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Abstract Recently, a large deviation multifractal formalism based on histograms of
wavelet leader coefficients, compared to some other wavelet-based formalisms, was
proved to be efficient for uniform Hölder functions. In this paper, we extend this effi-
ciency for non-uniform Hölder functions. We first obtain optimal bounds for both
wavelet and wavelet leader histograms for all functions in the critical Besov space
Bm/t,q
t (T), where t, q > 0 and T is the unit torus of Rm . We then compute these his-

tograms for quasi-all functions in Bm/t,q
t (T), in the sense of Baire Category. Although,

increasing parts of these histograms have increasing visibility, they coincide only if
0 < q ≤ t . If moreover q ≤ 1, then wavelet leader histograms method covers the
Hölder spectrum for all t > 0, however wavelet histograms method covers it only if
0 < q ≤ t .

Communicated by Yang Wang.

B Mourad Ben Slimane
mbenslimane@ksu.edu.sa

Moez Ben Abid
moezbenabid@yahoo.fr

Ines Ben Omrane
imbenomrane@imamu.edu.sa

Borhen Halouani
halouani@ksu.edu.sa

1 King Saud University, Department of Mathematics, College of Science, P. O. Box 2455,
Riyadh 11451, Saudi Arabia

2 Ecole Supérieure des Sciences et Technologie de Hammam Sousse, Université de Sousse,
Sousse, Tunisia

3 Department ofMathematics, Faculty of Science, Al ImamMohammad Ibn Saud IslamicUniversity
(IMSIU), P. O. Box 90950, Riyadh 11623, Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-017-9578-y&domain=pdf


J Fourier Anal Appl

Keywords Hölder regularity · Uniform Hölder functions · Non-uniform Hölder
functions ·Multifractal formalism for functions ·Wavelet basis ·Wavelet coefficients ·
Wavelet leaders

Mathematics Subject Classification 26A15 · 26A16 · 26B35 · 26B05 · 46E35 ·
46E99 · 42C40

1 Introduction

Multifractal formalisms are formulas derived from global quantities extracted from a
signal to compute its Hölder spectrum. The most widespread use the thermodynamic
method. For locally bounded functions, Arneodo et al. [1,2] (resp. Jaffard [21,23])
asserted that the Hölder spectrum is given by the Legendre transform of a scaling
function based on thewavelet transform (resp. coefficients) of f . This assertion is remi-
niscent to a conjecture of Frisch and Parisi [19] for turbulence.Mandelbrot [29–32] had
associated fractals to measures (or functions) by introducing multiplicative cascades
for the dissipation of energy in turbulent flows. The validity of the thermodynamic
method has been studied under self-similarity assumptions on f [1,7–12,16,21], or for
a class of particular random processes [22], or even for specific functions f [13,20].
It was also proved in a Baire (resp. prevalence) generic setting by Jaffard [23] (resp.
Fraysse [18]) in the Besov space Bs,q

t (Rm) for s > m/t .
Since the Legendre transform is always concave, then functions with non concave

spectra are counter-examples for the thermodynamic method. Large deviation for-
malisms based on statistics of histograms of wavelet coefficients and wavelet leaders
were proposed as alternative methods.

The wavelet density method due to Aubry and Jaffard [4], asserts that for a uniform
Hölder function f , theHölder spectrum d f is given by thewavelet densityρ f , which in
some way gives the asymptotic behavior of the number 2 jρ f (α) of wavelet coefficients
that have 2−α j magnitude. In [14], Ben Slimane proved this method Baire generically
in Bs,q

t (T) for s > m/t , where T is the unit torus of Rm .
Since ρ f may depend on the chosen wavelet basis, Jaffard [24] replaced it by

its increasing hull, the so called wavelet profile ν f . The transformation of ν f to its
increasing-visibility function is called the sunnywavelet profile dν

f . The sunnywavelet
profile method asserts that d f = dν

f on the part where d f has increasing visibility (i.e.,
d f (α)/α is increasing). For uniform Hölder functions, Aubry and Jaffard [4] proved
that dν

f yields an upper bound for d f . They also proved that equality holds for some
random wavelet series [4] and specific functions [24]. The validity was also studied
in a generic setting by Aubry, Bastin and Dispa [3,5].

