,# -+)=∑ �+%+,# -+ 

  ⇒{Te1,…,Ten}generates Y 

 ⇒ {Te1,…,Ten} is a basis for Y  

Now, let x∈ � ∋:� = 0,writing x=∑ �+%+,# -+ 

0=T x= ∑ �+%	+,# -+⇒α1=…=αn=0 

Since {T ei: i =1,..,n}is linearly independent   

⇒ ( 	23	1_1⇒  T
-1 

:T(X)=Y→X exists 

Conversely, Suppose T
-1

:R(T)→ X exists 

We have to prove R(T)=Y 

Since T:X→R(T), T
-1

:R(T)→X 

 ⇒ dim R(T)≤dim X and dim X ≤dim R(T) 

⇒ ( dim��� = �29�=n=dimY 

Hence,  R(T)=Y 

2.4 Bounded and continuous linear operators. 

2.4-1. Definition:  Let X and Y be normed spaces and :� → : 

linear a operoter . The operator 	is said to be bounded if there 

is a number c such that for all ���       ‖�‖ ≤ =‖�‖											�1� 
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Hence,	‖>?‖‖?‖ ≤ =,	� ≠ 0 ⟹ ║>?║
║?║?∈B?CD

EFG
≤ =	 

The number 
║>?║
║?║?∈B?CD

EFG
 is denoted by ‖‖  

From (1) we have ‖�‖ ≤ ‖‖‖�‖  

2.4-2. Lemma (Norm)   

Let T be abounded linear operator  

(a) ‖‖ =
1

sup

=

∈

x

Xx ‖�‖  

 (b) ‖‖ =
0

sup

≠

∈

X

Xx
‖>?‖
‖?‖ 		 Satisfies the properties of the norm 

Proof: 

(a)Let :� → : be abounded linear operator 

⟹ = > 0 ∋: ‖�‖ ≤ =‖�‖		∀� ∈ �  

‖I‖ =
0≠

∈

x

Xx

Sup

‖IJ‖
‖J‖   
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 we want to prove ‖‖ = ║�║?KB
║?║,#

LMN
.  

Let ║x║=α and y= (1/α)y   , x≠0    ║y║=1  

And since T is linear and (1) is given ‖‖ =
0

sup

≠

∈

x

Xx ‖>?‖
O   

 =
0

sup

≠

∈

x

Xx  P�#O ��P = 1

sup

=

∈

y

Xy
 ‖
‖  

(b)1) since  ‖�‖ ≥ 0 and 0x ≥    

 

  

⇒ ( ‖‖ =
0

sup

≠

∈

x

Xx ‖>?‖
‖?‖ 		= 1

sup

=

∈

x

Xx ║Tx║≥ 0  

2) Suppose 0T =
 
⇒

 0

sup
x X
x

∈
≠

‖>?‖
‖?‖ = 0 

⇒ ‖>?‖
‖?‖ = 0 ⇒ ‖�‖ = 0			∀� ∈ �, � ≠ 0

  

⇒ � = 0			∀� ∈ �, � ≠ 0, hence T=0 

3)

 0

sup
x X
x

Tx
T

x

α
α

∈
≠

=
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0

0

sup

sup

x X
x

x X
x

Tx

x

Tx
T

x

α

α α

∈
≠

∈
≠

=

= =
  

4)Let	#: � → :	���	R: � → :	are bounded linear Operator, 

then :  

║T1+T2║=
║�>S&>T��?�║

║?║?∈B?CD

EFG
=	 ║>S	�?�&>T�?�║

║?║?∈B?CD

EFG
 

                  ≤ ║>S�?�║
║?║?∈B?CD

EFG
+ ║>T�?�║

║?║?∈B?CD

EFG
  

=║T1║+║T2║  

Examples:  

 2.4-3. ( Identity operator ) the identity operator U: � → �on a 

normed space X is bounded and has normed 1I =  

║Ix║ = 
║B║
║B║ = 1 ,  Hence I is bounded 
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2.4-4. (zero operator ) :the zero operator V: � → :on a normed 

space X is bounded and has  

norm‖V‖ = 0 

2.4-5. (differentiation operator ) 

Let X be the normed space of all polynomials on   J=[a, b] with 

norm given max ( ) ,x x t t J= ∈ .  

A differentiation operator  T:X→ : is defined on x by 

(T(x))(t)=�`��� . T is well defined , since every polynomial x is 

differentiable  and the derivative is unique, and x ′  is 

polynomial on [ ]0,1  , let ,x y X∈ , then for any [ ]0,1t ∈ ,  

(T(x+y) )(t)=(x+y)`(t)=x`(t)+y`(t)

=(Tx)(t)+(Ty)(t)=(Tx+Ty)(t) 

⇒T(x+ y)=T x+ Ty  …(1). 

Now,  let α ∈� ,then 

( Tx)(t)=( x)`(t)= (x)`(t)=( Tx)(t)α α α α 

 ( Tx)= (Tx)......(2)α α 
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From(1) and (2)T is linear   

 Now ,Let 		�%��� = �%  

n-1 n-1

n n n x`  (t)=nt  Tx = x` =max |nt  |=n⇒ ⇒� � � � 

‖�%‖ = 9��|�%| = 1⇒ ║>?Y║
║?Y║ = �	, � ∈ Z…(*)  

Suppose that  T is bounded 

0 :some c

Tx c x x X

⇒ ∃ > ∋

≤ ∀ ∈
…..(**) 

Since c>0, by the Archimedes property ∃�\ ∈ Z	 

∋: �\ > =  

From (**),∀� ∈ Z	� = ║�%║ ≤ =║�%║ = � 

⇒ �\ ≤ = < �\ this contrary 

 ⇒ ( 	23	���	^�_��-�.	  
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2.4-6 Lemma (linear combinations).  

 Let {x1,…,xn} be a linearly independent set of vector in a 

normed space X . then there is a number c>0 such that for every 

choice of scalars α1,…,αn we have  

║α1 x1+…+αn xn║≥c(│α2│+…+│αn│) 

2.4-7 Theorem (finite dimension ).  

If a normed space X is finite dimensional , then every linear 

operator on X is bounded.  

