King Saud University
College of Sciences
Department of Mathematics
1432-2011

On Normed Spaces

and

Inner Product Spaces

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Sience in mathematics.

Prepared by;
Asma Hasan Althagafi
Dalal Alzahrani

Supervised by;
Dr.Fatmah Baker Jamjoom

 الحمد لله الذي مـا كنا لنهتّي لولا هداه
 و الصلاة على خير البرية محمد المصطفى عليه (فضل الصلاة واتم التسليم

اخط كلمات مدادها دم قلبي وإحساسي (الصادق ، كلمـات ملؤها شكر وعرفان تفيض حب وامتتـان
*إلى من أنا قطرة في بحرها ونجمة في سمـائها
إلى من أنا لها شيء وهي لي كل شيء
إليك..أمي الحبيبة ..إليك أهدي تعبي وجهي وفرحتي وحياتي كلها
إليك عهلي بأن أبرك مـا دام الام يسري في شراييني
*إلى سندي وساعدي ،إلى الثشعاع الأي أنار دربي ،إلى من علمني الصبر والثبات والصمود مهمـا تبدلت الظروف ..إلى أبي الغغالي...
*إلى جزأي الأي لا يتجزأ،إلى عزوتي وملوك وجداني..إلى الأحبة أخوتي وأخواتي
*إلى المنـار الوضاء إلى من صاغت عبارات من ذهب إلى من تعلمنا منها علما
أثمن من علم الكتب ..إلى الاكتورة الرائعة فاطمة جمجوم ..
لك منا سفينة شكر يحملها بحر الاحترام
*إلى من تجولنا في رحابها لنقطف من بستان العلم زهوره ...إلى جامعتي الحبيبة
*إلى كل من يحب العلم ويسعى لتحصيله

Contents

Introduction 2
CHAPTER 1
1.1: Metric Space 3
1.2 : Hőlder inequality 4
1.3: Minkowski inequality 6
CHAPTER 2
2.1: Normed space, Banach Spaces. 8
2.2: Some properties of normed spaces. 12
2.3:Linear Operators 16
2.4: Bounded and continuous linear operators 23
2.5:Linear functionals 41
CHAPTER 3
3.1:Inner product spaces, Hilbert spaces. 46
3.2:Further properties of Inner product spaces 55
3.3: Representation of Functional on Hilbert Spaces. 62
References 71

Introduction

Particularly useful and important metric spaces are obtained if we take a vector space and define on it a metric by means of a norm .The resulting space is called a normed space. If it is a complete metric space, it is called a Banach space. The theory of normed spaces, in particular Banach spaces, and the theory of linear operators defined on them are the most highly developed parts of functional analysis.

Inner product spaces are special normed spaces, as we shall see. Historically they are older than general normed spaces. Their theory is richer and retains many features of Euclidean spaces, a central concept being orthogonality. In fact, inner product spaces are probably the most natural generalization of Euclidean spaces, The whole theory was initiated by the work of D. Hilbert (1912)on integral equations. The currently used geometrical notation and terminology is analogous to that of Euclidean geometry and was coined by E. Schmidt (1908), who followed a suggestion of G. Kowalewski. These spaces have been, up to now, the most useful spaces in practical applications of functional analysis.

CHAPTER 1

1.1 Metric Space

In calculus we study functions defined on real line \mathbf{R}. A little reflection shows that in limit processes and many other considerations we use the fact that on R we have available a distance function, call it d , which associates a distance $d(x, y)=|x-y|$ for every pair of point $x, y \in \mathbf{R}$

1.1-1 Definition (Metric space, metric).

A metric space is a pair (X, d), where X is a set and d is a metric on X space (or distance function on X), that is, a function defined on $X \times X$ such that, for all $x, y, z \in X$ we have:
(M1) d is real-valued, finite and nonnegative.
(M2) $d(x, y)=0 \quad$ if and only if $\quad x=y$.
(M3) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x}) \quad$ (symmetry).
(M4) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y}) \quad$ (Triangle inequality)

Examples:

1.1-2 Real line R. This is the set of all real numbers, taken with the usual metric defined by
$\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|, \mathrm{x}, \mathrm{y} \in \boldsymbol{R}$
1.1-3 Euclidean plane \mathbf{R}^{2}. The metric space R^{2}, space called the Euclidean plane, is obtained if we take the set of ordered pairs $\left(\xi_{1}, \xi_{2}\right)$ of real numbers, Then $\mathrm{d}: \mathrm{R}^{2} \times \mathrm{R}^{2} \rightarrow \mathrm{R}$ is defined by $d(x, y)=\sqrt{\left(\xi_{1}-\eta_{1}\right)^{2}+\left(\xi_{2}-\eta_{2}\right)^{2}}$

Where $x=\left(\xi_{1}, \xi_{2}\right), y=\left(\eta_{1}, \eta_{2}\right)$

1.2 (Hőlder inequality).

Let $\mathrm{P}>1$, and define $q \in R$ such that $; \frac{1}{p}+\frac{1}{q}=1$ then, $l^{p}=\left\{x=\left(\xi_{i}\right)_{i=1}^{n}: \xi_{i} \in C ; \sum\left|\xi_{i}\right|^{p}<\infty\right\}$ then $\sum_{i=1}^{\infty}\left|\xi_{i} \eta_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p} \cdot\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}\right)^{1 / q}$

Proof:

Let $\left(\xi_{i}\right) \in l^{p},(\eta) \in l^{q}$, and assume $\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}=1, \sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}=1$
Note that for any $\alpha, \beta>0 ; \alpha \beta \leq \frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q}$
So for each $\mathrm{i}=1,2, \ldots$
Putting $\alpha_{i}=\left|\tilde{\xi}_{i}\right|$ and $\beta_{i}=\left|\tilde{\eta}_{i}\right|$, we have $\mathrm{i} \in N$
So , $\left|\tilde{\xi}_{i} \tilde{\eta}_{i}\right|=\left|\tilde{\xi}_{i}\right|\left|\tilde{\eta}_{i}\right| \leq \frac{\left|\tilde{\xi}_{i}\right|^{p}}{p}+\frac{\left|\tilde{\eta}_{i}\right|^{q}}{q}$, for each $i \in N$
Hence, for each $i \in \square$ and $n \in \square$ we have,

$$
\begin{gathered}
\sum_{i=1}^{n}\left|\tilde{\xi}_{i} \tilde{\eta}_{i}\right| \leq \sum_{i=1}^{n}\left(\frac{\left|\tilde{\xi}_{i}\right|^{p}}{p}+\frac{\left|\tilde{\eta}_{i}\right|^{q}}{q}\right)=\sum_{i=1}^{n} \frac{\left|\tilde{\xi}_{i}\right|^{p}}{p}+\sum_{i=1}^{n} \frac{\left|\tilde{\eta}_{i}\right|^{q}}{q} \leq \frac{1}{p} \sum_{i=1}^{\infty}\left|\tilde{\xi}_{i}\right|^{p}+\frac{1}{q} \sum_{i=1}^{\infty}\left|\tilde{\eta}_{i}\right|^{q} \\
\quad \text { Since } \sum_{i=1}^{\infty}\left|\tilde{\xi}_{i}\right|^{p}=1, \sum_{i=1}^{\infty}\left|\tilde{\eta}_{i}\right|^{q}=1, \text { then } \sum_{i=1}^{\infty}\left|\tilde{\xi}_{i} \tilde{\eta}_{i}\right| \leq \frac{1}{p}+\frac{1}{q}=1
\end{gathered}
$$

Now, let $\left(\xi_{i}\right) \in l^{p},\left(\eta_{i}\right) \in l^{q}$, and put

$$
\tilde{\xi}_{i}=\frac{\xi_{i}}{\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|\right)^{p}} \text { and } \quad \tilde{\eta}_{i}=\frac{\eta_{i}}{\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|\right)^{q / q}}
$$

We note that the definition of $\widetilde{\xi}_{i}, \widetilde{\eta}_{i}$ are both satisfy the condition.

$$
\text { since } \sum_{i=1}^{\infty}\left|\tilde{\xi}_{i}\right|^{p}=1, \sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}=1
$$

$$
\sum_{i=1}^{\infty}\left|\frac{\xi_{i}}{\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}}\right|^{p}=\frac{\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}}{\left(\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}\right)}=\frac{\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}}{\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}}=1
$$

and $\sum_{i=1}^{\infty}\left|\frac{\eta_{i}}{\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}\right)^{1 / q}}\right|^{q}=\frac{\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}}{\left(\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}\right)^{1 / q}\right)^{q}}=\frac{\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}}{\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}}=1$
Hence $\sum_{i=1}^{\infty}\left|\tilde{\xi}_{i} \tilde{\eta}_{i}\right|=\sum_{i=1}^{\infty}\left(\frac{\left|\xi_{i}\right|}{\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}} \cdot \frac{\left|\eta_{i}\right|}{\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{q}\right)^{1 / q}}\right) \leq 1$

This inequality is called Hőlder inequality.
If $p=2$, then $q=2$. This inequality yields the Cauchy - Schwarz inequality.

$$
\sum_{i=1}^{\infty}\left|\xi_{i} \eta_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{2}\right)^{1 / 2}
$$

1.3 (Minkowski inequality)

For any $\left(\xi_{i}\right),\left(\eta_{i}\right) \in l^{p}, \mathrm{p}>1$. We have:

$$
\left(\sum_{i=1}^{\infty}\left|\xi_{i}+\eta_{i}\right|^{p}\right) \leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{p}\right)^{1 / p}
$$

Proof:
Put $\omega_{i}=\xi_{i}+\eta_{i}, i \in N$

$$
\left|\omega_{i}\right|^{p}=\left|\omega _ { i } \left\|\left.\omega_{i}\right|^{p-1}=\left|\xi_{i}+\eta_{i} \| \omega_{i}\right|^{p-1} \leq\left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right)\left|\omega_{i}\right|^{p-1}\right.\right.
$$

Then for each $n \in N$

$$
\sum_{i=1}^{n}\left|\omega_{i}\right|^{p} \leq \sum_{i=1}^{n}\left(\left(\left|\xi_{i} \|\left|\eta_{i}\right|\right)\left|\omega_{i}\right|^{p-1}=\sum_{i=1}^{n}\left|\xi _ { i } \left\|\left.\omega_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|\eta_{i} \| \omega_{i}\right|^{p-1}\right.\right.\right.\right.
$$

Note that $\left.\sum_{i=1}^{n}\left|\xi_{i}\right|\left|\omega_{i}\right|^{p-1} \leq\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|\omega_{i}\right|^{p-1}\right)^{q}\right)^{1 / q}$ (From
Hőlder inequality)

Where $q \in R$ and $\frac{1}{p}+\frac{1}{q}=p$
since $\frac{1}{p}+\frac{1}{q}=1 \Rightarrow \frac{q+p}{q p}=1 \Rightarrow q+p=q p \Rightarrow(p-1)=p$,
we have
$\sum_{i=1}^{n}\left|\xi_{i} \| \omega_{i}\right|^{p-1} \leq\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|\omega_{i}\right|^{p}\right)^{1 / q}$
Also, $\sum_{i=1}^{n}\left|\eta_{i}\right|\left|\omega_{i}\right|^{p-1} \leq\left(\sum_{i=1}^{n}\left|\eta_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|\omega_{i}\right|^{p-1}\right)^{1 / q}$, form Hőlder inequality
This implies that $\sum_{i=1}^{n}\left|\eta_{i}\right|\left|\omega_{i}\right|^{p-1} \leq\left(\sum_{i=1}^{n}\left|\eta_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|\omega_{i}\right|^{p}\right)^{1 / q}$.
Therefore $\left.\sum_{i=1}^{n}\left|\omega_{i}\right|^{p} \leq\left(\sum_{i=1}^{n}\left|\omega_{i}\right|^{p}\right)^{1 / q}\left[\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\sum_{i=1}^{n}\left|\eta_{i}\right|^{p}\right)^{1 / p}\right]$
, for each $\mathrm{n} \in N \Rightarrow \sum_{i=1}^{n}\left|\omega_{i}\right|^{p} \leq\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|\eta_{i}\right|^{p}\right)^{1 / p}$
, for each $\mathrm{n} \in N \Rightarrow\left(\sum_{i=1}^{n}\left|\xi_{i}+\eta_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|\eta_{i}\right|^{p}\right)^{1 / p}$
Since $\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}<\infty$ and $\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{p}<\infty$; we have

$$
\left(\sum_{i=1}^{\infty}\left|\xi_{i}+\eta_{i}\right|^{p}\right) \leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{p}\right)^{1 / p}
$$

CHAPTER 2

2.1: Normed spaces, Banach Spaces.

We first introduce the concept of a norm (definition below), which uses the algebraic operations of vector spaces. Then we employ the norm to obtain a metric d that is of the desired kind

2.1-1.Definition:

A norm on a vector space X (over K)
a scalar field K is a real valued function, $\|\cdot\|: X \rightarrow R$ which satisfies the following properties:

1) $\|x\| \geq 0, \forall x \in X$
2) $\|x\|=0 \Leftrightarrow x=0, \forall x \in X$
3) $\|\alpha x\|=\|\alpha\|\|x\|, \forall x \in X ; \alpha \in K$ be any scalar.
4) $\|x+y\| \leq\|x\|+\|y\| . \forall x, y \in X$

A Banach space is a complete normed space it is complete in the metric defined by the norm $d(x, y)=\|x-y\|$

2.1.2. Lemma: The norm is continuous function.

Let X be a norm space and note that for any $x, y \in X$.

$$
\mid\|x\|-\|y\| \leq\|x-y\|
$$

Proof: Let $x, y \in X$,then

$$
\begin{gathered}
\|y\|=\|y-x+x\| \leq\|\mathrm{y}-\mathrm{x}\|+\|\mathrm{x}\| \\
\|x\|=\|x-y+y\| \leq\|x-y\|+\|y\| \\
\forall x, y \in \mathrm{X}\|x\| \leq\|x-y\|+\|y\| \\
-\cdots----(1) \Rightarrow\|x\|-\|y\| \leq\|x-y\|
\end{gathered}
$$

Replacing x by y we have

$$
\|y\|-\|x\| \leq\|y-x\|=\|x-y\|
$$

i.e. $\|y\|-\|x\| \leq\|x-y\|$

$$
-(\|x\|-\|y\|) \leq\|x-y\| \Rightarrow
$$

---- (2) $\|x\|-\|y\| \geq-\|x-y\| \Rightarrow$
$-\|x-y\| \leq\|x\|-\|y\| \leq\|x-y\|$
Hence $\mid\|x\|-\|y\| \leq\|x-y\|$
Examples:

1) Consider the space
$=\left\{x=\left(\xi_{i}\right)_{i=1}^{n}: \xi_{i} \in C ; \sum\left|\xi_{i}\right|^{p}<\infty\right\} \ell^{p}$

Define $\|\cdot\|: \ell^{p} \rightarrow \mathrm{R}$ by

$$
\begin{equation*}
\|\mathbf{x}\|=\left(\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}\right)^{\frac{1}{p}} \tag{*}
\end{equation*}
$$

Then $\left(\ell^{p},\|\|.\right)$ is a normed space.