In order to cover non concave Hölder spectra not limited to the increasing part,
Bastin et al. [6] suggested the wavelet leaders profile d̃ f . Roughly speaking, d̃ f quan-

tifies at large scales j the asymptotic number 2 j d̃+
f (α) (resp. 2 j d̃−

f (α)) of wavelet leaders
of size larger than 2−α j (resp. smaller than 2−α j ). The main tool is the Jaffard char-
acterization [25] of the Hölder exponent of any uniform Hölder function by decay
conditions of the wavelet leaders in the cone of influence. It is proved that, for uniform
Hölder functions, d̃ f yields an upper bound for the Hölder spectrum. It is also proved
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that equality holds for some classical models used in signal (turbulence, finance) and
image processing. In [17], Esser et al. implemented the wavelet leader profile method.
They also proved its numerical efficiency compared to many formulas (above and oth-
ers) for the fractional Brownian motion, Lévy process, Lévy process with a Brownian
part, and multiplicative cascades. Many theoretical results were also obtained, among
them, itwas shown that, if f is uniformHölder, then d̃ f ≤ dν

f , moreover on the increas-

ing part of d̃ f the equality d̃ f = dν
f holds if and only if d̃ f has increasing visibility.

In this paper, we aim to study the validity of these assertions for non-uniformHölder
functions. For these functions, the upper bound of the Hölder exponent by the above
decay conditions of the wavelet leaders in the cone of influence remains true. But, in
[27], Jaffard and Meyer proved that a weaker lower bound is also possible under the
sole assumption that f belongs to the critical Besov space Bm/t,q

t (Rm)when t > 0 and
0 < q < 1. The smaller q is, the more this lower bound is close to the upper bound.
This allowed them to bound (resp. compute) the Hölder spectrum for all (resp. quasi-
all (in the sense of Baire)) functions f in Bm/t,q

t (Rm)when t > 0 and 0 < q ≤ 1. This
was the starting point of this paper. We first obtain general upper bounds for dν

f and

the increasing part d̃+
f of d̃ f for all functions in Bm/t,q

t (T), for all t, q > 0. We then

compute, for all t, q > 0, both dν
f and d̃+

f for quasi-all functions in Bm/t,q
t (T). We

deduce the optimality of the obtained upper bounds. We also show that the increasing
part of d̃ f has increasing visibility, on which, d̃ f = dν

f if 0 < q ≤ t , while d̃ f > dν
f

if 0 < t < q. If moreover q ≤ 1, then the increasing part of d f coincides with that
of d̃ f (therefore it doesn’t coincide with that of dν

f for 0 < t < q). The decreasing
part is reduced to a single point −∞. This result also confirms the effectiveness of the
wavelet leader profile method compared to the sunny wavelet profile method.

Note that if s > m/t then all functions in Bs,q
t (T) are uniform Hölder, and quasi-

all functions in this space satisfy the thermodynamic formalism (see [23]) on the
increasing part of the Hölder spectrum, on which the wavelet profile ν f has increasing
visibility (see [14]). It follows that quasi-all functions in this space satisfy both wavelet
leader profile and sunny wavelet profile formalisms.

Let us now describe in details these formalisms and state our main results.

2 Multifractal Formalisms and Main Results

We first recall the sunny wavelet and leader profile methods. For more details see
[6,17] and references therein. We consider functions on the unit torus T = R/Z (i.e
1-periodic functions). Extensions to higher dimension are straightforward.