Proof :  

Let dim X=n , {e1,…,en}a basis for X , let T:X→ : be linear 

operator , Y is a normed space 

Let  x=∑ �+	-+%+,#  , αi ∈ �, 2 = 1,… , �, and let M=
ni

Max

≤≤1
║Tei║. 

‖�‖ = ‖�∑ �+-+							%+,# �‖ = ‖∑ �+	�-+�%+,# ‖ ≤

∑ |�+|‖-+‖%+,# ≤ ∑ |�+|%+,# a
ni

Max

≤≤1
‖-+‖b = c∑ │�+│%+,#  , 

Since{-,… , -%} Is linear independent ,then by lemma 2.4-6 
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c>0 ⇒ ∃ ∋  

1 1 n n i

1

n

i 1 1 n n

i=1

x = e +....+ e >c |  | 

Tx M | | e +....+ e

n

i

m m
x

c c

α α α

α α α

=

⇒ ≤ ≤ =

∑

∑

� � � �

� � � � � �
  

Hence, T is bounded. 

Remark:  

 Let :T X Y→ be any operator , not necessarily linear , where X 

an Y are normed spaces , the operator. T is continuous at an 

0x X∈  if for every 0ε > there is a 0δ >  such that   

for all x X∈ satisfying 
0

x x δ− <    ║T x−Tx0║ 

2.4-8.thearem (continuity and boundedness):  

let :T X Y→ be linear operator , where X,Y are normed spaces , 

then :  

a( T is continuous if and only if T is bounded . )a( 

b) If T is continuous at a single point , it is continuous on X. (  
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Proof: 

(a)  suppose T is bounded 

0 :c Tx T x x X⇒ ∃ > ∋ ≤ ∀ ∈  

To show that T is continuous , we show that T is continuous at 

every point x X∈  

So , let xo be arbitrary point in X , and let 0ε > be given we need 

to find 0 :δ > ∋  

0 0
if x-x <  then  Tx-Tx <    ,x Xδ ε ∈� � � � 

Now,‖� − �D‖ = ‖�� − �D�‖			�		since T is linear� 

                      ≤ ‖‖‖� − �D‖				�since	T is bounded�    

By taking 
2 T

ε
δ =  

if	‖� − �D‖ < e 

0 0Tx-Tx T x-x T
2 T

ε
ε⇒ ≤ ≤ <� � � �� � � �

� �
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Since ox X∈ was arbitrary , this shows that T is continuous.  

Conversely , assume that T is continuous at an arbitrary ox X∈  

then : 

for given f > 0	∃e = eg > 0		 ∋ :		if ‖� − �D‖ < 		e 

		then ‖� − �D‖ < f  

 . So,We want to show T is bounded  

i.e. ∃= > 0		 ∋: ‖�‖ ≤ =‖�‖						∀� ∈ � 

let x be any element in , 0X x ≠ 

.
2

.
2 2

o

o

o

z x x
x

x
z x x

x x

Tz Tx

δ

δ δ
δ

ε

= +

⇒ − = = <

⇒ − <
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2

2

2

2

o o

that is

T x T x T x
x

T x T x x
x

tak e c

T is bounded

δ
ε

δ ε
ε

δ

ε

δ

+ − <

⇒ < ⇒ <

=

⇒

 

(b) Continuity of T at a point implies boundedness of T by the 

second part of the proof of (a), which in turn implies continuity 

of T by (a) . 

2.4-9. corollary ( continuity, null space)  

let T be a bounded linear operator then :  

a) �% → �	where		�l, �	in X ,  implies  T�%→T�  

b) the null space N(T)is closed subspace of X. 

proof : 

let T be a bounded linear operator , and let	��%� → �  , n N∀ ∈

then: 

  ( )
n n

Tx Tx T x x− = −      (since T is linear) 



 
34 

																							≤ ‖‖‖�% − �‖       (*)(since T is bounded )   

Now, let 0ε >  be given , since ( )x
n

x→ , for 

2, :
2

k N
T

ε
∃ ∈ ∋ ‖�% − �‖ < g

R‖>‖ 							� ≥ mg 						�1� 

Hence, where � ≥ mg		, from (*) 

n nTx -Tx T x -x T
2 T 2

ε ε
ε⇒ ≤ ≤ = <� � � �� � � �

� �

Therefore, �% → � 

)b( (b)The null space ( ) { }N T : 0x X Tx= ∈ =  , we want to 

prove N(T) is closed, So let � ∈ )(TN 

    

( ) ( ) ( ) : ( )

( )

n n

n

x N T x in N T x x by theorem

Tx Tx by part a

∈ ⇒ ∃ ∋ →

⇒ →    

 But
  

0 (sin ( ))
n n

Tx ce x N T= ∈ 

Tx=0  x N(T)⇒ ∈⇒ ( ⊂)(TN ��� , 

 since N(T) )(TN⊂ 

 N(T)=  N(T)⇒  
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 N(T)  is closed⇒  

2.4-10.theorem (bounded linear extension):  

let : ��� → :be abounded linear operator , where D(T) ⊂ X 

and Y are a Banach space , then T has an extension 

 n: )(TD → :	  

Where 	o is abounded linear operator of norm  pnp = ║║. 

Proof : 

 Let � ∈ ���qqqqqqq	⇒∃	sequence (�%) in X  ∋: �%→� 

0nx x⇒ − →� �
 

( )n n=1
Tx  is a sequence in Y.

∞

Define n: )(TD → : 

n��� = lim	��%�%,#s  , to show that n  is will defined  

Since ( )nx x→   ⇒ ( ��%� is Cauchy sequence  in X , 

let f > 0	be given  
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: , , (1)

( )

n m

n m n m n m

k N x x n m K
T

now Tx Tx T x x T x x

T
T

ε ε
ε

ε

ε

∃ ∈ ∋ − < ∀ ≥ →

− = − ≤ −

≤

<

 

( )
n

Tx⇒is Cauchy sequence in Y, since Y is a Banach space 

( )n
Tx⇒converges  lim( )nTx⇒  exist. 