Proof:

first, we have to prove that (*) is well defined. So, let $x=\left(\xi_{j}\right) \in \ell^{p}$

$$
\Rightarrow \sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}<\infty
$$

Since the sum of a convergent series is unique ,
(*) is well defined

$$
\alpha=\beta
$$

1) Since $\left|\xi_{1}\right|,\left|\xi_{2}\right|,\left|\xi_{3}\right|, \ldots . .,\left|\xi_{n}\right|, \ldots . . \geq 0$

$$
\Rightarrow\left|\xi_{1}\right|+\left|\xi_{2}\right|+\left|\xi_{3}\right|+\ldots \ldots \ldots+\left|\xi_{n}\right|+\ldots \ldots \geq 0
$$

$\Rightarrow\|x\| \geq 0$
2) $\square x \square=0 \Leftrightarrow\left(\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}\right)^{\frac{1}{p}}=0 \Leftrightarrow \xi_{j}=0 \forall j$
$\Leftrightarrow\left(\xi_{j}\right)_{j=1}^{\infty}=0 \Leftrightarrow x=0$
3) $\square \alpha x \square=\left(\sum_{j=1}^{\infty}\left|\alpha \xi_{j}\right|^{p}\right)^{\frac{1}{p}}=\left(|\alpha|^{p} \sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}\right)^{\frac{1}{p}}=\mid \alpha \square x$
4) $\square x+y \square=\left(\sum_{j=1}^{\infty}\left|\xi_{j}+\eta_{j}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{j=1}^{\infty}\left|\eta_{j}\right|^{p}\right)^{\frac{1}{p}}$
(by Minkowski inequality)
$\leq \square x \quad \square+\square y$
2)Space ℓ^{∞} : This space is a Banach Space with norm given by $\square x \square=\sup _{j}\left|\xi_{j}\right|$

We have to prove is well defined $\ell^{\infty}=\left\{x=\left(\xi_{j}\right): \xi_{j} \in \square,\left(\xi_{j}\right)\right.$ is.a.bounded.sequans $\}$
is a bounded sequence $\Rightarrow \exists M>0$ Эᄏ ξ_{j} L $M \quad \forall j \in \square \quad\left(\xi_{j}\right)$
is a bounded subset of $\square A=\left\{\left|\xi_{j}\right|: j \in \square\right\}$
supA exist \Rightarrow
$\sup _{j \in \square}\left|\xi_{j}\right|$ exist and is uniqe \Rightarrow
To each $x=\left(\xi_{j}\right) \in \ell^{\infty}, \sup _{j \in \square}\left|\xi_{j}\right|_{\text {is uniqe }}$
Now, Let $x=(\xi) \in l^{\infty}$ then

1) $\|x\| \geq 0 \quad \sin c e \quad\left|\xi_{i}\right| \geq 0 \Rightarrow \sup \left|\xi_{i}\right| \geq 0$

$$
\begin{aligned}
& \text { 2) }\|x\|=0 \Leftrightarrow \sup \quad\left|\xi_{i}\right|=0 \Leftrightarrow\left|\xi_{i}\right|=0 \quad \forall i=1,2, \ldots \\
& \Leftrightarrow \xi_{i}=0 \forall i=1,2, \ldots \Leftrightarrow x=0
\end{aligned}
$$

3) For any $\alpha \in R$

$$
\|\alpha x\|=\sup \left|\alpha \xi_{i}\right|=\sup |\alpha|\left|\xi_{i}\right|=|\alpha| \sup \left|\xi_{i}\right|=|\alpha|\|x\|
$$

4) Let $y=\left(\eta_{i}\right) \in l^{\infty}$

$$
\|x+y\|=\sup \left|\xi_{i}+\eta_{i}\right|
$$

$$
\begin{aligned}
& \leq \sup \left(\left|\xi_{i}\right|+\left|\eta_{i}\right|\right) \\
& \leq \sup \left|\xi_{i}\right|+\sup \left|\eta_{i}\right|=\|x\|+\|y\|
\end{aligned}
$$

Hence l^{∞} is a normed space.

2.2. Some properties of normed spaces.

2.2-1 Definition:

A subspace Y of a normed space X is a subspace of X considered as a vector space, with the norm obtained by restricting norm on X to the subset Y .

If Y is closed in X , then Y is called a closed subspace of X .

2.2-2: Definition (convergence of sequences)

(i) A sequence $\left(x_{n}\right)$ in a normed space X is said to be convergent if X contains an x such that
$\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$
Then we write $\left(x_{n}\right) \rightarrow X$ and call X the limit of $\left(x_{n}\right)$.
(ii) A sequence $\left(x_{n}\right)$ in a normed space X is Cauchy if for every $\varepsilon>0$ there is an N such that
for all $\mathrm{m}, \mathrm{n}>\mathrm{N}\left\|x_{m}-x_{n}\right\|<\varepsilon$

2.2-3: Definition (infinite series) .

A series $\sum_{k=1}^{\infty} x_{k}=x_{1}+x_{2}+\ldots$. in normed space $(\mathrm{X},\|\cdot\|)$ is said to be convergent if the sequence $\left(\mathrm{S}_{\mathrm{n}}\right)$ of the partial sums convergent, where $S_{n}=\sum_{i=1}^{n} x_{i}$

In this case $S=\sum_{k=1}^{\infty} x_{k}=x_{1}+x_{2}+\ldots$.
is said to be absolutely convergent, if $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ is $\sum_{n=1}^{\infty} x_{n}$ convergent.

Lemma (2.2.4) Let X is a Banach space if $\sum x_{n}$ is absolutely convergent then $\sum x_{n}$ is convergent.

Proof:

Suppose $\sum x_{n}$ is absolutely convergent.
is convergent $\Rightarrow \sum\left\|x_{n}\right\|$
the sequence $\left(\mathrm{t}_{\mathrm{n}}\right)$ of partial sums of $\sum\left\|x_{n}\right\|$ is convergent, \Rightarrow where $t_{n}=\sum_{j=1}^{n}\left\|x_{j}\right\|$
is a Cauchy sequence. $\Rightarrow t_{n}$
Let $\varepsilon>0$ be given

Since $\left(t_{n}\right)$ is a Cauchy sequence $\exists \quad N_{\varepsilon} \in N$ э: $\forall n, m \geq N_{\varepsilon}$. hence $\left|t_{n}-t_{m}\right|<\varepsilon$

$$
\begin{aligned}
& , n>m \forall n, m \leq N \\
& \leq \sum_{j=m+1}^{n}\left\|x_{j}\right\|=\left\|\sum_{j=m+1}^{n} x_{j}\right\|\left\|S_{n}-S_{m}\right\|=\left\|\sum_{j=1}^{n} x_{j}-\sum_{j=1}^{m} x_{j}\right\| \\
& \quad \leq \sum_{j=N_{\varepsilon}+1}^{\infty}\left\|x_{j}\right\|<\varepsilon \leq \sum_{j=m+1}^{\infty}\left\|x_{j}\right\|
\end{aligned}
$$

is a Cauchy sequence in $\mathrm{X} \Rightarrow\left(S_{n}\right)$
Since X is complete
convergence in $\mathrm{X} \Rightarrow\left(S_{n}\right)$
is convergence $\Rightarrow \sum x_{n}$

2.2.5. Definition:

Let X be a normed space. The space X is said to be complete if every Cauchy sequence in X converges.

Remark:

If a normed space X contains a sequence $\left(\mathrm{e}_{\mathrm{n}}\right)$ with the property that for every $\mathrm{x} \in \mathrm{X}$ there is a unique sequence of scalars $\left(\alpha_{n}\right)$ such that
as $n \rightarrow \infty \quad\left\|x-\left(\alpha_{1} e_{1}+\ldots . . \alpha_{n} e_{n}\right)\right\| \rightarrow 0$
Then $\left(e_{n}\right)$ is called a Schuder basis for X
Then we write, $x=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$

2.2.6. Definition : (Dense set, separable space)

A subset M of a normed space X is said to be dense in X if $\bar{M}=X$, where \bar{M} is the closure of M .
X is said to be separable if it is has a countable subset which is dense in X .

2.2.7: Theorem (complete subspace):

A subspace M of a complete metric space X is itself complete if and only if the set M is closed in X .

Proof:

Suppose M be complete \Rightarrow every Cauchy sequence in M is Convergent

Let $x \in \bar{M} \Rightarrow \exists$ a sequence $\left(x_{n}\right)$ in M s.t $x_{n} \rightarrow x$
Since $\left(x_{\mathrm{n}}\right)$ is convergent $\Rightarrow x_{n}$ is Cauchy sequence in M.
Since M is complete $\Rightarrow\left(x_{n}\right)$ converges in M, say $\left(x_{\mathrm{n}}\right) \rightarrow \mathrm{y}_{0}$ $\in M$

By the uniqueness of the limit $x=y_{0} \in M \Rightarrow \bar{M} \subseteq M$
$----(2)$ (Clearly by definition) $M \subseteq \bar{M}$
From (1) and (2), we have $\bar{M}=M$, hence M is closed.
Conversely, suppose M is closed, and let $\left(x_{\mathrm{n}}\right)$ be a Cauchy sequence in M.
is a Cauchy sequence in $\mathrm{X} . \Rightarrow\left(x_{n}\right)$
Since X is complete $\Rightarrow\left(x_{n}\right)$ convergence to $\mathrm{x}_{0} \Rightarrow x_{0} \in \bar{M}$

Since M is closed $\Rightarrow x_{0} \in \bar{M}=M$
every Cauchy sequences in M convergent in $M \Rightarrow$
M is complete \Rightarrow

2.2-8 Theorem (Completion).

Let $X=(X, \mathbb{I N})$ be a normed space. Then there is banach space \hat{X} and an isomerty. A from X onto a subspace W of \hat{X} which is dense in \hat{X}. The space \hat{X} is unique, except for isometries.

2.3.Linear Operators

2.3-1 Definition (Linear Operators)

A linear operators T is an operator such that
(i) the domain $\mathrm{D}(\mathrm{T})$ of T is a vector space real or complex and the range $R(T)$ lies in a vector space over the same field
(ii) for all $\mathrm{x}, \mathrm{y} \in \mathrm{D}(\mathrm{T})$ and any scalars α,

$$
\begin{align*}
& \mathrm{T}(\mathrm{x}+\mathrm{y})=\mathrm{T} \mathrm{x}+\mathrm{Ty} \\
& \mathrm{~T}(\alpha \mathrm{x})=\alpha \mathrm{Tx} \tag{1}
\end{align*}
$$

By definition, the null space of T is the set of all $x \in D(T)$ such that $\mathrm{T} x=0$

Clearly, (1) is equivalent to
$\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{Tx}+\beta \mathrm{Ty}, \forall x, y \in D(T)$ and $\alpha, \beta \in K(R$ or $C)$
Examples:

2.3-2: Identity operator .

Let X be a vector space over $\mathrm{K}(\mathrm{R}$ or C$)$.
The identity operator $\mathrm{I}: \mathrm{X} \rightarrow \mathrm{X}$ is defined by $\mathrm{Ix}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$

For all $\mathrm{x}, \mathrm{y} \in X, \alpha, \beta \varphi \in K$

$$
\begin{aligned}
\mathrm{I}(\alpha \mathrm{x}+\beta \mathrm{y}) & =\alpha \mathrm{x}+\beta \mathrm{y} \\
& =\alpha \mathrm{I}(\mathrm{x})+\beta \mathrm{I}(\mathrm{y})
\end{aligned}
$$

Hence, I is an operator

2.3-3:Zero operator.

The zero operator $\mathrm{O}: \mathrm{X} \rightarrow \mathrm{X}$ is defined by $\mathrm{Ox}=0$ for all $\mathrm{x} \in \mathrm{X}$
$\mathrm{O}(\alpha \mathrm{x}+\beta \mathrm{y})=0$

$$
\begin{aligned}
& =0+0 \\
& =\alpha \mathrm{Ox}+\beta \mathrm{Oy}
\end{aligned}
$$

Hence, O is an operator .

2.3-4: Integration.

The function space $C[a, b]$, as a set X we take the set of all realvalued functions $\mathrm{x}, \mathrm{y}, \ldots$ which are functions of independent real variable t and are defined and continuous on a given closed bound interval $\mathrm{J}=[\mathrm{a}, \mathrm{b}]$

Now, A linear operator T from $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ into itself can be defined by

$$
\mathrm{Tx}(\mathrm{t})=\int_{a}^{t} x(t) d t \quad \mathrm{t} \in[\mathrm{a}, \mathrm{~b}]
$$

Proof:

Since any continuous function on $[a, b]$ is integrable on $[a, b]$ $\Rightarrow \mathrm{T}$ is well-defined

$$
\begin{aligned}
\mathrm{T}((\alpha \mathrm{x}+\beta \mathrm{y})(\mathrm{t})) & =\int_{a}^{t}(\alpha x+\beta y)(t) d t \\
& =\int_{a}^{t} \alpha x(t)+\beta y(t) d t \\
& =\int_{a}^{t} \alpha x(t) d t+\int_{a}^{t} \beta y(t) d t \\
& =\alpha \int_{a}^{t} x(t) d t+\beta \int_{a}^{t} y(t) d t \\
& =\alpha \mathrm{Tx}(\mathrm{t})+\beta \mathrm{Ty}(\mathrm{t})
\end{aligned}
$$

Hence, T is an operator

2.3-5: Multiplication by t .