Let x ∈ [0, 1] and α > 0 non integer. Recall that f ∈ Cα(x) if there exist a
polynomial P of degree less than α and a constant C such that, in a neighborhood of
x

| f (y) − P(y − x)| ≤ C |y − x |α. (1)

The Hölder exponent of f at x is defined as

h f (x) = sup
{
α : f ∈ Cα(x)

}
. (2)
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The Hölder spectrum of f is the function d f (α) defined for each α > 0 as the
Hausdorff dimension of the set E f (α) of points x such that h f (x) = α. Conventionally
dim∅ = −∞. In many situations (multifractal analysis, PDEs,. . .) one wishes to
compute or bound this spectrum or its increasing hull D f (α) = supα′≤α d f (α). Note
that D f (α) coincides with the upper Hölder spectrum of f , which is the Hausdorff
dimension of the set Eα

f of points x such that h f (x) ≤ α.
Let ψ be a mother wavelet in the Schwartz class such that the constant function 1,

together with the periodized functions 2 j/2ψ j,k(x) := 2 j/2 ∑
l∈Z ψ(2 j (x − l) − k),

j ≥ 0, k ∈ {0, . . . , 2 j −1}, form an orthonormal basis of the space L2(T) (see [28]).
Denote

C j,k = 2 j
∫ 1

0
f (x)ψ j,k(x) dx (3)

the wavelet coefficient of a function f in L2(T) at scale j and position k (with the
usual modification when f is a tempered distribution periodic over Z). Let λ denote
the interval [k2− j , k2− j + 2− j ). Write Cλ (resp. ψλ) instead of C j,k (resp. ψ j,k). If j
is fixed, denote by � j the set of all intervals λ where k ∈ {0, . . . , 2 j − 1}.
Remark 1 In this paper, all functions are in C0(T), i.e,

∃ C > 0 ∀ λ |Cλ| ≤ C . (4)

Let � mean cardinality. Let α ≥ 0. For each j ≥ 0 consider

N j (α) = �{λ ∈ � j : |Cλ| ≥ 2−α j } (5)

The wavelet profile ν f is defined by

ν f (α) = lim
ε 
→0

lim sup
j 
→∞

log N j (α + ε)

log(2 j )
∈ {−∞} ∪ [0, 1] . (6)

The wavelet density ρ f is defined by

ρ f (α) = inf
ε>0

lim sup
j 
→∞

log(N j (α + ε) − N j (α − ε))

log(2 j )
∈ {−∞} ∪ [0, 1] . (7)

Heuristically, this means that at large scale j there are about 2ν f (α) j (resp. 2ρ f (α) j )
wavelet coefficients of size larger than (resp. of order) 2−α j .

The function ν f is increasing and right-continuous. It is also the increasing hull of
ρ f .

In [24], it is proved that it does not depend on the chosenwavelet basis. The function
ρ f is upper-semi-continuous but may depend on the chosen wavelet basis.

Clearly, since f ∈ C0(T), we can extend ν f and ρ f to negative values of α, by
putting ν f (α) = −∞ and ρ f (α) = −∞.
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Let

αmin = inf{α ≥ 0 : ν f (α) ≥ 0}

and

αmax = inf
α≥αmin

α

ν f (α)
.

The sunny wavelet profile is given by

dν(α) =

⎧
⎪⎪⎨

⎪⎪⎩

−∞ ifα < αmin

α sup
α′∈(0,α]

ν f (α
′)

α′ ifαmin ≤ α ≤ αmax

1 ifα > αmax .

(8)

Definition 1 Let 0 ≤ a < b ≤ ∞. A positive function g has increasing visibility on
[a, b] if the function g(x)/x is increasing on (a, b].
The sunny wavelet profile has the property of increasing visibility on [αmin, αmax ].
The sunny wavelet profile method due to Aubry and Jaffard [4] asserts that, if d f has
increasing visibility on an interval [a, b] then

∀ α ∈ (a, b] d f (α) = dν
f (α) . (9)

In [4], it is proved that it yields an upper bound for uniform Hölder functions

∀ α d f (α) ≤ dν(α) . (10)

Recall that f is uniform Hölder if there exists α > 0 such that f ∈ Cα(T), in the
sense that, (1) holds for any x and y in [0, 1] and C is uniform. This implies that (see
[33])

∃ C > 0 ∀ λ |Cλ| ≤ C2−α j . (11)