We show that this definition is independent of the particular 

choice of a sequence in D(T) converging to x. suppose that  

( ), ( )n nx z  are two sequences in D(T) which convergence to x 

and let (Vn) sequence D(T) in defined by 

( )n 1 1 2 2V ( , , . , .............)x z x z= , let f > 0	be given 

Since ( ), ( )n nx z converges to x, 

1 2k ,k N : ,   n n nx x z xε ε⇒ ∃ ∈ ∋ − < − < ∀� � � � 

Let m = 9��{m#, mR}⇒║t% − �║ < f 

⇒ ( 	�v%�	a sequence  convergence in D(T)    
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Since T is bounded linear operator 

( )nTv⇒ is converges  

lim( )
n

n
Tv

→∞
⇒exist , since (Tx )n and (Tz )n are subsequence of 

( )nTv ⇒ they are converges to the same limit⇒ lim��%� =
lim�u%� = lim	�v%� 

To show 

n Bا = 	, v-�	� ∈ ��� 																																																																					
⇒ 	The sequence (�, �,… , ��	convergence to � 

n��� = lim��, �, … � = �	 ⇒ n Bا =    

  We want to show T is linear , let x1,x2∈ �, � ∈ �  

( )n n n 1 n 2(x ), x`  in D(T) :(x ) x ,(x` ) x⇒ ∃ ∋ → →  

�

� �

1 2 n n

n n 1 2

T( x +x  )=limT( (x  )+(x` ) )

                  = limT(x )+limT(x` )= T(x )+T(x )

α α

α α
  

�
� �T T

T =sup sup  = T
x x

x x
≥

� � � �
� � � �

� � � �
 

�
n nT = lim(Tx ) = limT(x ) lim

          =

nx T x

T x

≤� � � � � � � �� �

� �� �
  

�
�

�T
T =sup T T T

x

x
⇒ ≤ ⇒ =

� �
� � � � � � � �

� �
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Applications  

Application(1): let X and be normed spaces , a linear  

operator T:X→ x is bounded if and only if T maps bounded 

sets in X into bounded sets in Y   

First recall that  subset A of a metric space is said to be bounded 

if its diameter ( )Aδ is finite number, where

,

( ) sup ( , )
x y A

A d x yδ
∈

= < ∞   

If ,A X X⊆ is normed space, then 

Suppose that T is a bounded linear operator , and A be bounded 

subset of X

,

,

sup

, ( )

( ) (sin )

( ) sup

( )

x y A

x y A

x y M

x y A claimT A is bounded

Tx Ty T x y T x y ce T is bounded

T M

A Tx Ty T M

T A is bounded

δ

∈

∈

⇒ − = < ∞

⇒ ∀ ∈

− = − ≤ −

≤

⇒ = − ≤

⇒

Conversely ,suppose that T maps bounded sets into   bounded in 

,

( ) sup
x y A

A x yδ
∈

= −
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set Y , note that { }A : 1x X x= ∈ ≤ is bounded subset of X 

( )T A⇒ is bounded  

, 0
x

let x X x A
x

∈ ≠ ⇒ ∈, since ( )T A is bounded 

0 :M⇒ ∃ > ∋ ,Tx Ty M x y A− ≤ ∀ ∈ , since0 ∈

y, and T is linear ⇒ �0� = 0	,we have ‖�‖ = ‖� − 0‖ ≤
c							∀� ∈ �  

Now, let x be any non-zero element in X , then  

    x X
x x

A T M Tx M
x x

 
∈ ⇒ ≤ ⇒ ≤ ∀ ∈ 

 
� � � �

� � � �

Hence, T is bounded  

Application(2): Let T be a bounded linear operator from a 

normed space X onto a normed space Y, if there is 

appositive b such that  ║T x║≥ z║J║ for all	J ∈ {, show 

that the T
-1

:Y→ { exists and is bounded. 
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I want to prove T
-1 

:Y→ �	-�23� 

  
1T −
 is exists 

⇔ 	23	��- − �� − ��-⇔ ��� = {0}, 3�	v-�	� ∈ ���

⇒ � = 0			, � ∈ �, 32�=-	‖�‖ ≥ ^‖�‖⇒	0 = ‖0‖ =

‖�‖ ≥ ‖^‖‖�‖ ⇔ 0 ≤ ‖�‖ ≤ 0⇔ ‖�‖ = 0 ⇔ � =
0		, 32�=-	� ∈ ���	|�3	��	��^2����
 ⇒ ��� = {0}
⇒ 	23	��- − �� − ��-	  

ℎ-�=-	~#-�23� , To show 1
T

−  is bounded i.e.∃c >
0	, ���	∀
 ∈ :		‖~#
‖ ≤ c‖
‖.	32�=-		����⇒∀
 ∈
:		∃� ∈ �	 ∋: � = 
	, � = ~#
		. 

Hence,‖�‖ = ‖~#
‖ ≤ #
� ‖�‖ =

#
� ‖
‖				32�=-	 Tx b x≥ , 

and ^ ≠ 0 

11
take M= >0 M      y Y

b
T y y−⇒ ≤ ∀ ∈� � � � 

Therefore ~#is bounded 
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2.5.linear functional 

2.5-1 definition ( linear functional ) 

A linear functional f is a linear operator with domain in a vector 

space X and range in the scalar field  K (�  or � ) of X , thus  

f:� → � .  

2.5-2 definition (Bounded linear functional) 

A bounded linear functional f is a bounded linear operator  with 

range in the scalar field of the normed. Thus there exists a real 

number c such that for  
( )f x c x≤

.  

Furthermore , the norm of f  is 3_� |��?�|
‖?‖ , or 

‖�‖ = 3_� ?∈B
‖?‖,#

|����|  

This implies , |����| ≤ ‖�‖‖�‖   

2.5-3.Example:(define integral), 

 Then: let f:∁��, ^� → � ,f��� = � ������		, ∀��∁��, ^�, ����, ^�	�
 .     

f is a bounded linear functional on C[a, b]. 



 
42 

proof:  

Let x ,y�∁��, ^����	�-�	��� ,then 

 f��� + y� = � ��� + 
��
 ����� = � ������ + 
�����

 ��  

= � � �����
 dt+� 
����

 �� = ����� + ��
� 

⇒ f is linear . 