Another linear operator T from $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ into itself is defined by
$(\mathrm{Tx})(\mathrm{t})=\mathrm{Tx}(\mathrm{t})=\mathrm{tx}(\mathrm{t}), \quad \forall \mathrm{t} \in[\mathrm{a}, \mathrm{b}]$
Proof:
I want proof $(*)$ is well-defined
Let $\mathrm{x}, \mathrm{y} \quad \mathrm{C}[\mathrm{a}, \mathrm{b}] \quad$ s.t $\mathrm{x}=\mathrm{y}$
$\Rightarrow \mathrm{x}(\mathrm{t})=\mathrm{y}(\mathrm{t}) \quad$ for all $\mathrm{t} \in[\mathrm{a}, \mathrm{b}]$
$\Rightarrow \mathrm{tx}(\mathrm{t})=\mathrm{t} \mathrm{y}(\mathrm{t})$
$\Rightarrow \quad \mathrm{Tx}(\mathrm{t})+\mathrm{Ty}(\mathrm{t})$
Hence, (*) is well defined
Now I want to prove (*)is an operator

$$
\begin{aligned}
\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})(\mathrm{t}) & =\mathrm{t}(\alpha \mathrm{x}+\beta \mathrm{y})(\mathrm{t}) \\
& =\mathrm{t}(\alpha \mathrm{x}(\mathrm{t}))+\mathrm{t}(\beta \mathrm{y}(\mathrm{t})) \\
& =\alpha(\mathrm{tx}(\mathrm{t}))+\beta(\mathrm{t} y(\mathrm{t})) \\
& =\alpha \mathrm{Tx}(\mathrm{t})+\beta \mathrm{Ty}(\mathrm{t})
\end{aligned}
$$

Hence, T is an operator

2.3-5 Theorem (range and null space).

Let T be a linear operator .
Then:
(a)The range $\mathrm{R}(\mathrm{T})$ is a vector space .
(b)If $\operatorname{dim} \mathrm{D}(\mathrm{T})=\mathrm{n}<\infty$, then $\operatorname{dim} \mathrm{R}(\mathrm{T}) \leq \mathrm{n}$.
(c)The null space $\mathrm{N}(\mathrm{T})$ is a vector space .
proof :
(a)We take any $y_{1}, y_{2} \in R(T)$ and show that $\alpha y_{1}+\beta y_{2} \in R(T)$ for any scalars α, β

Since $y_{1}, y_{2} \in R(T)$, we have $y_{1}=T x_{1}, y_{2}=T x_{2}$ for some $x_{1}, x_{2} \in D(T)$ and $\alpha x_{1}+\beta x_{2} \in D(T)$ (since $D(T)$ is a vector space).

The linearity of T yields

$$
\begin{aligned}
\mathrm{T}\left(\alpha \mathrm{x}_{1}+\beta \mathrm{x}_{2}\right) & =\alpha \mathrm{Tx}_{1}+\beta \mathrm{Tx}_{2} \\
& =\alpha \mathrm{y}_{1}+\beta \mathrm{y}_{2}
\end{aligned}
$$

Hence $\alpha y_{1}+\beta y_{2} \in R(T)$. (since $y_{1}, y_{2} \in R(T)$ were arbitrary and so were the scalar)
(b) We choose $\mathrm{n}+1$ elements $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}+1}$ of $\mathrm{R}(\mathrm{T})$ in an arbitrary Fashion.

Then we have $y_{1}=\mathrm{Tx}_{1}, \ldots, y_{n+1}=T x_{n+1}$ for some x_{1}, \ldots, x_{n+1} in D(T).

Since $\operatorname{dim} \mathrm{D}(\mathrm{T})=\mathrm{n}$, this set $\left\{x_{1}, \ldots, x_{n+1}\right\}$ must be linearly dependent. Hence $\alpha_{1} \mathrm{X}_{1}+\ldots+\alpha_{\mathrm{n}+1} \mathrm{X}_{\mathrm{n}+1}=0$ for some scalars $\alpha_{1}, \ldots, \alpha_{n+1}$, not all zero.

Since T is linear and $\mathrm{T} 0=0$, application of T on both sides gives
$\mathrm{T}\left(\alpha_{1} \mathrm{x}_{1}+\ldots+\alpha_{\mathrm{n}+1} \mathrm{X}_{\mathrm{n}+1}\right)=\alpha_{1} \mathrm{y}_{1}+\ldots+\alpha_{\mathrm{n}+1} \mathrm{y}_{\mathrm{n}+1}=0$
This shows that $\left\{y_{1}, \ldots, y_{n+1}\right\}$ is a linearly dependent set . (since the $\alpha_{\mathrm{i}} \mathrm{s}$ are not all zero).

Remembering that this subset of $\mathrm{R}(\mathrm{T})$ was chosen in an arbitrary fashion, we conclude that $\mathrm{R}(\mathrm{T})$ has no linearly independent subsets of $n+1$ or elements .By the definition this means that $\operatorname{dim} \mathrm{R}(\mathrm{T}) \leq \mathrm{n}$
(c)We take any $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~N}(\mathrm{~T})$. then $\mathrm{Tx}_{1}=\mathrm{Tx}_{2}=0$.

Since T is linear, for any α, β we have

$$
\mathrm{T}\left(\alpha \mathrm{x}_{1+} \beta \mathrm{x}_{2}\right)=\alpha \mathrm{Tx}_{1+} \beta \mathrm{Tx}_{2}=0
$$

This shows that $\alpha x_{1}+\beta x_{2} \in N(T)$.Hence $N(T)$ is a vector space.

2.3-6 Theorem (Inverse operator).

Let X, Y be vector spaces, both domain $\mathrm{D}(\mathrm{T})$ complex. Let $\mathrm{T}: \mathrm{D}(\mathrm{T}) \rightarrow \mathrm{Y}$ be a linear operator with domain $\mathrm{D}(\mathrm{T}) \mathrm{X}$ and range $\mathrm{R}(\mathrm{T}) \mathrm{Y}$. then:
(a)The inverse $\mathrm{T}^{-1}: \mathrm{R}(\mathrm{T}) \rightarrow \mathrm{D}(\mathrm{T})$ exists if and only if
$\mathrm{Tx}=0 \Rightarrow \mathrm{x}=0$
(b)If T^{-1} exist, it is a linear operator.
(c)If $\operatorname{dim} \mathrm{D}(\mathrm{T})=\mathrm{n}<\infty$ and T^{-1} exists, then $\operatorname{dim} \mathrm{R}(\mathrm{T})=\operatorname{dim}$ D(T)

Proof:
$\left(\Longleftarrow \quad\right.$) I want to prove T^{-1} is exist $\Leftrightarrow \mathrm{T}$ is $1-1$
Now, suppose $T(x)=0 \Rightarrow x=0$

Let $\mathrm{T}\left(\mathrm{x}_{1}\right)=\mathrm{T}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{T}\left(\mathrm{x}_{1}\right)-\mathrm{T}\left(\mathrm{x}_{2}\right)=0 \\
& \Rightarrow \mathrm{~T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \quad \text { (since } \mathrm{T} \text { is a linear operator) } \\
& \Rightarrow \mathrm{x}_{1}-\mathrm{x}_{2}=\mathrm{o} \quad \text { (from given) } \\
& \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}
\end{aligned}
$$

T is $1-1 \Rightarrow$
T^{-1} is an exist \Rightarrow
(\Rightarrow) I want to prove if $T(x)=0 \Rightarrow x=0$
Let T^{-1} is an exist then, $\mathrm{T}\left(\mathrm{x}_{1}\right)=\mathrm{T}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}$
Take $x_{2}=0, T\left(x_{1}\right)=T(0) \Rightarrow \mathrm{x}_{1}=0$
$\Rightarrow \mathrm{T}\left(\mathrm{x}_{1}\right)=0 \Rightarrow \mathrm{x}_{1}=0 \quad($ since $\mathrm{T}(0)=0)$
This completes the proof of (a)
(b)We assume that T^{-1} exists and show that T^{-1} is linear.
$\mathrm{T}^{-1}: \mathrm{R}(\mathrm{T}) \rightarrow \mathrm{D}(\mathrm{T})$
$\mathrm{Y}_{1=} \mathrm{Tx}_{1}$ and $\mathrm{y}_{2}=\mathrm{Tx}_{2}, \quad$ where $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}(\mathrm{T})$
Then $\mathrm{x}_{1}=\mathrm{T}^{-1} \mathrm{y}_{1}$ and $\mathrm{x}_{2}=\mathrm{T}^{-1} \mathrm{y}_{2}$
T is linear, so that for any scalars α and β we have

$$
\alpha \mathrm{y}_{1}+\beta \mathrm{y}_{2}=\alpha \mathrm{Tx}_{1}+\beta \mathrm{Tx}_{2}=\mathrm{T}\left(\alpha \mathrm{x}_{1}+\beta \mathrm{x}_{2}\right)
$$

Since $x_{1}=T^{-1} y_{2}$, this implies

$$
\mathrm{T}^{-1}\left(\alpha \mathrm{y}_{1}+\beta \mathrm{y}_{2}\right)=\alpha \mathrm{x}_{1}+\beta \mathrm{x}_{2}=\alpha \mathrm{T}^{-1} \mathrm{y}_{1}+\beta \mathrm{T}^{-1} \mathrm{y}_{2}
$$

Hence, T^{-1} is linear.
(c) we have $\operatorname{dim} \mathrm{R}(\mathrm{T}) \leq \operatorname{dim} \mathrm{D}(\mathrm{T})$
(1)(by theorem 2.3-5)

And $\mathrm{T}^{-1}: \mathrm{R}(\mathrm{T}) \rightarrow \mathrm{D}(\mathrm{T})$

$$
\begin{equation*}
\Rightarrow \operatorname{dim} \mathrm{R}\left(\mathrm{~T}^{-1}\right)=\operatorname{dim} \mathrm{D}(\mathrm{~T}) \leq \operatorname{dim} \mathrm{D}\left(\mathrm{~T}^{-1}\right)=\operatorname{dim} \mathrm{R}(\mathrm{~T}) \tag{2}
\end{equation*}
$$

Then from (1), (2) $\operatorname{dim} \mathrm{R}(\mathrm{T})=\operatorname{dim} \mathrm{D}(\mathrm{T})$

2.3-7 Lemma (inverse of product).

Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{S}: \mathrm{Y} \rightarrow \mathrm{Z}$ be bijective linear operators, where $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are vector spaces. Then the inverse $(\mathrm{ST})^{-1}: \mathrm{Z} \rightarrow \mathrm{X}$ of the product ST exists, and $(\mathrm{ST})^{-1}=\mathrm{T}^{-1} \mathrm{~S}^{-1}$

Applications

Application(1):Let $\mathrm{T}: \mathrm{D}(\mathrm{T}) \rightarrow \mathrm{Y}$ be a linear operator whose inverse exists. If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a linearly independent set in $D(T)$, Then the set $\left\{\mathrm{Tx}_{1}, \ldots, T \mathrm{x}_{\mathrm{n}}\right\}$ is an linearly independent.

Suppose $\alpha_{1} \mathrm{Tx}_{1}+\ldots+\alpha_{\mathrm{n}} \mathrm{Tx}_{\mathrm{n}}=0$ for some scalars $\alpha_{1}, \ldots \alpha_{\mathrm{n}}$
$\mathrm{T}\left(\alpha_{1} \mathrm{X}_{1}+\ldots \alpha_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}\right)=\mathrm{T}(0)=0 \quad$ (since T is linear $) \Rightarrow$
$\alpha_{1} \mathrm{x}_{1}+\ldots+\alpha_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}=0 \quad($ since T is $1-1) \Rightarrow$
But $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ are linear independent
$\alpha_{1}=\ldots=\alpha_{n}=0 \Rightarrow$
Hence the set $\left\{\mathrm{Tx}_{1}, \ldots, T \mathrm{x}_{\mathrm{n}}\right\}$ is linearly independent

Application(2):Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ be a linear operator and $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{Y}=\mathrm{n}<\infty$ Show that $\mathrm{R}(\mathrm{T})=\mathrm{Y}$ if and only if T^{-1} exist

Suppose T: $\mathrm{X} \rightarrow \mathrm{Y}$ is onto $\mathrm{T}(\mathrm{X})=\mathrm{Y}$, $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{Y}=\mathrm{n}$ $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for X

Let $\mathrm{y} \in \mathrm{Y}=\mathrm{T}(\mathrm{X})$
$y=T x \quad$ for some $x \in X$
$x \in X=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$
$\Rightarrow \mathrm{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}$, for some $\alpha_{1}, \ldots, \alpha_{\mathrm{n}}$
$\Rightarrow \mathrm{y}=\mathrm{T} \mathrm{x}=\mathrm{T}\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T e_{i}$
$\Rightarrow\left\{\mathrm{Te}_{1}, \ldots, \mathrm{Te}_{\mathrm{n}}\right\}$ generates Y
$\Rightarrow\left\{\mathrm{Te}_{1}, \ldots, \mathrm{Te}_{\mathrm{n}}\right\}$ is a basis for Y
Now, let $\mathrm{x} \in X \ni: T x=0$, writing $\mathrm{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}$
$0=\mathrm{Tx}=\sum_{i=1}^{n} \alpha_{i} T e_{i} \Rightarrow \alpha_{1}=\ldots=\alpha_{\mathrm{n}}=0$
Since $\left\{\mathrm{Te}_{\mathrm{i}}: \mathrm{i}=1, . ., \mathrm{n}\right\}$ is linearly independent
$\Rightarrow T$ is $1 _1 \Rightarrow \mathrm{~T}^{-1}: \mathrm{T}(\mathrm{X})=\mathrm{Y} \rightarrow \mathrm{X}$ exists
Conversely, Suppose $\mathrm{T}^{-1}: R(T) \rightarrow \mathbf{X}$ exists
We have to prove $\mathrm{R}(\mathrm{T})=\mathrm{Y}$
Since $T: X \rightarrow R(T), T^{-1}: R(T) \rightarrow X$
$\Rightarrow \operatorname{dim} \mathrm{R}(\mathrm{T}) \leq \operatorname{dim} \mathrm{X}$ and $\operatorname{dim} \mathrm{X} \leq \operatorname{dim} \mathrm{R}(\mathrm{T})$
$\Rightarrow \operatorname{dim} R(T)=\operatorname{dim} X=\mathrm{n}=\operatorname{dim} \mathrm{Y}$
Hence, $R(T)=Y$