The wavelet leader associated to a dyadic interval λ is defined by

eλ = sup
λ′⊂λ

|Cλ′ | (12)

where the supremum is over all dyadic intervals λ′ = [k′2− j ′ , k′2− j ′ +2− j ′) included
in λ. Thanks to (11), this supremum is finite.
Let α ≥ 0. For each j ≥ 0 consider

M+
j (α) = �{λ ∈ � j : eλ ≥ 2−α j } (13)
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and

M−
j (α) = �{λ ∈ � j : eλ ≤ 2−α j } . (14)

The increasing leader profile d̃+
f is defined for α ∈ [0,∞] by

d̃+
f (α) = lim

ε 
→0
lim sup
j 
→∞

logM+
j (α + ε)

log(2 j )
∈ {−∞} ∪ [0, 1] . (15)

The decreasing leader profile d̃−
f is defined for α ∈ [0,∞) by

d̃−
f (α) = lim

ε 
→0
lim sup
j 
→∞

logM−
j (α − ε)

log(2 j )
∈ {−∞} ∪ [0, 1] . (16)

Heuristically, this means that at large scale j there are about 2d̃
+
f (α) j (resp. 2d̃

−
f (α) j )

wavelet leaders of size larger (resp. smaller) than 2−α j .
The increasing leader profile is increasing, right-continuous, and d̃+

f (∞) = 1.

The decreasing leader profile is decreasing, left-continuous, and d̃−
f (0) = 1.

Clearly, since f ∈ C0(T), we can extend d̃+
f and d̃−

f to negative values of α, by

putting d̃+
f (α) = −∞ and d̃−

f (α) = 1.

In [6], it is proved that, if f is uniform Hölder, then d̃+
f and d̃−

f do not depend on
the chosen wavelet function ψ in the Schwartz class. Let

αs = inf{α ∈ [0,∞] : d̃+
f (α) = 1} . (17)

The leader profile function is given by

d̃ f (α) =
{
d̃+
f (α) ifα < αs

d̃−
f (α) ifα ≥ αs .

(18)

The leaders profile method [6] asserts that

∀ α d f (α) = d̃ f (α) . (19)

In [6], it is shown that the leaders profile method yields an upper bound for uniform
Hölder functions

∀ α d f (α) ≤ d̃ f (α) . (20)

In [17], it is proved that, if f is uniform Hölder, then

∀ α d̃ f (α) ≤ dν(α) . (21)
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It is also shown that, if f is uniform Hölder, then on [αmin, αs]

d̃ f = dν ⇐⇒ d̃ f is with increasing visibility . (22)

Remark 2 Since, only wavelet leaders for j ≥ 0 are needed in the values of Hölder
exponent and increasing and decreasing leader profiles, then from now on, we will
identify functions that have the same wavelet coefficients Cλ. With this identification,
Besov spaces Bs,q

p (T), for 0 ≤ s ≤ ∞, 0 < p ≤ ∞, 0 < q ≤ ∞, are characterized
by (see [15,33])

f ∈ Bs,q
p (T) ⇐⇒

⎛

⎜
⎝

∑

j≥0

⎛

⎝
∑

λ∈� j

|Cλ2
(s− 1

p ) j |p
⎞

⎠

q/p
⎞

⎟
⎠

1/q

< ∞ (23)

(with the usual modification when p = ∞ and/or q = ∞).

Besov spaces are Baire spaces (see [34]). Any countable intersection of dense open
sets is dense and called a generic set. If a given property (P) in Bs,q

p (T) holds in a
generic set, then we say that quasi-all functions in Bs,q

p (T) satisfy (P).
We are now in a position to state our main results. We will first obtain general

optimal upper bounds for the sunnywavelet and increasing leader profiles for functions
in B1/t,q

t (T). For the latter, we will separate cases q ≤ t and t < q.

Theorem 1 1. (a) For all f ∈ B
1
t ,q
t (T)

dν
f (α)

⎧
⎨

⎩

= −∞ i f α < 0
≤ αt i f 0 ≤ α ≤ 1/t
≤ 1 i f α > 1/t .