( ) ( ) ( ) max ( )

( )

b b b

a a a

b

a

f x x t dt x t dt x t dt

x dt x b a

= ≤ ≤

= = −

∫ ∫ ∫

∫
 

That is , ‖�‖ = 3_�?K� ,�������
���

|��?�|
‖?‖ ≤ ^ − �    …… (1)  

note that,  �D: ��, ^� → � , �D��� = 1, ‖�D‖ = 1 

‖�‖ = 3_� |��?�|
‖?‖ ≥ |��?��|

‖?�‖ = ^ − �   ……(2) 

From (1),(2) ║�║ = ^ − �  
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Examples:  

 by2.5-4. Let t0∈[a, b] be a fixed point, and define f:C[a, b]→ � 

��J� = J����							, J ∈ ���, z�. 

Then f is a bounded linear functional on C[a, b], and ║f║=1 

let x ,y�∁��, ^�, �, �� � 	��	�  

f (α x+ β y)=(α x + β y)(t0) 

                =α x(t0)+β y(t0)=α f (x)+β f (y) 

Hence, f is linear.  

Now, I want to prove f1is bounded and has norm ║f║= 1 

[ ]
0

t a,b
|f(x) |=|x(t ) max |x(t) |= x

∈
≤ � � 

‖�‖ = 3_� |��?�|
‖?‖ ≤ 1 …..(1) =>f is bounded 

For  �D = 1, �D: ��, ^� → � , �D��� = 1		∀	����, ^� 

‖�‖ = 3_� |��?�|
‖?‖ ≥ |��?��|

‖?�‖ = 1 …. (2) 

from (1) and (2) ║f║= 1 
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Applications  

Application(1):let � ≠ �be any linear functional an a vector 

space X, and 

 J�any fixed element of  X−Z��� , where is the null space of 

f . Then each J ∈ {	has a unique representationJ = �J� +
�,where y�Z���. 

Proof: 

Let x X∈ , and note that (
( )

.
( )

o

o

f x
x x

f x
− )∈ ���� 

 Since f�� − ��?�
��?�� . �D� = ���� − ��?�

��?�� . ���D� = 0 

( )
( . ) 0

( )
o

o

f x
f x x

f x
⇒ − = 

( )
.

( )
o

o

f x
x x y

f x
⇒ − = for some ( )y N f∈ 

( )
. (*)

( )
o

o

f x
x x y

f x
⇒ = + →( for the uniqueness)  

Let � ∈ �, suppous

1 1 2 2 1 2, ( )o ox x y x y y y N fα α= + = + ∈ 
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1 2

1 2 1 2

( ) ( ) ( )
o o

f x f x f x

y y

α α

α α

⇒ = =

⇒ = → = 

Hence , the representation in (*) is unique 

Application(2): Let �:{ → � be a linear function, then  

either � ≡ � on X or ��{� = � . 

Suppose 	� ≠ 0 and suppose on the contrary that 	���� ≠ � 

⇒ ( ∃��� ∋ 	�∉����  

Since � ≠ 0 ⇒ 
 ∈ �	 ∋ ��
� ≠ 0 

Hence, 
O

����
	 ∈ � and �� O
���� 
� ∈ ���� 

But � = O
���� ��
� = � � O

����
� ����� 

Our assumption that ���� ≠ � is false , and we must have  

����= � 
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)Chapter (3  

3.1:Inner product spaces, Hilbert spaces: 

The spaces to be considered in this chapter are defined as 

follows. 

3.1-1:Definition:  

An inner product space on a vector space X(over �   or � ) is a 

real-valued function, , : ,X X〈 〉 × → � 

Which is satisfies the following properties : 

Let x,y and z be any vectors , and a scalar α . 

, 0x x〈 〉 ≥
)1(  

, 0 0x x x〈 〉 = ⇔ =
)2( 

, , ,x y z x z y z〈 + 〉 = 〈 〉 + 〈 〉
)3( 

, ,x y x yα α〈 〉 = 〈 〉
)4(  

, ,x y y x〈 〉 = 〈 〉
)5(  
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The complete of inner product space with the metric induced 

by inner product is called a Hilbert space. 

We define a norm and a metric in an inner product space by, 

, ,x x x= 〈 〉� �    .x X∀ ∈ 

So ( , ) , .d x y x y x y= 〈 − − 〉 

Hence inner product spaces are normed spaces, and Hilbert 

spaces are Banach spaces. 

3.1-2:Remarks:  

1- , , ,x y z x z y zα β α β〈 + 〉 = 〈 〉 + 〈 〉   

  2- ,x yα α〈 〉 = ,x y〈 〉 

3- ,x y zα β〈 + 〉 = α ,x y〈 〉 β+ ,x z〈 〉
 

3.1-3:Defination:An element x of an inner product space X 

is said to be orthogonal to an element y X∈ if , 0x y〈 〉 =  
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Examples:  

3.1-4:The Unitary space 

( ){ }1 2
: , ,...., , 1, 2,....,n

n i
x x i nξ ξ ξ ξ= = ∈ ∀ =� � 

is an inner product space with the inner product defined by 

1

,
n

i i

i

x y ξ η
=

〈 〉 = ∑ ,where ( )1 2, ,...., nx ξ ξ ξ=  , 

( )1 2
, ,...., n

n
y η η η= ∈� . 

Since 
1

n

i i

i

ξ η
=

∑ is finite series, then it is convergent. Hence

1

,
n

i i

i

x y ξ η
=

〈 〉 = ∑  is well defined 

Now we show 
1

,
n

i i

i

x y ξ η
=

〈 〉 = ∑ , n
x y∋ ∈�  is an inner 

product .  
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1-

2

2

1

, | | 0
n

i

i

x x ξ
=

 
〈 〉 = ≥ 

 
∑ 

2-

2

2 2

1 1

, 0 | | 0 | | 0
n n

i i

i i

x x ξ ξ
= =

 
〈 〉 = ⇔ = ⇔ = 

 
∑ ∑      

2
| | 0, 1, 2,....,

0, 1, 2,....,

0

i

i

i n

i n

x

ξ

ξ

⇔ = ∀ =

⇔ = ∀ =

⇔ =
  

3-Let ( )iz β= ( )
1

,
n

i i i

i

x y z ξ η β
=

〈 + 〉 = +∑

1

n

i i i i

i

ξ β η β
=

= +∑
1 1

n n

i i i i

i i

ξ β η β
= =

= +∑ ∑

, ,x z y z= 〈 〉 + 〈 〉 

4- ( )
1

,
n

i i

i

x yα αξ η
=

〈 〉 =∑ ( )
1 1

n n

i i i i

i i

α ξ η α ξ η
= =

= =∑ ∑

,x yα= 〈 〉 

5- ,y x〈 〉
1

n

i i

i

η ξ
=

=∑
1

,
n

i i

i

x yξ η
=

= = 〈 〉∑ 
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3.1-5:The Space ( )2 2