2.4 Bounded and continuous linear operators.

2.4-1. Definition: Let X and Y be normed spaces and $T: X \rightarrow Y$ linear a operoter. The operator T is said to be bounded if there is a number c such that for all $x \in X \quad\|T x\| \leq c\|x\|$

Hence, $\frac{\|T x\|}{\|x\|} \leq c, x \neq 0 \Rightarrow \sup _{\substack{x \in X \\ x \neq 0}} \frac{\|T x\|}{\|x\|} \leq c$

The number $\sup _{\substack{x \in X \\ x \neq 0}}^{\operatorname{sun}} \frac{\|T x\|}{\|x\|}$ is denoted by $\|T\|$

From (1) we have $\|T x\| \leq\|T\|\|x\|$

2.4-2. Lemma (Norm)

Let T be abounded linear operator
(a) $\|T\|=\begin{aligned} & \sup _{x \in X} \\ & \|x\|=1\end{aligned} \quad\|T x\|$
(b) $\|T\|=\sup _{x \in X}^{x \neq 0} \frac{\|T x\|}{\|x\|}$ Satisfies the properties of the norm

Proof:

(a)Let $T: X \rightarrow Y$ be abounded linear operator
$\Rightarrow c>0 \ni:\|T x\| \leq c\|x\| \forall x \in X$

$$
\|\boldsymbol{T}\|=\begin{gathered}
\operatorname{Sup} \\
x \in X \\
x \neq 0
\end{gathered} \frac{\|\boldsymbol{T} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}
$$

we want to prove $\|T\|=\begin{gathered}s u p \\ \|x X\|=1 \\ \|x\|\end{gathered}\|T x\|$.
Let $\|\mathrm{x}\|=\alpha$ and $\mathrm{y}=(1 / \alpha) \mathrm{y}, \mathrm{x} \neq 0 \quad\|\mathrm{y}\|=1$

And since T is linear and (1) is given $\|T\|=\begin{aligned} & \sup _{x \in X} \frac{\|T x\|}{\alpha} \\ & x \neq 0\end{aligned}$

$$
=\sup _{x \in X}^{x \neq 0} \begin{aligned}
& x \neq 0
\end{aligned}\left\|T\left(\frac{1}{\alpha} x\right)\right\|=\begin{gathered}
\sup _{y \in X}^{y \in X} \\
\|y\|=1
\end{gathered}\|T y\|
$$

(b)1) since $\|T x\| \geq 0$ and $\|x\| \geq 0$

2) Suppose $\|T\|=0 \Rightarrow \sup _{\substack{x \in X \\ x \neq 0}}\|x x\|=0$
$\Rightarrow \frac{\|T x\|}{\|x\|}=0 \Rightarrow\|T x\|=0 \quad \forall x \in X, x \neq 0$
$\Rightarrow T x=0 \quad \forall x \in X, x \neq 0$, hence $\mathrm{T}=0$
3) $\|\alpha T\|=\sup _{\substack{x \in \geq \\ x \neq 0}} \frac{\|\alpha T x\|}{x}$

$$
\begin{aligned}
& =\sup _{\substack{x \in X \\
x \neq 0}} \frac{|\alpha|\|T x\|}{\|x\|} \\
& =|\alpha| \sup _{\substack{x \in X \\
x \neq 0}} \frac{\|T x\|}{\|x\|}=|\alpha|\|T\|
\end{aligned}
$$

4)Let $T_{1}: X \rightarrow Y$ and $T_{2}: X \rightarrow Y$ are bounded linear Operator, then :

$$
\begin{aligned}
& \leq \sup _{\substack{x \in X \\
x \neq 0}} \frac{\left\|T_{1}(x)\right\|}{\|x\|}+\underset{\substack{x \in X \\
x \neq 0}}{\sup } \frac{\left\|T_{2}(x)\right\|}{\|x\|} \\
& =\left\|\mathrm{T}_{1}\right\|+\left\|\mathrm{T}_{2}\right\|
\end{aligned}
$$

Examples:

2.4-3. (Identity operator) the identity operator $I: X \rightarrow X$ on a normed space X is bounded and has normed $\|I\|=1$

$$
\|\mathrm{Ix}\|=\frac{\|x\|}{\|x\|}=1, \text { Hence } \mathrm{I} \text { is bounded }
$$

2.4-4. (zero operator) :the zero operator $O: X \rightarrow Y$ on a normed space X is bounded and has
norm $\|O\|=0$

2.4-5. (differentiation operator)

Let X be the normed space of all polynomials on $\mathrm{J}=[\mathrm{a}, \mathrm{b}]$ with norm given $\|x\|=\max |x(t)|, t \in J$.

A differentiation operator $\mathrm{T}: \mathrm{X} \rightarrow Y$ is defined on x by $(\mathrm{T}(\mathrm{x}))(\mathrm{t})=x^{`}(t)$. T is well defined, since every polynomial x is differentiable and the derivative is unique, and x^{\prime} is polynomial on $[0,1]$, let $x, y \in X$, then for any $t \in[0,1]$,
$(\mathrm{T}(\mathrm{x}+\mathrm{y}))(\mathrm{t})=(\mathrm{x}+\mathrm{y})^{\prime}(\mathrm{t})=\mathrm{x}^{\prime}(\mathrm{t})+\mathrm{y}^{\prime}(\mathrm{t})$
$=(T x)(t)+(T y)(t)=(T x+T y)(t)$
$\mathrm{T}(x+y)=\mathrm{T} x+\mathrm{T} y \ldots(1) . \Rightarrow$

Now, let $\alpha \in \square$,then
$(\alpha \operatorname{Tx})(\mathrm{t})=(\alpha \mathrm{x})^{\prime}(\mathrm{t})=\alpha(\mathrm{x})^{\prime}(\mathrm{t})=(\alpha \operatorname{Tx})(\mathrm{t})$
$(\alpha \mathrm{Tx})=\alpha(\mathrm{Tx})$

From(1) and (2)T is linear

Now, Let $x_{n}(t)=t^{n}$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}_{\mathrm{n}}^{\prime}(\mathrm{t})=\mathrm{nt}^{\mathrm{n}-1} \Rightarrow \square \mathrm{Tx}_{\mathrm{n}} \square=\square \mathrm{x}_{\mathrm{n}}^{\prime} \square=\max \operatorname{lnt}^{\mathrm{n}-1} \mid=\mathrm{n} \\
& \left\|x_{n}\right\|=\max \left|t^{n}\right|=1 \Rightarrow \frac{\left\|T x_{n}\right\|}{\left\|x_{n}\right\|}=n, n \in N \ldots(*)
\end{aligned}
$$

Suppose that T is bounded

$$
\begin{gathered}
\Rightarrow \exists \quad \text { some } \quad c>0 \text { э: } \\
\ldots \ldots{ }^{(* *)}\|T x\| \leq c\|x\| \quad \forall x \in X
\end{gathered}
$$

Since $\mathrm{c}>0$, by the Archimedes property $\exists n_{c} \in \boldsymbol{N}$
$\ni: n_{c}>c$
$\operatorname{From}(* *), \forall n \in \boldsymbol{N} n=\left\|T x_{n}\right\| \leq c\left\|x_{n}\right\|=n$
$\Rightarrow n_{c} \leq c<n_{c}$ this contrary
$\Rightarrow T$ is not bounded.

2.4-6 Lemma (linear combinations).

Let $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ be a linearly independent set of vector in a normed space X. then there is a number $c>0$ such that for every choice of scalars $\alpha_{1}, \ldots, \alpha_{n}$ we have

$$
\left\|\alpha_{1} \mathrm{x}_{1}+\ldots+\alpha_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right\| \geq \mathrm{c}\left(\left|\alpha_{2}\right|+\ldots+\left|\alpha_{\mathrm{n}}\right|\right)
$$

2.4-7 Theorem (finite dimension).

If a normed space X is finite dimensional, then every linear operator on X is bounded.

Proof:

Let $\operatorname{dim} \mathrm{X}=\mathrm{n},\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ a basis for X, let $\mathrm{T}: \mathrm{X} \rightarrow Y$ be linear operator, Y is a normed space

Let $\mathrm{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}, \alpha_{\mathrm{i}} \in K, i=1, \ldots, n$, and let $\mathrm{M}=\underset{1 \leq i \leq n}{\operatorname{Max}}\left\|\mathrm{Te}_{\mathrm{i}}\right\|$.
$\|T x\|=\left\|T\left(\sum_{i=1}^{n} \alpha_{i} e_{i} \quad\right)\right\|=\left\|\sum_{i=1}^{n} \alpha_{i}\left(T e_{i}\right)\right\| \leq$
$\sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|T e_{i}\right\| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left(\begin{array}{c}\text { Max } \\ 1 \leq i \leq n\end{array}\left\|T e_{i}\right\|\right)=M \sum_{i=1}^{n}\left|\alpha_{i}\right|$,
Since $\left\{e, \ldots, e_{n}\right\}$ Is linear independent ,then by lemma 2.4-6

$\Rightarrow \exists \mathrm{c}>0$ э

$$
\begin{aligned}
& \square \mathrm{x} \square=\square \alpha_{1} \mathrm{e}_{1}+\ldots .+\alpha_{\mathrm{n}} \mathrm{e}_{\mathrm{n}} \square>\mathrm{c} \sum_{i=1}^{n}\left|\alpha_{\mathrm{i}}\right| \\
& \Rightarrow \square \mathrm{Tx} \square \leq \mathrm{M} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right| \leq \frac{m}{c} \square \alpha_{1} \mathrm{e}_{1}+\ldots .+\alpha_{\mathrm{n}} \mathrm{e}_{\mathrm{n}} \square=\frac{m}{c} \square x \square
\end{aligned}
$$

Hence, T is bounded.

Remark:

Let $T: X \rightarrow Y$ be any operator, not necessarily linear, where X an Y are normed spaces, the operator. T is continuous at an $x_{0} \in X$ if for every $\varepsilon>0$ there is a $\delta>0$ such that
$\left\|\mathrm{Tx}-\mathrm{Tx}_{0}\right\|$ for all $x \in X$ satisfying $\left\|x-x_{0}\right\|<\delta$

2.4-8.thearem (continuity and boundedness):

let $T: X \rightarrow Y$ be linear operator, where X, Y are normed spaces, then :
(a) T is continuous if and only if T is bounded . (a
(b) If T is continuous at a single point , it is continuous on X .

Proof:

(a) suppose T is bounded
$\Rightarrow \exists c>0$ э: $\quad\|T x\| \leq\|T\|\|x\| \forall x \in X$

To show that T is continuous, we show that T is continuous at every point $x \in X$

So, let x_{0} be arbitrary point in X , and let $\varepsilon>0$ be given we need to find $\delta>0$ э:

$$
\text { if } \square \mathrm{x}-\mathrm{x}_{0} \square<\delta \text { then } \square \mathrm{Tx}^{\square}-\mathrm{Tx}_{0} \square<\varepsilon \quad, \mathrm{x} \in \mathrm{X}
$$

Now, $\left\|T x-T x_{0}\right\|=\left\|T\left(x-x_{0}\right)\right\| \quad($ since T is linear $)$

$$
\left.\leq\|T\|\left\|x-x_{0}\right\| \quad \text { (since } \mathrm{T} \text { is bounded }\right)
$$

By taking $\delta=\frac{\varepsilon}{2\|T\|}$
if $\left\|x-x_{0}\right\|<\delta$
$\Rightarrow \square \mathrm{Tx}_{\mathrm{x}} \mathrm{Tx}_{0} \square \measuredangle \mathrm{~T} \square \mathrm{x}-\mathrm{x}_{0} \square \leq \mathrm{T} \square \frac{\varepsilon}{2 \square \mathrm{~T} \square}<\mathcal{E}$

Since $x_{o} \in X$ was arbitrary, this shows that T is continuous.

Conversely, assume that T is continuous at an arbitrary $x_{o} \in X$ then :
for given $\varepsilon>0 \exists \delta=\delta_{\varepsilon}>0 \ni$: if $\left\|x-x_{0}\right\|<\delta$ then $\left\|T x-T x_{0}\right\|<\varepsilon$

We want to show T is bounded. So,

$$
\text { i.e. } \exists c>0 \quad \ni \text { : }\|T x\| \leq c\|x\| \quad \forall x \in X
$$

let x be any element in $X, x \neq 0$
$z=x_{o}+\frac{\delta}{2\|x\|} x$
$\Rightarrow\left\|z-x_{o}\right\|=\left\|\frac{\delta}{2\|x\|} \cdot x\right\|=\frac{\delta}{2} \frac{\|x\|}{\|x\|}<\delta$
$\Rightarrow\left\|T z-T x_{o}\right\|<\varepsilon$
that is
$\left\|T x_{o}+\frac{\delta}{2\|x\|} T x-T x_{o}\right\|<\varepsilon$
$\Rightarrow \frac{\delta}{2\|x\|}\|T x\|<\varepsilon \Rightarrow\|T x\|<\frac{2 \varepsilon}{\delta}\|x\|$
take $\quad c=\frac{2 \varepsilon}{\delta}$
$\Rightarrow T$ is bounded
(b) Continuity of T at a point implies boundedness of T by the second part of the proof of (a), which in turn implies continuity of T by (a).
2.4-9. corollary (continuity, null space)
let T be a bounded linear operator then :
a) $x_{n} \rightarrow x$ where x_{n}, x in X , implies $\mathrm{T} x_{n} \rightarrow \mathrm{~T} x$
b) the null space $N(T)$ is closed subspace of X.
proof :
let T be a bounded linear operator, and let $\left(x_{n}\right) \rightarrow x, \forall n \in N$ then:

$$
\left\|T x_{n}-T x\right\|=\left\|T\left(x_{n}-x\right)\right\| \quad \text { (since } T \text { is linear) }
$$

$$
\leq\|T\|\left\|x_{n}-x\right\| \quad(*)(\text { since } T \text { is bounded })
$$

Now, let $\varepsilon>0$ be given, since $\left(\mathrm{x}_{n}\right) \rightarrow x$, for

$$
\begin{equation*}
\frac{\varepsilon}{2\|T\|}, \exists k_{2} \in N \ni:\left\|x_{n}-x\right\|<\frac{\varepsilon}{2\|T\|} \quad n \geq k_{\varepsilon} \tag{1}
\end{equation*}
$$