(24)

(b) If 0 < q ≤ t , then for all f ∈ B
1
t ,q
t (T)

d̃+
f (α)

⎧
⎨

⎩

= −∞ i f α < 0
≤ αt i f 0 ≤ α ≤ 1/t
≤ 1 i f α > 1/t .

(25)

(c) If 0 < t < q, then for all f ∈ B
1
t ,q
t (T)

d̃+
f (α)

⎧
⎨

⎩

= −∞ i f α < 0
≤ αq i f 0 ≤ α ≤ 1/q
≤ 1 i f α > 1/q .

(26)

2. All above upper bounds are optimal, namely in each case there exists a function
F in the corresponding space for which the above upper bounds are equalities.
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In the next section, we will prove Theorem 1.
In the fourth Section, we will first prove that actually optimality in Theorem 1 holds

Baire generically.

Theorem 2 1. (a) Quasi-all functions in B1/t,q
t (T) satisfy

dν
f (α) =

⎧
⎨

⎩

−∞ i f α < 0
αt i f 0 ≤ α ≤ 1/t
1 i f α > 1/t .

(27)

(b) If 0 < q ≤ t , then quasi-all functions in B1/t,q
t (T) satisfy

d̃+
f (α) =

⎧
⎨

⎩

−∞ i f α < 0
αt i f 0 ≤ α ≤ 1/t
1 i f α > 1/t .

(28)

(c) If 0 < t < q, then quasi-all functions in B1/t,q
t (T) satisfy

d̃+
f (α) =

⎧
⎨

⎩

−∞ i f α < 0
αq i f 0 ≤ α ≤ 1/q
1 i f α > 1/q .

(29)

2. The generic set Aq,t of (27) is the same as the one of (28), but is different from the
one of (29) denoted Aq

t .

We therefore deduce the following corollary (see first point) which shows that result
(22) can not be always extended for non-uniform Hölder functions.

Corollary 1

• If 0 < t < q then for all f ∈ Aq
t the increasing part of d̃ f corresponds to

α ∈ [0, 1/q], on which it has increasing visibility, and

∀ α ∈ (0, 1/q] d̃ f (α) > dν
f (α) .

• If 0 < q ≤ t then for all f ∈ Aq,t the increasing part of d̃ f corresponds to
α ∈ [0, 1/t], on which it has increasing visibility, and

∀ α ∈ [0, 1/t] d̃ f (α) = dν
f (α) .

Actually, the generic set Aq,t (resp. At
q ) is the same as the one (resp. is a correctly

reduced generic set of the one) of Jaffard and Meyer [27], in which they computed the
Hölder spectrum for functions in Bm/t,q

t (Rm) when t > 0 and 0 < q ≤ 1. (Note that,
forq > 1, itwas proved (see [27]) that quasi-all functions in Bm/t,q

t (Rm) are not locally
bounded, so Hölder spectra are meaningless). This leads to the following theorem
which confirms the effectiveness of the wavelet leader profile method compared to the
sunny wavelet profile method.
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Theorem 3

• If 0 < t < q ≤ 1 then for all f ∈ Aq
t the increasing part of d f corresponds to

α ∈ [0, 1/q], on which it has increasing visibility, and

∀ α ∈ (0, 1/q] d f (α) = d̃ f (α) > dν
f (α) .

The decreasing part is reduced to a single point −∞.
• If 0 < q ≤ t and q ≤ 1, then for all f ∈ Aq,t the increasing part of d f corresponds
to α ∈ [0, 1/t], on which it has increasing visibility, and

∀ α ∈ [0, 1/t] d f (α) = d̃ f (α) = dν
f (α) .

The decreasing part is reduced to a single point −∞.

3 Proof of Theorem 1

3.1 Proof of the First Point in Theorem 1

(a) If f ∈ B1/t,q
t (T) then f ∈ B1/t,∞

t (T), i.e.,

sup
j≥0

⎛

⎝
∑

λ∈� j

|Cλ|t
⎞

⎠

1/t

< ∞ .