1
1

, , | |
i i ii

i

x ξ ξ ξ
∞

∞

=
=

 
= = ∈ < ∞ 
 

∑l �  is 

inner product space with an inner product 

 defined by 
2 2, :〈 〉 × →l l �   

1

,
i i

i

x y ξ η
∞

=

〈 〉 = ∑    ( ) ( ) ( )2, , , ...... *i ix y x yξ η∈ = =l  

Proof 

 Let   ( ) ( )2, , ,i ix y x yξ η∈ = =l 

By Cauchy-Schwarz inequality 

1 1

2 2
2 2

1 1 1

| | | | . | |ii i i

i i i

ξ η ξ η
∞ ∞ ∞

= = =

   
≤ < ∞   
   

∑ ∑ ∑ 

since
2 2

1 1

| | , | |ii

i i

ξ η
∞ ∞

= =

< ∞ < ∞∑ ∑ and | | | |, .
i i i

η η η= ∀ ∈� 

Then  
1

i i

i

ξ η
∞

=
∑ is absolutely convergent series in � with 

usual metric since�  is complet, every absolutely convergent 

series is convergent.   
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Hence, the map given by (*) wwell defined 

Now we prove that (*) defines an inner product . 

1-

2

2

1

, | | 0i

i

x x ξ
∞

=

 
〈 〉 = ≥ 

 
∑ 

2- 

2

2 2

1 1

, 0 | | 0 | | 0
i i

i i

x x ξ ξ
∞ ∞

= =

 
〈 〉 = ⇔ = ⇔ = 

 
∑ ∑

2| | 0, 1,2,....,

0, 1,2,....,

0

i

i

i n

i n

x

ξ

ξ

⇔ = ∀ =

⇔ = ∀ =

⇔ =
 

3-Let ( )iz β= ( )
1

,
i i i

i

x y z ξ η β
∞

=

〈 + 〉 = +∑

1

i i i i

i

ξ β η β
∞

=

= +∑
1 1

i i i i

i i

ξ β η β
∞ ∞

= =

= +∑ ∑ , ,x z y z= 〈 〉 + 〈 〉 

4- ( )
1

, i i

i

x yα αξ η
∞

=

〈 〉 =∑ ( )
1 1

i i i i

i i

α ξ η α ξ η
∞ ∞

= =

= =∑ ∑ 

,x yα= 〈 〉 

5- ,y x〈 〉
1

i i

i

η ξ
∞

=

=∑
1

,
i i

i

x yξ η
∞

=

= = 〈 〉∑  
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Note : 

We can show by a simple straightforward calculation that a 

norm on an inner product space satisfies the important 

parallelogram equality. 

( )
2

2 2 2 22x y x y x y+ + − = +� � � � � � � � 

3.1-6: The [ ]( ), , .C a b � � with the norm defined by

[ ],

max | ( ) |
t a b

x x t
∈

=� �   is not an inner product space. We prove 

that by showing that the norm doesn't satisfy the important 

parallelogram equality. 

( )
2

2 2 2 22x y x y x y+ + − = +� � � � � � � � 

Let f,g [ ],C a b∈ ,such that ( ) ( )1,
t a

f t g t
b a

−
= =

− 

as [ ],t a b∈ ,hear [ ]
( )

,
max | |
t a b

f f t
∈

=� � , 

Where  f [ ],C a b∈ . 
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1f =� � 

[ ]
( )

,
max | |
t a b

g g t
∈

=� �
[ ],

max | | | | 1
t a b

t a b a

b a b a∈

− −
= = =

− − 

[ ],
max |1 | 1 2
t a b

t a b a
f g

b a b a∈

− −
+ = + = + =

− −
� �

 

[ ],
max |1 | 1 1
t a b

t a a a
f g

b a b a∈

− −
− = − = + =

− −
� �

 

2 2 4 1 5f g f g∴ + + − = + =� � � � 

and ( ) ( )
2

2 22 2 1 1 4 5f g+ = + = ≠� � � � 

( )
2

2 2 2 22f g f g f g∴ + + − ≠ +� � � � � � � � 

Hence [ ]( ), , .C a b � �  is not an inner product space.  

Applications 

Application(1):Let X be a real product space, the condition 

x y=� � � �  implies , 0x y x y〈 + − 〉 = ? 

 

 



 
54 

Proof: 

2 2

, , , , ,

, ,

x y x y x x y x x y y y

x y x x y y

〈 + − 〉 = 〈 〉 + 〈 〉 − 〈 〉 − 〈 〉

= +〈 〉 − 〈 〉−� � � �
 

Since X is real , ,y x x y⇒ 〈 〉 = 〈 〉  then; 

2 2, , ,x y x y x x y y x y〈 + − 〉 = 〈 〉 − 〈 〉 = −� � � �   

Since x y= ⇒� � � �  
2 2x y=� � � �  then , 0x y x y〈 + − 〉 =  

 

 

Application(2):If an inner product space X, let ,u v X∈  . If 

, ,x u x v〈 〉 = 〈 〉  for all x X∈  and  ,then u v= . 

Proof : 

If , ,x u x v〈 〉 = 〈 〉 , x X∀ ∈  

, , 0 , 0x u x v x u v⇒ 〈 〉 − 〈 〉 = ⇒ 〈 − 〉 =  

In particular when x u v= − . 

2 , 0 0u v u v u v u v u v− = 〈 − − 〉 = ⇒ − = ⇒ =� �  
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3.2 Further Properties of Inner Product Space. 

3.2-1:Lemma(Schwarz inequality, triangle  inequality). 

An inner product X and the corresponding norm satisfy the 

Schwarz inequality and triangle  inequality as follows. 

1- | , | , , .....x y x y x y X〈 〉 ≤ ∀ ∈� �� �  (*)  (Schwarz 

inequality) 

Where the equality sign holds if and only if{ , }x y  is a 

linearly dependent set. 