Hence, where $n \geq k_{\varepsilon}$, from $\left({ }^{*}\right)$

$$
\Rightarrow \square \mathrm{Tx}_{\mathrm{n}}-\mathrm{Tx} \square \Delta \mathrm{~T} \square \mathrm{x}_{\mathrm{n}}-\mathrm{x} \square \Delta \mathrm{~T} \square \frac{\varepsilon}{2 \square \mathrm{~T} \square}=\frac{\varepsilon}{2}<\varepsilon
$$

Therefore, $T x_{n} \rightarrow T x$
(b)The null space $\mathrm{N}(\mathrm{T})=\{x \in X: T x=0\}$, we want to
prove $\mathrm{N}(\mathrm{T})$ is closed, So let $x \in \overline{N(T)}$

$$
\begin{aligned}
& \left.x \in \overline{N(T)} \Rightarrow \exists\left(x_{n}\right) \text { in } N(T) \ni: x_{n} \rightarrow x \quad \text { (by theorem }\right) \\
& \Rightarrow T x_{n} \rightarrow T x \text { by part }(a)
\end{aligned}
$$

But $T x_{n}=0 \quad\left(\sin c e \quad x_{n} \in N(T)\right)$
$\Rightarrow \overline{N(T)} \subset N(T), \mathrm{Tx}=0 \Rightarrow \mathrm{x} \in \mathrm{N}(\mathrm{T})$
since $\mathrm{N}(\mathrm{T}) \subset \overline{N(T)}$
$\Rightarrow \mathrm{N}(\mathrm{T})=\overline{\mathrm{N}(\mathrm{T})}$

$\Rightarrow \mathrm{N}(\mathrm{T})$ is closed

2.4-10.theorem (bounded linear extension):

let $T: D(T) \rightarrow Y$ be abounded linear operator, where $\mathrm{D}(\mathrm{T}) \subset \mathrm{X}$ and Y are a Banach space, then T has an extension
$\tilde{T}: \overline{D(T)} \rightarrow Y$

Where \widetilde{T} is abounded linear operator of norm $\|\widetilde{T}\|=\|T\|$.

Proof :

Let $x \in \overline{D(T)} \Rightarrow \exists$ sequence $\left(x_{n}\right)$ in $\mathrm{X} \ni: x_{n} \rightarrow x$
$\Rightarrow \square x_{n}-x \square \longrightarrow 0$

Define $\tilde{T}: \overline{D(T)} \rightarrow Y\left(\mathrm{Tx}_{\mathrm{n}}\right)_{\mathrm{n}=1}^{\infty}$ is a sequence in Y .
$\tilde{T}(x)=\lim \left(T x_{n}\right)_{n=1}^{\infty}$, to show that \tilde{T} is will defined

Since $\left(x_{n}\right) \rightarrow x \quad \Rightarrow \quad\left(x_{n}\right)$ is Cauchy sequence in X,
let $\varepsilon>0$ be given

$$
\begin{aligned}
\exists k_{\varepsilon} \in N \ni:\left\|x_{n}-x_{m}\right\|<\varepsilon /\|T\| \quad, & \forall n, m \geq K_{\varepsilon} \rightarrow(1) \\
\text { now }\left\|T x_{n}-T x_{m}\right\|=\left\|T\left(x_{n}-x_{m}\right)\right\| & \leq\|T\|\left\|x_{n}-x_{m}\right\| \\
& \leq\|T\| \varepsilon / / T \| \\
& <\varepsilon
\end{aligned}
$$

is Cauchy sequence in Y , since Y is a Banach space $\Rightarrow\left(T x_{n}\right)$
converges $\Rightarrow \lim \left(T x_{n}\right)$ exist. $\Rightarrow\left(T x_{n}\right)$

We show that this definition is independent of the particular choice of a sequence in $\mathrm{D}(\mathrm{T})$ converging to x. suppose that $\left(x_{n}\right),\left(z_{n}\right)$ are two sequences in $\mathrm{D}(\mathrm{T})$ which convergence to x and let $\left(V_{n}\right)$ sequence $D(T)$ in defined by

$$
\left(\mathrm{V}_{\mathrm{n}}\right)=\left(x_{1}, z_{1}, x_{2} \cdot z_{2}, \ldots \ldots \ldots \ldots . .\right), \text { let } \varepsilon>0 \text { be given }
$$

Since $\left(x_{n}\right),\left(z_{n}\right)$ converges to x,
$\Rightarrow \exists \mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~N} \ni: \square x_{n}-x \square<\varepsilon, \square z_{n}-x \square<\varepsilon \quad \forall \mathrm{n}$

Let $k=\max \left\{k_{1}, k_{2}\right\} \Rightarrow\left\|v_{n}-x\right\|<\varepsilon$
$\Rightarrow \quad\left(v_{n}\right)$ a sequence convergence in $\mathrm{D}(\mathrm{T})$

Since T is bounded linear operator
is converges $\Rightarrow\left(T v_{n}\right)$
exist, since $\left(\mathrm{Tx}_{n}\right)$ and $\left(\mathrm{Tz}_{n}\right)$ are subsequence of $\Rightarrow \lim _{n \rightarrow \infty}\left(T v_{n}\right)$
$\left(T v_{n}\right) \Rightarrow$ they are converges to the same limit $\Rightarrow \lim \left(T x_{n}\right)=$
$\lim \left(T z_{n}\right)=\lim \left(T \mathrm{v}_{n}\right)$

To show
$\tilde{T}{ }_{X}=T$, let $x \in D(T)$
\Rightarrow The sequence (x, x, \ldots, x) convergence to x
$\tilde{T}(x)=\lim (T x, T x, \ldots)=T x \Rightarrow \tilde{T}_{X}=T$
We want to show T is linear, let $\mathrm{x}_{1}, \mathrm{x}_{2} \in X, \alpha \in K$
$\Rightarrow \exists\left(\mathrm{x}_{\mathrm{n}}\right),\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right)$ in $\mathrm{D}(\mathrm{T}) \ni:\left(\mathrm{x}_{\mathrm{n}}\right) \rightarrow \mathrm{x}_{1},\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right) \rightarrow \mathrm{x}_{2}$
$\mathrm{T}\left(\alpha \mathrm{x}_{1}+\mathrm{x}_{2}\right)=\operatorname{limT}\left(\alpha\left(\mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right)\right)$
$=\alpha \lim \mathrm{T}\left(\mathrm{x}_{\mathrm{n}}\right)+\lim \mathrm{T}\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right)=\alpha \mathrm{T}\left(\mathrm{x}_{1}\right)+\mathrm{T}\left(\mathrm{x}_{2}\right)$
$\square \mathrm{T} \square=\sup \frac{\square \Psi x \square}{\square x \square} \geq \sup \frac{\square \Psi x \square}{\square x \square}=\square \mathbf{T} \square$
$\square \mathrm{T} x \square=\square \lim \left(\mathrm{Tx}_{\mathrm{n}}\right) \square=\square \operatorname{limT}\left(\mathrm{x}_{\mathrm{n}}\right) \square \leq \lim \square T \square x_{n} \square$ $=\square T \square x$
$\Rightarrow \square \mathrm{T} \square=\sup \frac{\square \mathrm{T} x \square}{\square x \square} \leq \square \mathrm{T} \square \square \mathrm{T} \square=\square \mathrm{T} \square$

Applications

Application(1): let X and be normed spaces, a linear operator $\mathrm{T}: \mathrm{X} \rightarrow \boldsymbol{Y}$ is bounded if and only if \mathbf{T} maps bounded sets in X into bounded sets in Y

First recall that subset A of a metric space is said to be bounded if its diameter $\delta(A)$ is finite number, where

$$
\delta(A)=\sup _{x, y \in A}\|x-y\|
$$

$$
\delta(A)=\sup _{x, y \in A} d(x, y)<\infty
$$

If $A \subseteq X, X$ is normed space, then

Suppose that T is a bounded linear operator, and A be bounded subset of X
$\Rightarrow \sup _{x, y \in A}\|x-y\|=M<\infty$
$\Rightarrow \forall x, y \in A \quad \operatorname{claimT}(A)$ is bounded $\|T x-T y\|=\|T(x-y)\| \leq\|T\|\|x-y\|(\sin c e \quad T \quad$ is \quad bounded $)$
$\leq \mid T \| M$
$\Rightarrow \delta(A)=\sup _{x, y \in A}\|T x-T y\| \leq\|T\| M$
$\Rightarrow T(A)$ is bounded
Conversely ,suppose that T maps bounded sets into bounded in
set Y , note that $\mathrm{A}=\{x \in X:\|x\| \leq 1\}$ is bounded subset of X $\Rightarrow T(A)$ is bounded
, since $T(A)$ is bounded let $\quad x \in X, x \neq 0 \Rightarrow \frac{x}{\|x\|} \in A$

$$
\Rightarrow \exists M>0 \text { э: }\|T x-T y\| \leq M \quad \forall x, y \in A, \text { since } 0 \in
$$

A, and T is linear $\Rightarrow T(0)=0$, we have $\|T x\|=\|T x-T 0\| \leq$ M $\quad \forall x \in X$

Now, let x be any non-zero element in X , then
$\frac{x}{\square x \square} \in A \Rightarrow \square T\left(\frac{x}{\square x \square}\right) \square \leq M \Rightarrow \square T x \square \leq M \quad \forall \mathrm{x} \in \mathrm{X}$
Hence, T is bounded

Application(2): Let T be a bounded linear operator from a normed space X onto a normed space Y, if there is appositive b such that $\|T x\| \geq b\|x\|$ for all $x \in X$, show that the $\mathrm{T}^{-1}: \mathrm{Y} \rightarrow X$ exists and is bounded.

I want to prove $\mathrm{T}^{-1}: \mathrm{Y} \rightarrow X$ exist
T^{-1} is exists
$\Leftrightarrow T$ is one - to - one $\Leftrightarrow N(T)=\{0\}$, so let $x \in N(T)$
$\Rightarrow T x=0, x \in X$, since $\|T x\| \geq b\|x\| \Longrightarrow 0=\|0\|=$
$\|T x\| \geq\|b\|\|x\| \Leftrightarrow 0 \leq\|x\| \leq 0 \Leftrightarrow\|x\|=0 \Leftrightarrow x=$
0 , since $x \in N(T)$ was an arbitrary $\Rightarrow N(T)=\{0\}$
$\Rightarrow T$ is one - to - one
hence T^{-1} exist, To show T^{-1} is bounded i.e. $\exists M>$
0 , and $\forall y \in Y\left\|T^{-1} y\right\| \leq M\|y\|$. since T onto $\Rightarrow \forall y \in$ $Y \exists x \in X \quad \exists: T x=y, x=T^{-1} y$.

Hence, $\|x\|=\left\|T^{-1} y\right\| \leq \frac{1}{b}\|T x\|=\frac{1}{b}\|y\| \quad$ since $\|T x\| \geq b\|x\|$,
and $b \neq 0$

$$
\text { take } \mathrm{M}=\frac{1}{\mathrm{~b}}>0 \Rightarrow \square T^{-1} y \square \leq \mathrm{M} \square y \square \quad \forall \mathrm{y} \in \mathrm{Y}
$$

Therefore T^{-1} is bounded

2.5.linear functional

2.5-1 definition (linear functional)

A linear functional f is a linear operator with domain in a vector space X and range in the scalar field $\mathbf{K}(\square$ or \square) of X, thus $\mathrm{f}: X \rightarrow \boldsymbol{K}$.

2.5-2 definition (Bounded linear functional)

A bounded linear functional f is a bounded linear operator with range in the scalar field of the normed. Thus there exists a real number c such that for $|f(x)| \leq c\|x\|$.

Furthermore, the norm of f is $\sup \frac{|f(x)|}{\|x\|}$, or

$$
\|f\|=\sup _{\|x\|=1}|f(x)|
$$

This implies , $|f(x)| \leq\|f\|\|x\|$

2.5-3.Example:(define integral),

let $\mathrm{f}: \mathrm{C}[a, b] \rightarrow \square, \mathrm{f}(x)=\int_{a}^{b} x(t) d t, \forall x \in \mathrm{C}[a, b], t \in[a, b]$.Then:
f is a bounded linear functional on $C[a, b]$.

proof:

Let $\mathrm{x}, \mathrm{y} \in \mathrm{C}[a, b]$ and Let $\alpha \in \square$,then

$$
\begin{aligned}
& \mathrm{f}(\alpha x+\mathrm{y})=\int_{a}^{b}(\alpha x+y)(t) d t=\int_{a}^{b}(\alpha x(t)+y(t)) d t \\
& =\alpha \int_{a}^{b} x(t) \mathrm{dt}+\int_{a}^{b} y(t) d t=\alpha f(x)+f(y)
\end{aligned}
$$

$\Rightarrow \mathrm{f}$ is linear .

$$
\begin{aligned}
|f(x)|=\left|\int_{a}^{b} x(t) d t\right| & \leq \int_{a}^{b}|x(t)| d t \leq \int_{a}^{b} \max |x(t)| d t \\
& =\int_{a}^{b}\|x\| d t=\|x\|(b-a)
\end{aligned}
$$

That is, $\|f\|=\sup _{\underbrace{}_{x \in[a, b]}} \frac{|f(x)|}{\|x\|} \leq b-a$
note that, $x_{0}:[a, b] \rightarrow \square, x_{0}(t)=1,\left\|x_{0}\right\|=1$

$$
\begin{equation*}
\|f\|=\sup \frac{|f(x)|}{\|x\|} \geq \frac{\left|f\left(x_{0}\right)\right|}{\left\|x_{0}\right\|}=b-a \tag{2}
\end{equation*}
$$

From (1),(2) $\|f\|=b-a$

Examples:

2.5-4. Let $\mathrm{t}_{0} \in[\mathrm{a}, \mathrm{b}]$ be a fixed point, and define $\mathrm{f}: \mathrm{C}[\mathrm{a}, \mathrm{b}] \rightarrow \boldsymbol{R}$ by

$$
f(x)=x\left(t_{0}\right) \quad, x \in c[a, b] .
$$

Then f is a bounded linear functional on $C[a, b]$, and $\|f\|=1$
let $\mathrm{x}, \mathrm{y} \in \mathrm{C}[a, b], \alpha, \beta \in \square$ or \square

$$
\begin{aligned}
& \mathrm{f}(\alpha \mathrm{x}+\beta \mathrm{y})=(\alpha \mathrm{x}+\beta \mathrm{y})\left(\mathrm{t}_{0}\right) \\
& =\alpha \mathrm{x}\left(\mathrm{t}_{0}\right)+\beta \mathrm{y}\left(\mathrm{t}_{0}\right)=\alpha \mathrm{f}(\mathrm{x})+\beta \mathrm{f}(\mathrm{y})
\end{aligned}
$$

Hence, f is linear.