Fix α ≥ 0 and δ > 0. For any ε > 0 there exists a sequence ( jn)with limn→∞ jn = ∞
such that

N jn (α + ε) ≥ 2 jn(ν f (α)−δ) .

Therefore

∑

λ∈� jn

|Cλ|t ≥ 2 jn(ν f (α)−δ)2−(α+ε) jn t .

It follows that

ν f (α) − δ − (α + ε)t ≤ 0

Letting δ and ε tend to 0 we obtain

ν f (α) ≤ αt (30)

which yields (24).
(b) We will apply the following proposition.
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Proposition 1 For p > 0 define the oscillation space Op(T) by

f ∈ Op(T) ⇐⇒ | f |p := sup
j≥0

⎛

⎝
∑

λ∈� j

e pλ

⎞

⎠

1/p

< ∞ . (31)

• The following embeddings hold.

∀ p > 0 ∀ s > 0 Op(T) ↪→ C0(T) . (32)

∀ 0 < p < p′ Op(T) ↪→ Op′(T) . (33)

∀ p > 0 B
1
p ,p
p (T) ↪→ Op(T) . (34)

• If f ∈ Op(T) for p > 0 then

∀α ≥ 0 d̃+
f (α) ≤ αp . (35)

Let 0 < q ≤ t . Let f ∈ B1/t,q
t (T). Since q ≤ t , then f ∈ B1/t,t

t (T). But (34)
implies that f ∈ Ot (T). Result (35) yields (25).

(c) Let 0 < t < q and f ∈ B1/t,q
t (T). It follows from embedding (34) that

f ∈ Ot (T). But (33) implies that f ∈ Oq(T). Result (35) yields (26).

Proof of Proposition 1.

• The space Op(T) is a particular case of general oscillation spaces Os,s′
p taken in

[26]. The proof can be directly deduced from Proposition 2 in [26]. But since our
particular case is simple, we will give the proof. The first embedding follows from
the fact that

∀ λ |Cλ| ≤ eλ ≤ | f |p .

The first embedding implies that

∀ λ eλ ≤ | f |p .

The second embedding comes from the fact that

∑

λ∈� j

e p
′

λ ≤ | f |p′−p
p

∑

λ∈� j

e pλ .

The third embedding is deduced from the fact that

∑

λ∈� j

e pλ ≤
∑

λ∈� j

∑

j ′≥ j

∑

λ′⊂λ

|Cλ′ |p =
∑

j ′≥ j

∑

λ′∈� j ′
|Cλ′ |p .

• The proof is similar to the one of (30).

��
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3.2 Proof of Optimality in Theorem 1

We will give the proof of each case separately.

3.2.1 Optimality of (24)

Let j ≥ 1 and k ∈ {0, . . . , 2 j − 1} be given. Write

k

2 j
= K

2J
with K odd and J ≤ j . (36)

Let

a = 2

t
+ 2

q
+ 1. (37)

Let

F(x) =
∑

j≥1

∑

λ∈� j

1

ja
2− J

t ψλ(x) (38)

Proposition 2 If F is the function given in (38) then

νF (α) =
⎧
⎨

⎩

−∞ i f α < 0
αt i f 0 ≤ α ≤ 1

t
1 i f α > 1

t .

(39)

Proof We will use the following trivial lemma. ��
Lemma 1 For each 1 ≤ J ≤ j there are 2J/2 values of k satisfying (36).

Clearly, ν f doesn’t change if we replace Cλ in (13) by jaCλ. We have

∀ λ ∈ � j j aCλ ∈ [2− j/t , 1] .

So, it suffices to prove (39) for α ∈ [0, 1/t).
Let λ ∈ � j . Relation

jaCλ ≥ 2− j (α+ε) (40)

is equivalent to J
t ≤ (α + ε) j and J ≤ j . This means that

J ≤ (α + ε)t j and J ≤ j . (41)

For ε small enough

(α + ε)t ≤ 1 . (42)



J Fourier Anal Appl

Lemma 1 yields

�{λ ∈ � j : jaCλ ≥ 2−(α+ε) j } = 1

2

∑

J≤(α+ε)t j

2J .