    2-The norm also satisfies x y x y+ ≤ +� � � � � �  (Tringle  

inequality), where the equality sign holds if and only if  

0y =  or x cy=   (c
+∈� ) 

Proof: 

Note that (*) holds if ether x or y is zero. So suppose that nether 

x or y is zero. Then for every scalarα  we have, 

20 ,x y x y x yα α α≤ − = 〈 − − 〉� �  

                         , , , ,x x x y y x y yα α α α= 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉  
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                          , , , ,x x x y y x y yα α αα= 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉   

                          , , , ,x x x y y x y yα α α = 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉               

In particular, when
,

,

x y

y y
α

〈 〉
=
〈 〉

 ,We have, 

2
2

2

, | , |
0 , ,

,

x y x y
x x x y x

y y y

〈 〉 〈 〉
≤ 〈 〉 − 〈 〉 = −

〈 〉
� �

� �
 

So, multiplying two  sides of 

2
2 2

2

| , |
0

x y
x by y

y

〈 〉
≤ −� � � �

� �
 , 

then we have 
2 2 2 2 2 20 | , | | , |x y x y x y x y≤ − 〈 〉 ⇒ 〈 〉 ≤� � � � � � � � . 

Hence | , |x y x y〈 〉 ≤� �� � 

Now we show the equality in (*) holds if and only if x,y are 

linearly dependent. 

If y xα=  for someα ∈�  then, 

L.H.S  
2

| , | | , | | |x y x x xα α〈 〉 = 〈 〉 = � �  

R.H.S 
2

| | ;x y x x xα α= =� �� � � �� � � �   

So | , |x y x y〈 〉 =� �� � 
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Conversely, showing if
 
| , |x y x y〈 〉 =� �� � , then x, y are 

linearly dependent. 

Suppose that 2

,x y
z x y

y

〈 〉
= −

� �
, for some z X∈   

2 2

, ,
, ,

x y x y
z z x y x y

y y

〈 〉 〈 〉
〈 〉 = 〈 − − 〉

� � � �
 

        

2

2 2 4

, , | , |
, , , ,

x y x y x y
x x x y y x y y

y y y

〈 〉 〈 〉 〈 〉
= 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉

� � � � � �
 

            

2 2 2
2 2

2 2 4

| , | | , | | , |x y x y x y
x y

y y y

〈 〉 〈 〉 〈 〉
= − − +� � � �

� � � � � �
 

            

2 2 2 2 2 2
2 2

2 2 2
0

x y x y x y
x y

y y y
= − − + =

� � � � � � � � � � � �
� � � �

� � � � � �
 

Hence 
2 0z =� � 2

,
0 0

x y
z x y

y

〈 〉
⇒ = ⇒ − =

� �
 

2

,x y
x y

y

〈 〉
⇒ =

� �
 

We know 2

,x y

y

〈 〉
∈�

� �
then x,y are linearly dependent. 
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3.2-2:Lemma: (continuity of inner product). 

If in an inner product space, nx x→   and ny y→  , then 

                             , ,n nx y x y〈 〉 → 〈 〉   

Proof: 

We want to prove , ,n nx y x y〈 〉 → 〈 〉 ,since nx x→  and ny y→  

. This implies 0nx x− → and 0ny y− →  .In inner product space 

that means, 0nx x− →� �  and 0ny y− →� � ,as n → ∞ ,so we have : 

| , , | | , , , , |n n n n n nx y x y x y x y x y x y〈 〉 − 〈 〉 = 〈 〉 − 〈 〉 + 〈 〉 − 〈 〉  

                   | , | || , |n n nx y y x x y≤ 〈 − 〉 + 〈 − 〉            

                                                                                                       (by tringle inequality)  

                         n n nx y y x x y≤ − + −� �� � � �� �        

                                                                                                   (by Schwarz inequality) 

                       0→  

, , 0n nx y x y⇒ 〈 〉 − 〈 〉 → , ,n nx y x y⇒ 〈 〉 → 〈 〉  
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Applications 

Application(1):Show that ny x⊥  and nx x→ together imply 

y x⊥ . 

Let ( nx ) be sequence in X such that ( nx ) converges to an 

element x X∈ . If : ,ny X y x n∈ ∋ ⊥ ∀ ∈�  .Then y x⊥ . Id 

Since , 0, .n ny x x y n⊥ ⇒ 〈 〉 = ∀ ∈�  

But ( nx ) converges to x we have, by lemma 3.2-2, 

, 0 .x y y x⇒ 〈 〉 = ⇒ ⊥  

Application(2): For a sequence ( nx ) in an inner product space 

the condition nx x→� � � � and , ,nx x x x〈 〉 → 〈 〉  imply 

convergence nx x→ .  

Proof : 

Let ( nx ) be sequence in Xsuch that if nx x→� � � �and

, ,nx x x x〈 〉 → 〈 〉  , then 0nx x− →� � . 

Note that since , ,nx x x x〈 〉 → 〈 〉  ,we have 

, , , ,n nx x x x x x x x〈 〉 = 〈 〉 → 〈 〉 = 〈 〉  
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Therefore, 
2 ,n n nx x x x x x− = 〈 − − 〉� �  

                              
2 2, ,n n nx x x x x x= −〈 〉 − 〈 〉+� � � �  

                              
2 2, , 0x x x x x x→ −〈 〉 − 〈 〉+ =� � � �  

Hence 0nx x− →� � , i.e nx x→  

Application(3): Let X be an inner product space ,and let

,x y X∈ . Then x y⊥ and only if  we have

x y x yα α+ = −� � � �  for all scalarα  . 

Proof: 

Let x y⊥ , then 

, 0, , 0.x y y x〈 〉 = 〈 〉 = Therfore, 

2 ,x y x y x yα α α+ = 〈 + + 〉� �  

             2, , , | | ,x x y x x y y yα α α= 〈 〉 + 〈 〉 + 〈 〉+ 〈 〉  

                     
2 2 2

| |x yα= +� � � �       --------------(1) 

Also, 
2 ,x y x y x yα α α− = 〈 − − 〉� �  
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2

, , , | | ,x x y x x y y yα α α= 〈 〉 − 〈 〉 − 〈 〉+ 〈 〉  

                                 
2 2 2| |x yα= +� � � �     --------------(2) 

From (1) and (2) , we have  

2 2 2 2 2| |x y x y x yα α α− = + = +� � � � � � � �  

x y x yα α⇒ + = −� � � � 

Conversely, let x y x yα α+ = −� � � �  for any scalarα  , then 

1 1

2 2, ,x y x y x y x yα α α α⇒ 〈 + + 〉 = 〈 − − 〉  

, ,x y x y x y x yα α α α⇒ 〈 + + 〉 = 〈 − − 〉    for any scalarα . 