Now, I want to prove f_{1} is bounded and has norm $\|f\|=1$
$|f(x)|=\left|x\left(t_{0}\right) \leq \max _{\mathrm{t} \in[\mathrm{a}, \mathrm{b}]}\right| \mathrm{x}(\mathrm{t}) \mid=\square \mathrm{x} \square$
$\|f\|=\sup \frac{|f(x)|}{\|x\|} \leq 1 \ldots . .(1) \Rightarrow \mathrm{f}$ is bounded

For $x_{0}=1, x_{0}:[a, b] \rightarrow \square, x_{0}(t)=1 \forall t \epsilon[a, b]$
$\|f\|=\sup \frac{|f(x)|}{\|x\|} \geq \frac{\left|f\left(x_{0}\right)\right|}{\left\|x_{0}\right\|}=1 \ldots$
from (1) and (2) $\|f\|=1$

Applications

Application(1):let $\boldsymbol{f} \neq \mathbf{0 b e}$ any linear functional an a vector space X, and
x_{0} any fixed element of $\mathrm{X}-N(f)$, where is the null space of f. Then each $x \in X$ has a unique representation $x=\alpha x_{0}+$ y,where $\mathrm{y} \epsilon N(f)$.

Proof:

Let $x \in X$, and note that $\left(x-\frac{f(x)}{f\left(x_{o}\right)} x_{o} \quad\right) \in N(f)$

Since $\mathrm{f}\left(x-\frac{f(x)}{f\left(x_{0}\right)} \cdot x_{0}\right)=f(x)-\frac{f(x)}{f\left(x_{0}\right)} \cdot f\left(x_{0}\right)=0$
$\Rightarrow f\left(x-\frac{f(x)}{f\left(x_{o}\right)} \cdot x_{o}\right)=0$
for some $y \in N(f) \Rightarrow x-\frac{f(x)}{f\left(x_{o}\right)} \cdot x_{o}=y$
(for the uniqueness) $\Rightarrow x=\frac{f(x)}{f\left(x_{o}\right)} x_{o}+y$

Let $x \in X$, suppous

$$
x=\alpha_{1} x_{o}+y_{1}=\alpha_{2} x_{o}+y_{2} \quad y_{1}, y_{2} \in N(f)
$$

$$
\begin{aligned}
\Rightarrow f(x) & =\alpha_{1} f\left(x_{o}\right)=\alpha_{2} f\left(x_{o}\right) \\
& \Rightarrow \alpha_{1}=\alpha_{2} \rightarrow y_{1}=y_{2}
\end{aligned}
$$

Hence, the representation in $(*)$ is unique

Application(2): Let $f: X \rightarrow K$ be a linear function, then either $\boldsymbol{f} \equiv \mathbf{0}$ on X or $\boldsymbol{f}(X)=K$.

Suppose $f \neq 0$ and suppose on the contrary that $f(X) \neq K$
$\Rightarrow \quad \exists \alpha \in K \ni \alpha \notin f(X)$
Since $f \neq 0 \Rightarrow y \in X \ni f(y) \neq 0$
Hence, $\frac{\alpha}{f(y)} y \in X$ and $f\left(\frac{\alpha}{f(y)} y\right) \in f(X)$
But $\alpha=\frac{\alpha}{f(y)} f(y)=f\left(\frac{\alpha}{f(y)} y\right) \epsilon f(X)$
Our assumption that $f(X) \neq K$ is false, and we must have $f(X)=K$

Chapter (3)

3.1:Inner product spaces, Hilbert spaces:

The spaces to be considered in this chapter are defined as follows.

3.1-1:Definition:

An inner product space on a vector space X (over \square or \square) is a real-valued function, $\langle\rangle:, X \times X \rightarrow \square$,

Which is satisfies the following properties :

Let x,y and z be any vectors, and a scalar α.
${ }_{(1)}\langle x, x\rangle \geq 0$
${ }_{(2)}\langle x, x\rangle=0 \Leftrightarrow x=0$
${ }_{(3)}\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
(4) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
${ }_{(5)}\langle x, y\rangle=\overline{\langle y, x\rangle}$

The complete of inner product space with the metric induced by inner product is called a Hilbert space.

We define a norm and a metric in an inner product space by,

$$
\square x \square=\sqrt{\langle x, x\rangle}, \quad \forall x \in X .
$$

So $d(x, y)=\sqrt{\langle x-y, x-y\rangle}$.

Hence inner product spaces are normed spaces, and Hilbert spaces are Banach spaces.

3.1-2:Remarks:

${ }_{1-}\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$
$2-\langle x, \alpha y\rangle=\bar{\alpha}\langle x, y\rangle$

$$
3-\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle
$$

3.1-3:Defination:An element x of an inner product space X is said to be orthogonal to an element $y \in X$ if $\langle x, y\rangle=0$

Examples:

3.1-4:The Unitary space

$$
\square^{n}=\left\{x: x=\left(\xi_{1}, \xi_{2}, \ldots ., \xi_{n}\right), \xi_{i} \in \square \forall i=1,2, \ldots, n\right\}
$$

is an inner product space with the inner product defined by

$$
\begin{aligned}
& \langle x, y\rangle=\sum_{i=1}^{n} \xi_{i} \overline{\eta_{i}}, \text { where } x=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right), \\
& y=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right) \in \square^{n}
\end{aligned}
$$

Since $\sum_{i=1}^{n} \xi_{i} \overline{\eta_{i}}$ is finite series, then it is convergent. Hence $\langle x, y\rangle=\sum_{i=1}^{n} \xi_{i} \overline{\eta_{i}}$ is well defined

Now we show $\langle x, y\rangle=\sum_{i=1}^{n} \xi_{i} \overline{\eta_{i}} \ni x, y \in \square^{n}$ is an inner product.

$$
\begin{aligned}
& 1_{-}\langle x, x\rangle=\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{2}\right)^{2} \geq 0 \\
& 2_{-}\langle x, x\rangle=0 \Leftrightarrow\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{2}\right)^{2}=0 \Leftrightarrow \sum_{i=1}^{n}\left|\xi_{i}\right|^{2}=0 \\
& \Leftrightarrow\left|\xi_{i}\right|^{2}=0, \forall i=1,2, \ldots, n \\
& \Leftrightarrow \xi_{i}=0, \forall i=1,2, \ldots, n \\
& \Leftrightarrow x=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3-Let } z=\left(\beta_{i}\right)\langle x+y, z\rangle=\sum_{i=1}^{n}\left(\xi_{i}+\eta_{i}\right) \overline{\beta_{i}} \\
& =\sum_{i=1}^{n} \xi_{i} \overline{\beta_{i}}+\eta_{i} \overline{\beta_{i}}=\sum_{i=1}^{n} \xi_{i} \overline{\beta_{i}}+\sum_{i=1}^{n} \eta_{i} \overline{\beta_{i}} \\
& =\langle x, z\rangle+\langle y, z\rangle
\end{aligned}
$$

${ }_{4-}\langle\alpha x, y\rangle=\sum_{i=1}^{n}\left(\alpha \xi_{i}\right) \overline{\eta_{i}}=\sum_{i=1}^{n} \alpha\left(\xi_{i} \overline{\eta_{i}}\right)=\alpha \sum_{i=1}^{n} \xi_{i} \overline{\eta_{i}}$

$$
=\alpha\langle x, y\rangle
$$

$$
5-\overline{\langle y, x\rangle}=\sum_{i=1}^{n} \eta_{i} \overline{\xi_{i}}=\sum_{i=1}^{n} \xi_{i} \overline{\eta_{i}}=\langle x, y\rangle
$$

3.1-5:The Space $\ell^{2}=\left\{x=\left(\xi_{i}\right)_{i=1}^{\infty}, \xi_{i} \in \square, \sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}<\infty\right\}$ is
inner product space with an inner product
defined by $\langle\rangle:, \ell^{2} \times \ell^{2} \rightarrow \square$

$$
x, y \in \ell^{2}, x=\left(\xi_{i}\right), y=\left(\eta_{i}\right) \ldots . .\left(^{*}\right)\langle x, y\rangle=\sum_{i=1}^{\infty} \xi_{i} \overline{\eta_{i}}
$$

Proof

$$
\text { Let } x, y \in \ell^{2}, x=\left(\xi_{i}\right), y=\left(\eta_{i}\right)
$$

By Cauchy-Schwarz inequality

$$
\sum_{i=1}^{\infty}\left|\xi_{i} \overline{\eta_{i}}\right| \leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{i=1}^{\infty}\left|\bar{\eta}_{i}\right|^{2}\right)^{\frac{1}{2}}<\infty
$$

since $\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}<\infty, \sum_{i=1}^{\infty}\left|\bar{\eta}_{i}\right|^{2}<\infty$ and $\left|\overline{\eta_{i}}\right|=\left|\eta_{i}\right|, \forall \eta_{i} \in \square$.

Then $\sum_{i=1}^{\infty} \xi_{i} \overline{\eta_{i}}$ is absolutely convergent series in \square with
usual metric since \square is complet, every absolutely convergent series is convergent.

Hence, the map given by (*) wwell defined

Now we prove that $\left({ }^{*}\right)$ defines an inner product .

$$
\begin{aligned}
& 1_{-}\langle x, x\rangle=\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}\right)^{2} \geq 0 \\
& 2-\langle x, x\rangle=0 \Leftrightarrow\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}\right)^{2}=0 \Leftrightarrow \sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}=0 \\
& \Leftrightarrow\left|\xi_{i}\right|^{2}=0, \forall i=1,2, \ldots ., n \\
& \Leftrightarrow \xi_{i}=0, \forall i=1,2, \ldots, n \\
& \Leftrightarrow x=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3-Let } z=\left(\beta_{i}\right)\langle x+y, z\rangle=\sum_{i=1}^{\infty}\left(\xi_{i}+\eta_{i}\right) \overline{\beta_{i}} \\
& =\sum_{i=1}^{\infty} \xi_{i} \overline{\beta_{i}}+\eta_{i} \overline{\beta_{i}}=\sum_{i=1}^{\infty} \xi_{i} \overline{\beta_{i}}+\sum_{i=1}^{\infty} \eta_{i} \overline{\beta_{i}}=\langle x, z\rangle+\langle y, z\rangle
\end{aligned}
$$

$$
4-\langle\alpha x, y\rangle=\sum_{i=1}^{\infty}\left(\alpha \xi_{i}\right) \overline{\eta_{i}}=\sum_{i=1}^{\infty} \alpha\left(\xi_{i} \overline{\eta_{i}}\right)=\alpha \sum_{i=1}^{\infty} \xi_{i} \overline{\eta_{i}}
$$

$$
=\alpha\langle x, y\rangle
$$

$$
5-\overline{\langle y, x\rangle}=\sum_{i=1}^{\infty} \eta_{i} \overline{\xi_{i}}=\sum_{i=1}^{\infty} \xi_{i} \overline{\eta_{i}}=\langle x, y\rangle
$$

Note :

We can show by a simple straightforward calculation that a norm on an inner product space satisfies the important parallelogram equality.

$$
\square x+y \square^{2}+\square x-y \square^{2}=2\left(\square x \square^{2}+\square y \square^{2}\right)^{2}
$$

3.1-6: The $(C[a, b], \square . \square)$ with the norm defined by
$\square x \square=\max _{t \in[a, b]}|x(t)|$ is not an inner product space. We prove
that by showing that the norm doesn't satisfy the important parallelogram equality.

$$
\square x+y \square^{2}+\square x-y \square^{2}=2\left(\square x \square^{2}+\square y \square^{2}\right)^{2}
$$

Let f,g $\in C[a, b]$, such that $f(t)=1, g(t)=\frac{t-a}{b-a}$

$$
\text { as } t \in[a, b] \text {,hear } \square f \square=\max _{t \in[a, b]}|f(t)| \text {, }
$$

Where $\mathrm{f} \in C[a, b]$.
$\square f \square=1$

$$
=\max _{t \in[a, b]}\left|\frac{t-a}{b-a}\right|=\left|\frac{b-a}{b-a}\right|=1 \square g \square=\max _{t \in[a, b]}|g(t)|
$$

$$
\square f+g \square=\max _{t \in[a, b]}\left|1+\frac{t-a}{b-a}\right|=1+\frac{b-a}{b-a}=2
$$

$$
\square f-g \square=\max _{t \in[a, b]}\left|1-\frac{t-a}{b-a}\right|=1+\frac{a-a}{b-a}=1
$$

$$
\therefore \square f+g \square^{2}+\square f-g \square^{2}=4+1=5
$$

$$
\text { and } 2\left(\square f \square^{2}+\square g \square^{2}\right)^{2}=2(1+1)=4 \neq 5
$$

$$
\therefore \square f+g \square^{2}+\square f-g \square^{2} \neq 2\left(\square f \square^{2}+\square g \square^{2}\right)^{2}
$$

Hence $(C[a, b], \square . \square)$ is not an inner product space.

Applications

Application(1):Let X be a real product space, the condition $\square x \square=\square y \square$ implies $\langle x+y, x-y\rangle=0$?

Proof:
$\langle x+y, x-y\rangle=\langle x, x\rangle+\langle y, x\rangle-\langle x, y\rangle-\langle y, y\rangle$
$=\square x \square^{2}+\langle y, x\rangle-\langle x, y\rangle-\square y \square^{2}$
Since X is real $\Rightarrow\langle y, x\rangle=\langle x, y\rangle$ then; $\langle x+y, x-y\rangle=\langle x, x\rangle-\langle y, y\rangle=\square x \square^{2}-\square y \square^{2}$

Since $\square x \square=\square y \square \square x \square^{2}=\square y \square^{2}$ then $\langle x+y, x-y\rangle=0$

Application(2):If an inner product space X , let $u, v \in X$. If $\langle x, u\rangle=\langle x, v\rangle$ for all $x \in X$ and ,then $u=v$.