It follows from (41) and (42) that there exists a constant C such that

1

C
2(α+ε) j ≤ �{λ ∈ � j : jaCλ ≥ 2−(α+ε) j } ≤ C2(α+ε)t j .

Consequently νF (α) = αt .
Clearly αmin = 0, αmax = 1/t and

∀ α dν
F (α) = νF (α) . (43)

3.2.2 Optimality of (25) when 0 < q ≤ t

Assume that 0 < q ≤ t . We take the function F given in (38). If λ′ ⊂ λ then j ′ ≥ j
and J ′ ≥ J . It follows that

∀ λ eλ = Cλ . (44)

It follows that

d̃+
F = νF . (45)

It is given by the right-hand term in (39).

3.2.3 Optimality of (26) when 0 < t < q

Consider the function

F(x) =
∑

j≥2

1

( j (log j)2)
1
q

ψ j,k j (x) , (46)

where

k j = ( j − 2r )2 j−r if 2r ≤ j < 2r+1 with r ∈ N . (47)

Proposition 3 Let F be the function given in (46) and (47). Let j ≥ 2.

1. If k = k j then

eλ = 1

( j (ln j)2)
1
q

. (48)



J Fourier Anal Appl

2. If k �= k j . Let J be as in (36).
(a) If 2J ≤ j then there exists C > 0 independent of j and k such that

1/C

( j (ln j)2)
1
q

≤ eλ ≤ C

( j (ln j)2)
1
q

. (49)

(b) If j < 2J then there exists C > 0 independent of j and k such that

1/C

(J 22J )
1
q

≤ eλ ≤ C

(J 22J )
1
q

. (50)

Proof

1. If k = k j , then Cλ = 1

( j (ln j)2)
1
q
. For all j ′ ≥ j , we have 1

( j ′(ln j ′)2)
1
q

≤ Cλ. Thus

(48) holds.
2. Let now k �= k j .

(a) If 2J ≤ j then J ≤ r < j . Let j ′ > j with 2r ≤ j ′ < 2r+1. Let λ′ ∈ � j ′ with

λ′ ⊂ λ. This implies that Cλ′ �= 0 if and only if k′
2 j ′ = j ′−2r

2r = k
2 j . It follows

that j ′ > j if and only if j ′ = 2r + 2r−J K > j .
i. If 2r ≤ j < 2r + 2r−J K , then it follows from above that (49) holds.
ii. If 2r + 2r−J K ≤ j < 2r+1, take j ′ ∈ [2r+1, 2r+2) such that k′

2 j ′ =
j ′−2r+1

2r+1 = k
2 j . And (49) holds.

(b) If j < 2J then r < J ≤ j . If 2r
′ ≤ j ′ < 2r

′+1, λ′ ∈ � j ′ , λ′ ⊂ λ and Cλ′ �= 0

then k′
2 j ′ = j ′−2r

′

2r ′ = k
2 j . It follows that r

′ ≥ J . By taking r ′ = J , we get (50).
��

Proposition 4 Let F be the function given in (46) and (47). Then

d̃+
F (α) =

⎧
⎨

⎩

−∞ i f α < 0
αq i f 0 ≤ α ≤ 1/q
1 i f α > 1/q .

. (51)

Proof Let α ≥ 0 and j ≥ 2 fixed. By (48) and (49), intervals λ ∈ � j with k = k j or
(k �= k j and 2J ≤ j), give a contribution 1+ j/2 to Mj (α +ε), so a zero contribution
in d̃+

F (α).
On the other hand, thanks to Lemma 1, by (50), intervals λ ∈ � j with j < 2J , k �= k j
and 1/C

(J 22J )
1
q

≤ 2−(α+ε) j , give a contribution of the order of 2q(α+ε) j to Mj (α + ε), if

and only if J ≤ q(α + ε) j so a qα contribution in d̃+
F (α), if and only if 0 ≤ α ≤ 1/q