2 2 2
, , | |x y x x y yα α α⇒ + 〈 〉 + 〈 〉+� � � �

2 2 2
, , | |x y x x y yα α α= − 〈 〉 − 〈 〉+� � � �  

, , 0y x x yα α⇒ 〈 〉 + 〈 〉 =  

In particular when iα = , we have 
  

, , 0y x x y〈 〉 + 〈 〉 = , ,y x x y⇒ 〈 〉 = −〈 〉   

Also; when iα = , we have 
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, , 0i y x i x y〈 〉 − 〈 〉 =   

Hence  , ( , ) 0 2 , 0i y x i y x i y x〈 〉 − −〈 〉 = ⇒ 〈 〉 =  

, 0y x x y⇒ 〈 〉 = ⇒ ⊥ . 

3.3.Representation of  Functional on Hilbert Spaces. 

3.3-1 Theorem (Direct sum) 

Let Y be any closed subspace of a Hilbert space H. Then 

H=Y⊕ Z                       Z=Y
┴
.  

3.3-2.Riesez Theorem (Functionals on Hilbert spaces).  

Every bounded linear functional f on a Hilbert spaces H can be 

represented in terms of the inner product , namely,  

f(x)= 〈�, u〉       (1)  

where z depends on f, is uniquely determined by f and has norm 

║z║=║f║              (2).  

Proof: 

We proof  that   

a) f has representations (1),(  

b) z in (1) is unique(  

c) formula (2) holds (  

if  f =0 then (1) and (2) hold, (a) Let f ≠ 0		 

since N(f) is a close subspace of  H then  

H=N(f) + N(f)
┴ 

           (by theorem 3.3-1) 



 
63 

Since f≠0 implies N(f) ≠ H so that N(f)
┴ 

 ≠{0}  

Hence N(f)
┴
 contains a z0≠0 and let x be any elemant in H  

 v= f(x) z0-f(z0)x 

applying f , we obtain  

f(v)= f(x)f(z0)- f(z0)f(x) =0  

This show that v∈ ���� since z0 ┴ N(f), we have  

0=〈t, uD〉 =〈����uD − ��uD��, uD〉  

               =����〈uD, uD〉+��uD�〈�, uD〉 
 We solve for f(x).the result is  

 f(x)=
)( 0zf

 ¡D,¡¢£ < �, u0 >  

this can be written in the (1),where	u = uD )( 0zf

 ¡¢,¡D£
 

since x∈H was arbitrary, (1) is proved.  

(b) To prove that z in (1) is unique, 

Suppose that for all x∈H, f(x)=〈�, u#〉 = 〈x, zR〉 

Then 〈�, u# − uR〉=0 for all x. 

Choosing the particular x = z1-z2,we have  

〈�, u# − uR〉 = 〈u# − uR, u# − uR〉 = ║u# − uR║2
=0 

Hence z1-z2=0, so that z1=z2, the uniqueness. 

(c)we finally prove (2). 

From (1)with x=z and │f(x)│≤║f║║x║ we obtain  



 
64 

║z║2
= 〈u, u〉=f(z)≤║f║║z║        

⇒║z║≤║f║       (1)               (since ║z║≠0) 

Since f(x)=〈�, u〉   

⇒│f(x)│=│<x, z>│≤ ║x║║z║   (by Schwarz inequality) 

This implies ║f║= < �, u >≤ ║u║							�2�	║?║,#
EFG

  

From (1)and (2)║f║=║z║ 

   

 3.3-3lemma(Equlity).  

if 〈t# , |〉 = 〈tR, |〉for all w in an inner product space X , then 

v1=v2. In particular, 〈t# , |〉=0 for all w∈X implies v1=0  

proof:  

by assumption, for all w, 

〈t# − tR, |〉 = 〈t#, |〉 − 〈tR, |〉 = 0 

For w=v1-v2 this gives ║v1−v2║
2
=0. Hence v1−v2=0, so that 

v1=v2  

In particular, 〈t#, |〉 =0 with w=v1gives ║v1║
2
=0, so that v1=0  

3.3-4Definition(Sesquiliner form).  

let X and Y be vector spaces over the same field K(=R or C ). 

Then a sesquilinear form h on X× :  

 is mapping h:X×Y→K such that for all x,x1,x2∈Y 

and all scalars α, β 

(a) h(x1+x2,y)=h(x1,y)+h(x2,y) 

(b) h(x,y1+y2)=h(x,y1)+h(x,y2) 
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(c) h(αx,y)=αh(x,y) 

(d) h(x,βy)=βh(x,y)  

Hence h is linear in the first argument and conjugate linear in 

the second one. If X and Y are real then (d) is simply 

h(x,βy)=βh(x,y) ,∀� ∈ �, 
 ∈ :, � ∈ � 

  h is called bilinear since it is linear in both argument .  

If X and Y are normed spaces and if there is a real number c 

such that for all x, y   

h(x, y)│≤c ║x║║y║  

then h is said to be bounded , and the number 

= │ℎ��, 
�│║?║,#
║�║,#

EFG
                   ( I) ║h║=

│§�?,��│
║?║║�║		?∈B~{D}�∈¨~{D}

EFG
  

Is called the norm of h.  

 

3.3-5 Theorm (Riesz represntation).  