Proof :
If $\langle x, u\rangle=\langle x, v\rangle, \forall x \in X$
$\Rightarrow\langle x, u\rangle-\langle x, v\rangle=0 \Rightarrow\langle x, u-v\rangle=0$
In particular when $x=u-v$.
$\square u-v \square^{2}=\langle u-v, u-v\rangle=0 \Rightarrow u-v=0 \Rightarrow u=v$

3.2 Further Properties of Inner Product Space.

3.2-1:Lemma(Schwarz inequality, triangle inequality).

An inner product X and the corresponding norm satisfy the Schwarz inequality and triangle inequality as follows.

$$
\begin{aligned}
& 1-|\langle x, y\rangle| \leq \square x \square y \square, \forall x, y \in X \ldots \ldots(*) \text { (Schwarz } \\
& \text { inequality) }
\end{aligned}
$$

Where the equality sign holds if and only if $\{x, y\}$ is a linearly dependent set.

2-The norm also satisfies $\square x+y \square \square x \square+\square y \square$ (Tringle inequality), where the equality sign holds if and only if

$$
y=0 \text { or } x=c y \quad\left(c \in \square^{+}\right)
$$

Proof:

Note that $\left({ }^{*}\right)$ holds if ether x or y is zero. So suppose that nether x or y is zero. Then for every scalar α we have,

$$
\left.\begin{array}{rl}
0 \leq \square x-\alpha y & \square^{2}
\end{array}=\langle x-\alpha y, x-\alpha y\rangle\right)
$$

$$
\begin{aligned}
& =\langle x, x\rangle-\bar{\alpha}\langle x, y\rangle-\alpha\langle y, x\rangle+\alpha \bar{\alpha}\langle y, y\rangle \\
& =\langle x, x\rangle-\bar{\alpha}\langle x, y\rangle-\alpha[\langle y, x\rangle+\bar{\alpha}\langle y, y\rangle]
\end{aligned}
$$

In particular, when $\bar{\alpha}=\frac{\overline{\langle x, y\rangle}}{\langle y, y\rangle}$, We have,

$$
0 \leq\langle x, x\rangle-\frac{\overline{\langle x, y\rangle}}{\langle y, y\rangle}\langle x, y\rangle=\square x \square^{2}-\frac{|\langle x, y\rangle|^{2}}{\square y \square^{2}}
$$

So, multiplying two sides of $0 \leq \square x \square^{2}-\frac{|\langle x, y\rangle|^{2}}{\square y \square^{2}} b y \square y \square^{2}$, then we have $0 \leq \square x \square^{2} \square y \square^{2}-|\langle x, y\rangle|^{2} \Rightarrow|\langle x, y\rangle|^{2} \leq \square x \square^{2} \square y \square^{2}$.

Hence $\langle\langle x, y\rangle| \leq x \square y \square$

Now we show the equality in $\left({ }^{*}\right)$ holds if and only if x, y are linearly dependent.

If $y=\alpha x$ for some $\alpha \in \square$ then,
L.H.S $|\langle x, y\rangle|=|\bar{\alpha}\langle x, x\rangle|=\mid \alpha \square x \square^{2}$
R.H.S $\square x \square y \square \sqcap \square \square \square x \square=\mid \alpha x \square^{2} ;$

So $|\langle x, y\rangle|=\square x \square y \square$

Conversely, showing if $|\langle x, y\rangle|=\square x \square y \square$, then x , y are linearly dependent.

Suppose that $z=x-\frac{\langle x, y\rangle}{\square y \square^{2}} y$, for some $z \in X$

$$
\begin{aligned}
& \langle z, z\rangle=\left\langle x-\frac{\langle x, y\rangle}{\square y \square^{2}} y, x-\frac{\langle x, y\rangle}{\square y \square^{2}} y\right\rangle \\
& \quad=\langle x, x\rangle-\frac{\overline{\langle x, y\rangle}}{\square y \square^{2}}\langle x, y\rangle-\frac{\langle x, y\rangle}{\square y \square^{2}}\langle y, x\rangle+\frac{|\langle x, y\rangle|^{2}}{\square y \square^{4}}\langle y, y\rangle \\
& =\square x \square^{2}-\frac{|\langle x, y\rangle|^{2}}{\square y \square^{2}}-\frac{|\langle x, y\rangle|^{2}}{\square y \square^{2}}+\frac{|\langle x, y\rangle|^{2}}{\square y \square^{4}} \square y \square^{2} \\
& =\square x \square^{2}-\frac{\square x \square^{2} \square y \square^{2}}{\square y \square^{2}}-\frac{\square x \square^{2} \square y \square^{2}}{\square y \square^{2}}+\frac{\square x \square^{2} \square y \square^{2}}{\square y \square^{2}} \square y \square^{2}=0
\end{aligned}
$$

Hence $\square z \square^{2}=0 \Rightarrow z=0 \Rightarrow x-\frac{\langle x, y\rangle}{\square y \square^{2}} y=0$
$\Rightarrow x=\frac{\langle x, y\rangle}{\square y \square^{2}} y$

We know $\frac{\langle x, y\rangle}{\square y \square^{2}} \in \square$ then x ,y are linearly dependent.

3.2-2:Lemma: (continuity of inner product).

If in an inner product space, $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then

$$
\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle
$$

Proof:

We want to prove $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$, since $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$
. This implies $x_{n}-x \rightarrow 0$ and $y_{n}-y \rightarrow 0$.In inner product space that means, $\square x_{n}-x \square \rightarrow 0$ and $\square y_{n}-y \square \rightarrow 0$, as $n \rightarrow \infty$, so we have :
$\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right|=\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{n}, y\right\rangle+\left\langle x_{n}, y\right\rangle-\langle x, y\rangle\right|$

$$
\leq\left|\left\langle x_{n}, y_{n}-y\right\rangle\right|+\|\left\langle x_{n}-x, y\right\rangle \mid
$$

(by tringle inequality)

$$
\leq x_{n} \square y_{n}-y \square+\square x_{n}-x \square y \square
$$

(by Schwarz inequality)
$\rightarrow 0$
$\Rightarrow\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle \rightarrow 0 \Rightarrow\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$

Applications

Application(1):Show that $y \perp x_{n}$ and $x_{n} \rightarrow x$ together imply $y \perp x$.

Let $\left(x_{n}\right)$ be sequence in X such that $\left(x_{n}\right)$ converges to an element $x \in X$. If $y \in X$ э: $y \perp x_{n}, \forall n \in \square$. Then $y \perp x$. Id

Since $y \perp x_{n} \Rightarrow\left\langle x_{n}, y\right\rangle=0, \forall n \in \square$.

But $\left(x_{n}\right)$ converges to x we have, by lemma 3.2-2,
$\Rightarrow\langle x, y\rangle=0 \Rightarrow y \perp x$.

Application(2): For a sequence $\left(x_{n}\right)$ in an inner product space the condition $\square x_{n} \square \rightarrow \square \square$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$ imply convergence $x_{n} \rightarrow x$.

Proof :

Let $\left(x_{n}\right)$ be sequence in Xsuch that if $\square x_{n} \square \rightarrow \square x \square$ and

$$
\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle, \text { then } \square x_{n}-x \square \rightarrow 0 .
$$

Note that since $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$, we have

$$
\left\langle x, x_{n}\right\rangle=\overline{\left\langle x_{n}, x\right\rangle} \rightarrow \overline{\langle x, x\rangle}=\langle x, x\rangle
$$

Therefore, $\square x_{n}-x \square^{2}=\left\langle x_{n}-x, x_{n}-x\right\rangle$

$$
\begin{aligned}
& =\square x_{n} \square^{2}-\left\langle x_{n}, x\right\rangle-\left\langle x, x_{n}\right\rangle+\square x \square^{2} \\
& \rightarrow \square x \square^{2}-\langle x, x\rangle-\langle x, x\rangle+\square x \square^{2}=0
\end{aligned}
$$

Hence $\square x_{n}-x \square 0$, i.e $x_{n} \rightarrow x$

Application(3): Let X be an inner product space , and let $x, y \in X$. Then $x \perp y$ and only if we have
$\square x+\alpha y \square=\square x-\alpha y \square$ for all scalar α.

Proof:

Let $x \perp y$, then
$\langle x, y\rangle=0,\langle y, x\rangle=0$. Therfore,
$\square x+\alpha y \square^{2}=\langle x+\alpha y, x+\alpha y\rangle$

$$
\begin{align*}
& =\langle x, x\rangle+\alpha\langle y, x\rangle+\bar{\alpha}\langle x, y\rangle+|\alpha|^{2}\langle y, y\rangle \\
& =\square x \square^{2}+|\alpha|^{2} \square y \square^{2} \quad-----------(1) \tag{1}
\end{align*}
$$

Also, $\square x-\alpha y \square^{2}=\langle x-\alpha y, x-\alpha y\rangle$

$$
\begin{align*}
& =\langle x, x\rangle-\alpha\langle y, x\rangle-\bar{\alpha}\langle x, y\rangle+|\alpha|^{2}\langle y, y\rangle \\
& =\square x \square^{2}+|\alpha|^{2} \square y \square^{2}--------(2) \tag{2}
\end{align*}
$$

From (1) and (2), we have

$$
\begin{aligned}
& \square x-\alpha y \square^{2}=\square x \square^{2}+|\alpha|^{2} \square y \square^{2}=\square x+\alpha y \square^{2} \\
& \Rightarrow \square x+\alpha y \square \boxminus x-\alpha y \square
\end{aligned}
$$

Conversely, let $\square x+\alpha y \square \boxminus \square x-\alpha y \square$ for any scalar α, then
$\Rightarrow\langle x+\alpha y, x+\alpha y\rangle^{\frac{1}{2}}=\langle x-\alpha y, x-\alpha y\rangle^{\frac{1}{2}}$
$\Rightarrow\langle x+\alpha y, x+\alpha y\rangle=\langle x-\alpha y, x-\alpha y\rangle$ for any scalar α.
$\Rightarrow \square x \square^{2}+\alpha\langle y, x\rangle+\bar{\alpha}\langle x, y\rangle+|\alpha|^{2} \square y \square^{2}$
$=\square x \square^{2}-\alpha\langle y, x\rangle-\bar{\alpha}\langle x, y\rangle+|\alpha|^{2} \square y \square^{2}$
$\Rightarrow \alpha\langle y, x\rangle+\bar{\alpha}\langle x, y\rangle=0$

In particular when $\alpha=i$, we have

$$
\langle y, x\rangle+\langle x, y\rangle=0 \Rightarrow\langle y, x\rangle=-\langle x, y\rangle
$$

Also; when $\alpha=i$, we have
$i\langle y, x\rangle-i\langle x, y\rangle=0$

Hence $i\langle y, x\rangle-i(-\langle y, x\rangle)=0 \Rightarrow 2 i\langle y, x\rangle=0$
$\Rightarrow\langle y, x\rangle=0 \Rightarrow x \perp y$.

3.3.Representation of Functional on Hilbert Spaces.

3.3-1 Theorem (Direct sum)

Let Y be any closed subspace of a Hilbert space H. Then
$\mathrm{H}=\mathrm{Y} \oplus \mathrm{Z}$ $\mathrm{Z}=\mathrm{Y}^{\perp}$.

3.3-2.Riesez Theorem (Functionals on Hilbert spaces).

Every bounded linear functional f on a Hilbert spaces H can be represented in terms of the inner product , namely,

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\langle x, z\rangle \tag{1}
\end{equation*}
$$

where z depends on f , is uniquely determined by f and has norm $\|\mathrm{z}\|=\|\mathrm{f}\|$

Proof:
We proof that
(a) f has representations (1),
(b) z in (1) is unique
(c) formula (2) holds
if $\mathrm{f}=0$ then (1) and (2) hold, (a) Let $\mathrm{f} \neq 0$
since $N(f)$ is a close subspace of H then
$\mathrm{H}=\mathrm{N}(\mathrm{f})+\mathrm{N}(\mathrm{f})^{\perp} \quad$ (by theorem 3.3-1)

Since $\mathrm{f} \neq 0$ implies $\mathrm{N}(\mathrm{f}) \neq \mathrm{H}$ so that $\mathrm{N}(\mathrm{f})^{\perp} \neq\{0\}$
Hence $\mathrm{N}(\mathrm{f})^{\perp}$ contains a $\mathrm{z}_{0} \neq 0$ and let x be any elemant in H
$\mathrm{v}=\mathrm{f}(\mathrm{x}) \mathrm{z}_{0}-\mathrm{f}\left(\mathrm{z}_{0}\right) \mathrm{x}$
applying f, we obtain
$\mathrm{f}(\mathrm{v})=\mathrm{f}(\mathrm{x}) \mathrm{f}\left(\mathrm{z}_{0}\right)-\mathrm{f}\left(\mathrm{z}_{0}\right) \mathrm{f}(\mathrm{x})=0$
This show that $\mathrm{v} \in N(f)$ since $\mathrm{z}_{0} \perp \mathrm{~N}(\mathrm{f})$, we have

$$
\begin{aligned}
0=\left\langle v, z_{0}\right\rangle & =\left\langle f(x) z_{0}-f\left(z_{0}\right) x, z_{0}\right\rangle \\
& =f(x)\left\langle z_{0}, z_{0}\right\rangle+f\left(z_{0}\right)\left\langle x, z_{0}\right\rangle
\end{aligned}
$$

We solve for $f(x)$.the result is

$$
\mathrm{f}(\mathrm{x})=\frac{\overline{f\left(z_{0}\right)}}{\langle\mathrm{zo}, z o\rangle}<x, z 0>
$$

this can be written in the (1), where $z=z_{0} \frac{\overline{f\left(z_{0}\right)}}{\langle z o, z 0>}$
since $x \in H$ was arbitrary, (1) is proved.
(b) To prove that z in (1) is unique,

Suppose that for all $\mathrm{x} \in \mathrm{H}, \mathrm{f}(\mathrm{x})=\left\langle x, z_{1}\right\rangle=\left\langle\mathrm{x}, \mathrm{z}_{2}\right\rangle$
Then $\left\langle x, z_{1}-z_{2}\right\rangle=0$ for all x .
Choosing the particular $\mathrm{x}=\mathrm{Z}_{1}-\mathrm{Z}_{2}$, we have $\left\langle x, z_{1}-z_{2}\right\rangle=\left\langle z_{1}-z_{2}, z_{1}-z_{2}\right\rangle=\left\|z_{1}-z_{2}\right\|^{2}=0$

Hence $\mathrm{z}_{1}-\mathrm{z}_{2}=0$, so that $\mathrm{z}_{1}=\mathrm{z}_{2}$, the uniqueness.
(c)we finally prove (2).

From (1)with $\mathrm{x}=\mathrm{z}$ and $|\mathrm{f}(\mathrm{x})| \leq\|\mathrm{f}\|\|\mathrm{x}\|$ we obtain

$$
\|\mathrm{z}\|^{2}=\langle z, z\rangle=\mathrm{f}(\mathrm{z}) \leq\|\mathrm{f}\|\|\mathrm{z}\|
$$

$\|z\| \leq\|f\|$
(1) $\quad($ since $\|z\| \neq 0) \Rightarrow$

Since $\mathrm{f}(\mathrm{x})=\langle x, z\rangle$

$$
\begin{equation*}
|f(x)|=|<x, z>| \leq\|x\|\|z\| \quad \text { (by Schwarz inequality) } \Rightarrow \tag{2}
\end{equation*}
$$

This implies $\|\mathrm{f}\|=\sup _{\|x\|=1}^{\text {sup }}<x, z>\leq\|z\|$
From (1) and (2) $\|f\|=\|z\|$

3.3-3lemma(Equlity).

if $\left\langle v_{1}, w\right\rangle=\left\langle v_{2}, w\right\rangle$ for all w in an inner product space X , then $\mathrm{v}_{1}=\mathrm{v}_{2}$. In particular, $\left\langle v_{1}, w\right\rangle=0$ for all $\mathrm{w} \in \mathrm{X}$ implies $\mathrm{v}_{1}=0$

proof:

by assumption, for all w,
$\left\langle v_{1}-v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle-\left\langle v_{2}, w\right\rangle=0$
For $\mathrm{w}=\mathrm{v}_{1}-\mathrm{v}_{2}$ this gives $\left\|v_{1}-v_{2}\right\|^{2}=0$. Hence $v_{1}-v_{2}=0$, so that $v_{1}=v_{2}$

In particular, $\left\langle v_{1}, w\right\rangle=0$ with $\mathrm{w}=\mathrm{v}_{1}$ gives $\left\|v_{1}\right\|^{2}=0$, so that $v_{1}=0$

3.3-4Definition(Sesquiliner form).

let X and Y be vector spaces over the same field $\mathrm{K}(=\mathbf{R}$ or $\mathbf{C})$. Then a sesquilinear form h on $\mathrm{X} \times Y$
is mapping $\mathrm{h}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathbf{K}$ such that for all $\mathrm{x}, \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{Y}$
and all scalars α, β
(a) $\mathrm{h}\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}\right)=\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{y}\right)+\mathrm{h}\left(\mathrm{x}_{2}, \mathrm{y}\right)$
(b) $h\left(x, y_{1}+y_{2}\right)=h\left(x, y_{1}\right)+h\left(x, y_{2}\right)$
(c) $h(\alpha x, y)=\alpha h(x, y)$
(d) $h(x, \beta y)=\beta h(x, y)$

Hence h is linear in the first argument and conjugate linear in the second one. If X and Y are real then (d) is simply $\mathrm{h}(\mathrm{x}, \beta \mathrm{y})=\beta \mathrm{h}(\mathrm{x}, \mathrm{y}), \forall x \in X, y \in Y, \beta \in \boldsymbol{R}$
h is called bilinear since it is linear in both argument .
If X and Y are normed spaces and if there is a real number c such that for all x, y

$$
h(x, y) \mid \leq c\|x\|\|y\|
$$

then h is said to be bounded, and the number

$$
\|\mathrm{h}\|=\underset{\substack{x \in X-\{0\} \tag{I}\\
y \in Y-\{0\}}}{\sup _{\|x\|}\| \| y \|} \quad=\begin{gather*}
\sup \\
\|x\|=1 \\
\|y\|=1
\end{gather*}|h(x, y)|
$$

Is called the norm of h.

3.3-5 Theorm (Riesz represntation).

Let H_{1}, H_{2} be Hilbert spaces and $h: \mathrm{H}_{1} \times \mathrm{H}_{2} \rightarrow \mathrm{~K}$ a bounded sesquilinear form. Then h has a representation

$$
\begin{equation*}
\mathrm{h}(\mathrm{x}, \mathrm{y})=\langle S x, y\rangle \tag{1}
\end{equation*}
$$

where s: $\mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ is a bounded linear operator. S is uniquely determined by h and has norm

$$
\|S\|=\|h\|
$$

Proof: For each fixed $\mathrm{x} \in H_{1}$ define $f_{x}: H_{2} \rightarrow \boldsymbol{C}$ by $f_{x}(y)=\overline{h(x, y)}$. Then f_{x} is a linear in H_{2}, which is bounded since h is bounded. Then by the previous theorem, ヨunique element z $\in H_{2}$ such that

$$
\overline{h(x, y)}=\langle y, z\rangle
$$

Hence,

$$
\begin{equation*}
\mathrm{h}(\mathrm{x}, \mathrm{y})=\langle z, y\rangle \tag{*}
\end{equation*}
$$

Define $\mathrm{S}: \mathrm{H}_{1} \rightarrow \mathrm{H}_{2} \quad$ by $\mathrm{z}=\mathrm{S} x$
Substituting $\mathrm{z}=\mathrm{S} x$ in (*), we have

$$
\mathrm{h}(\mathrm{x}, \mathrm{y})=\langle S x, y\rangle
$$

S is linear. In fact, its domain is the vector space H_{1}, and from
(1) $\left\langle S\left(\alpha x_{1}+\beta x_{2}\right), y\right\rangle=\mathrm{h}\left(\alpha x_{1}+\beta x_{2}, y\right)$

$$
\begin{aligned}
& =\alpha h\left(x_{1}, y\right)+\beta h\left(x_{2}, y\right) \\
& =\alpha\left\langle S x_{1}, y\right\rangle+\left\langle S x_{2}, y\right\rangle \\
& =\left\langle\alpha S x_{1}+\beta x_{2}, y\right\rangle
\end{aligned}
$$

For all y in H_{2}, so that by Lemma 3.3-2,

$$
\mathrm{S}\left(\alpha x_{1}+\beta x_{2}\right)=\alpha S x_{1}+\beta S x_{2}
$$

S is bounded. Indeed, leaving aside the trivial case $S=0$, we have from (I)and(*)

This proves boundednees. Moreover, $\|\mathrm{h}\| \geq\|\mathrm{s}\|$

Now, I want to prove $\|\mathrm{h}\| \leq\|\mathrm{S}\|$ by an application of the Schwarz inequality:

$$
\|\mathrm{h}\|=\underset{\substack{\mathrm{x} \neq 0 \\ \mathrm{y} \neq 0}}{\sup \| \|\|\mathrm{y}\|} \frac{\mid\langle\mathrm{Sx}, \mathrm{y}\rangle}{\| \mathrm{y}} \leq \sup _{x \neq 0} \frac{\|s x\|\|y\|}{\|x\|\|y\|}=\|s\|
$$

S is unique. In fact, assuming that there is a linear operator $\mathrm{T}: \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ such that for all $x \in H_{1}$ and $y \in H_{2}$ we have :

$$
\mathrm{h}(\mathrm{x}, \mathrm{y})=\langle S x, y\rangle=\langle T x, y\rangle
$$

we see that $S \mathrm{x}=\mathrm{T} \mathrm{x}$ by lemma 3.3-2 for all $\mathrm{x} \in H_{1}$. Hence $\mathrm{S}=\mathrm{T}$ by definition.

3.3-6 Definition(Dual space X^{*}).

Let X be a normed space. Then the set of all bounded linear functional on X constitutes a normed space with norm defined by

$$
\|f\|=\frac{\sup _{\substack{x \in X \\ x \neq 0}} \frac{|f(x)|}{\|x\|}=\underset{\substack{\sup \\\|x\|=1}}{ }|f(x)| .|(x)|}{}
$$

Which is called the dual space of \mathbf{X} is denoted by X^{*}

3.3-7 Theorem:

The dual space X^{*} of a normed space X is a Banach space .

Applications

Application(1):if z any fixed element of an inner product space X , show that $\mathrm{f}(\mathrm{x})=\langle x, z\rangle$ defines a bounded linear functional f on X , of norm $\|z\|$.
proof:
To prove f is well defined, let $\mathrm{x}_{1}=\mathrm{x}_{2}$
$\Rightarrow\left\langle x_{1}, z\right\rangle=\left\langle x_{2}, z\right\rangle$

$$
\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)
$$

Now, we have to prove

$$
\begin{aligned}
& \mathrm{f}\left(\alpha x_{1}+\beta x_{2}\right)=\alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in X \alpha, \beta \in C \\
& \mathrm{f}\left(\alpha x_{1}+\beta x_{2}\right)=\left\langle\alpha x_{1}+\beta x_{2}, z\right\rangle= \\
& =\left\langle\alpha x_{1}, z\right\rangle+\left\langle\beta x_{2}, z\right\rangle \\
& \\
& =\alpha\left\langle x_{1}, z\right\rangle+\beta\left\langle x_{2}, z\right\rangle \\
& \\
& =\alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right)
\end{aligned}
$$

Now, we prove f is bounded

$$
\begin{align*}
& \quad|f(x)|=|\langle x, z\rangle| \leq\|x\|\|z\| \\
& \substack{\|f\| \|_{\begin{subarray}{c}{x \in \mathcal{x} \\
x \neq 0} }}^{s u p} \mid f(x \|)} \tag{1}
\end{align*}
$$

$\Rightarrow \mathrm{f}$ is bounded
$\|\mathrm{f}\|={ }_{x \neq 0}^{\sup } \frac{|\langle x, z\rangle|}{\|x\|} \geq \frac{|\langle z, z\rangle|}{\|z\|}=\frac{\|z\|^{2}}{\|z\|}=\|z\|$
Then from (1) and (2) $\|f\|=\|z\|$

Application(2):show that the dual space H^{*} of a Hilbert space H , Then H^{*} is a Hilbert space with inner product $\langle., .\rangle_{1}$ defined by

$$
\begin{equation*}
\left\langle f_{z}, f_{v}\right\rangle_{1}=\overline{\langle z, v\rangle}=\langle v, z\rangle \tag{*}
\end{equation*}
$$

Proof:
By the Riezs theorem for each $f \in H^{*} \exists$ unique $z_{f} \equiv z \in H$

$$
\text { such that } f(x)=\langle x, z\rangle \forall x \in H
$$

Hence, for $f \in H^{*}$ is of the form $f=f_{z}$ for some unique element $z \in H$
$\Rightarrow\left({ }^{*}\right)$ is well-defined
Now, I want to prove (a) $\langle f, f\rangle \geq 0$
(b) $\langle f, f\rangle=0 \Leftrightarrow f=0$
(c) $\langle f, g\rangle=\overline{\langle g, f\rangle}$
(d) $\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle$
(a) $\langle f, f\rangle=\left\langle f_{z}, f_{z}\right\rangle=\overline{\langle z, z\rangle}=\|\mathrm{z}\|^{2} \geq 0$
(b) $0=\langle f, f\rangle=\left\langle f_{z}, f_{z}\right\rangle=\overline{\langle z, z\rangle}=\|\mathrm{z}\|^{2}$
$\Leftrightarrow \mathrm{z}=0 \Leftrightarrow \mathrm{f}_{\mathrm{z}}=0 \Leftrightarrow \mathrm{f}_{\mathrm{z}}(\mathrm{x})=\langle x, 0\rangle=0 \Leftrightarrow \mathrm{f}=0$
(c) $\langle f, g\rangle=\left\langle f_{z}, g_{v}\right\rangle=\overline{\langle z, v\rangle}=\langle g, v\rangle$
(d) $\langle f+g, h\rangle=\left\langle f_{z}+g_{v}, h_{s}\right\rangle=\overline{\langle z+v, s\rangle}=\langle s, z+v\rangle$

$$
\begin{aligned}
=\langle s, z\rangle+\langle s, v\rangle & =\overline{\langle z, s\rangle}+\overline{\langle v, s\rangle} \\
& =\langle f, h\rangle+\langle g, h\rangle
\end{aligned}
$$

Application(3):Let $\mathrm{M} \neq \emptyset$ be a subset of Hilbert space H, and let
$\mathrm{M}^{\mathrm{a}}=\left\{\mathrm{f} \in H^{*}: f(x)=0 \forall x \in M\right\} \subseteq \mathrm{H}^{*}$. let $\mathrm{M}^{\perp}=\{\mathrm{y} \in H:\langle y, x\rangle=0 \forall x \in$ $M\} \subseteq H$

The relation between M^{a} and M^{\perp} can be explained as a follows:
Let $\mathrm{f} \in M^{a} \subseteq H^{*} \Rightarrow \exists$ unique element $z_{f} \in H \ni$:

$$
\left\langle x, z_{f}\right\rangle=f(x), \forall x \in H
$$

Hence $\forall x \in M, \quad\left\langle x, z_{f}\right\rangle=f(x)$
$\Rightarrow_{\mathrm{Z}_{\mathrm{f}}} \perp \mathrm{M} \Rightarrow Z_{f} \in M^{\perp}$

Given any $f \in$
M^{a} the uniqe element z_{f} exists by Riesz Theorem belongs to M^{\perp}
Conversely, let $y_{0} \in M^{\perp} \exists$ a bounded linear functional $f_{y_{0}} \in H^{*} \ni$:
$f_{y_{0}}(x)=\left\langle x, y_{0}\right\rangle, \forall x \in H$
In particular, $\forall x \in M, f_{y_{o}}(x)=\left\langle x, y_{0}\right\rangle=0$
$\Rightarrow f_{y_{0}} \in M^{a}$

References

1-E. Kreyszig,"Introductory Functional Analysis with Application", John Wiley\&sons, 1978

2-G.F. simmons "Topology and Modern Analysis",Mc Graw-Hill, Inc 1963