Let  H1, H2 be Hilbert spaces and h:H1×H2→K a bounded 

sesquilinear form. Then h has a representation  

 (1)    h(x, y)=〈©�, 
〉  

where s:H1→H2 is a bounded linear operator. S is uniquely 

determined by h and has norm 

║S║= ║h║  
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 Proof: For each fixed x∈ ª#	�-�2�-	�?: ªR → «	^
  

	�?�
� = ),( yxh . Then fx is a linear in H2, which is bounded 

since h is bounded. Then by the previous theorem , ∃unique 

element z∈ ªR	3_=ℎ	�ℎ��    

〈
, u〉=),( yxh  

Hence,  

 (*) h(x, y)= 〈u, 
〉  

 Define S:H1→H2       by      z= S x 

  Substituting z = S x in (*), we have  

  h(x, y)= 〈©�, 
〉  

S is linear. In fact, its domain is the vector space H1, and from 

(1) 〈©���# + ��R�, 
〉 =h(��# + ��R, 
) 

                                            = �ℎ��#, 
� + 	�ℎ��R, 
�  

                                             =�〈©�#, 
〉 + 〈©�R, 
〉  

=〈�©�# + ��R, 
〉  

For all y in H2, so that by Lemma 3.3-2, 

S(��# + ��R)=�©�# + �©�R  

S is bounded. Indeed, leaving aside the trivial case S=0, we have 

from (I)and(*)  

 ≥ 
│〈¬?,¬?〉│
║?║║¬?║?CD¬?D

EFG
= ║¬?║

║?║?CD

EFG
=║Sx║  ║h║=

│〈¬?,�〉│
║?║║�║	?CD�CD

EFG
  

This proves boundednees. Moreover, ║h║ ≥ ║s║ 
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Now, I want to prove ║h║ ≤║S║ by an application of the Schwarz 

inequality: 

║h║ = │〈®¯,°〉│
║¯║║°║¯CD°CD

±²³
	≤ ║¬?║║�║

║?║║�║?CD

EFG
= ║3║  

S is unique. In fact, assuming that there is a linear operator T:H1→H2 

such that for all x∈H1 and y∈H2 we have : 

h(x, y)=〈©�, 
〉 = 〈�, 
〉 
we see that S x=T x by lemma 3.3-2 for all x∈ ª#. Hence S=T by 

definition. 

3.3-6 Definition(Dual space X
*
). 

Let X be a normed space . Then the set of all bounded linear functional 

on X constitutes a normed space with norm defined by  

║�║ = │����│
║�║?∈B?CD

EFG
= │����│?∈B
║?║,#

EFG
 

Which is called the dual space of X is denoted by X
*
 

3.3-7 Theorem:  

The dual space X
*
of a normed space X is a Banach space . 

Applications 

Application(1):if z any fixed element of an inner product space X, show 

that f(x)=〈�, u〉defines a bounded linear functional f on X, 

 of norm ║ z║. 

proof: 

To prove f is well defined, let x1=x2 

⇒ 〈�#, u〉 = 〈�R, u〉 
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⇒ f(x1)=f(x2) 

Now, we have to prove 

 f(��# + ��R)= ����#� + ����R�								∀�#, �R ∈ �	�, � ∈ � 

f(��# + ��R)=〈��# + ��R, u〉=〈��#, u〉+〈��R, u〉 
                                                 =�〈�#, u〉 + �〈�R, u〉 
                                                  =����#� + ����R� 
Now, we prove f is bounded  

│����│ = │〈�, u〉│ ≤ ║�║║u║ 

║f║=
│��?�│
║?║?∈B?CD

EFG
≤ ║u║ ,        (1) 

⇒ f is bounded 

║f║=
│〈?,¡〉│	
║?║?CD

EFG
≥ │〈¡,¡〉│

║¡║ = ║¡║T
║¡║ = ║u║					�2� 

Then from (1)and (2)║f║=║z║ 

 

Application(2):show that the dual space H
*
of a Hilbert space H, Then 

H
*
  is a Hilbert space with inner product〈. , . 〉# defined by  

〈�¡, �́ 〉# = vz, = 〈t, u〉.            (*) 

Proof: 

By the Riezs theorem ���	-�=ℎ	� ∈ ª∗		∃	_�2¶_-	u� ≡ u ∈ ª	 
3_=ℎ	�ℎ��		���� = 〈�, u〉	∀� ∈ ª 

Hence, for � ∈ ª∗is of the form f=fz for some unique element u ∈ ª
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⇒ (*)is well-defined 

Now, I want to prove (a) 〈�, �〉 ≥ 0 

                                    (b)	〈�, �〉 = 0⇔ � = 0 

                                    (c)	〈�, ·〉 = fg ,  

                                     (d) 	〈� + ·, ℎ〉 = 〈�, ℎ〉 + 〈·, ℎ〉 

(a) 〈�, �〉 = 〈�¡, �¡〉 = zz, = ║z║2≥ 0 

(b)0=〈�, �〉 = 〈�¡, �¡〉 = zz, = ║z║2
 

⇔ z=0 ⇔ fz=0 ⇔ fz(x)=〈�, 0〉 =0 ⇔ f=0 

(c) 〈�, ·〉 = 〈�¡, ·´〉= vz, =〈·, t〉 

(d)〈� + ·, ℎ〉 = 〈�¡ + ·´, ℎE〉 = svz ,+ = 〈3, u + t〉 

                        =〈3, u〉 + 〈3, t〉 = sz, + sv,  

                                                =〈�, ℎ〉 + 〈·, ℎ〉 
Application(3):Let M≠∅ be a subset of Hilbert space H, and let  

 M
a 
={f∈ ª∗: ���� = 0	∀� ∈ c} ⊆ H

*
 . let M

┴
={y∈ ª: 〈
, �〉 = 0	∀� ∈

c} ⊆ H 

The relation between M
a 
and M

┴
 can be explained as a follows: 

Let f∈ c ⊆ª∗⇒∃	_�2¶_-	-v-9-��	u� ∈ ª ∋: 
〈�, u�〉 = ����,∀� ∈ ª	 

Hence ∀� ∈ c,				〈�, u�〉 = ���� 
⇒ zf ┴ M ⇒ u� ∈ c┴ 
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Given any � ∈
c 	�ℎ-	_�2¶-	-v-9-��	u�	-�23�3	^
	�2-3u	ℎ-��-9	belongs to M

┴
 

Conversely, let 
D ∈ c┴ ∃	�	^�_��-�	v2�-��	�_�=�2���v	��� ∈ ª∗ 	 ∋: 
������ = 〈�, 
D〉, ∀� ∈ ª 

In particular, ∀	� ∈ c , ��¹��� = 〈�, 
D〉 = 0 

⇒��� ∈ c  
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