(because J ≤ j). ��
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4 Proof of Theorem 2

4.1 Proof of (27)

Let F be the function given in (38). Since 0 < t < ∞ and 0 < q < ∞ then B1/t,q
t (T)

is separable. Let ( fn) be a dense sequence in B1/t,q
t (T). Set

gn(x) =
∑

j<n

∑

λ∈� j

Cλ( fn)ψλ(x) +
∑

j≥n

∑

λ∈� j

Cλ(F)ψλ(x) . (52)

The generic set is

Aq,t =
⋂

m∈N

⋃

n≥m

B(gn, rn) (53)

where B(gn, rn) is the open ball of B
1/t,q
t (T) centered at gn and radius rn = 1

2na
2−n/t .

If f ∈ Aq,t , then for infinitely many scales n, we have

∀ λ ∈ �n |Cλ( f )| ≥ 1

2
Cλ(F) . (54)

It follows that

∀ α dν
f (α) ≥ ν f (α) ≥ νF (α) = dν

F (α) .

This result together with both (24), Proposition 2 and (43) yield (27).

4.2 Proof of (28)

Assume that 0 < q ≤ t < ∞. Let Aq,t be the generic set given in (53). Relation (54)
implies that infinitely many scales n, we have

∀ λ ∈ �n eλ( f ) ≥ 1

2
Cλ(F) . (55)

It follows from (44) that

∀ λ ∈ �n eλ( f ) ≥ 1

2
eλ(F) . (56)

Therefore

∀ α d̃+
f (α) ≥ d̃+

F (α) .

This result together with both (24), (45) and Proposition 2 yield (28).
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4.3 Proof of (29)

Assume that 0 < t < q < ∞. The generic set Aq
t is as in (53) with

rn = 1

2

1

(2n+1((n + 1) log 2)2)
1
q

. (57)

and gn as in (52) associated to the function F given in (46).
Clearly, from the proof of Proposition 3, wavelet leaders of F are attained, i.e.,

∀ λ ∃ λ′ ⊂ λ eλ = Cλ′ . (58)

Proposition 3 also implies that

∀ λ ∈ � j eλ(F) ≥ 1

(2 j+1(( j + 1) log 2)2)
1
q

. (59)

Proposition 5 If f ∈ Aq
t , then for infinitely many n’s

∀λ ∈ �n eλ( f ) ≥ 1

2
eλ(F) . (60)

Proof Let f ∈ Aq
t . For infinitely many n’s

‖ f − gn‖ < rn .

So

∀λ′ |Cλ′( f ) − Cλ′(gn)| < rn .

This implies that

∀ j ′ ≥ n ∀ λ′ ∈ � j ′ |Cλ′( f )| ≥ |Cλ′(gn)| − rn = Cλ′(F) − rn . (61)

Let λ ∈ �n . Thanks to (58) and (59), there exists λ′ ⊂ λ such that

Cλ′(F) = eλ(F) ≥ 1

(2n+1((n + 1) log 2)2)
1
q

= 2rn .

Thus, by (61), for such λ′ we have

|Cλ′( f )| ≥ Cλ′(F) − rn = eλ(F) − rn ≥ 1

2
eλ(F).
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Hence

eλ( f ) ≥ |Cλ′( f )| ≥ 1

2
eλ(F).

��
Thanks to (60)

∀ f ∈ Aq
t d̃+

f ≥ d̃+
F . (62)

This result together with Proposition 4 and (62) yield (29). �
Let us now deduce Corollary 1.

• If 0 < t < q then for all f ∈ Aq
t , the increasing part of d̃ f corresponds to

α ∈ [0, 1/q], on which it has increasing visibility, and

∀ α ∈ (0, 1/q] d̃ f (α) = αq > αt > dν
f (α) .

• If 0 < q ≤ t then for all f ∈ Aq,t , the increasing part of d̃ f corresponds to
α ∈ [0, 1/t], on which it has increasing visibility, and

∀ α ∈ [0, 1/t] d̃ f (α) = αt = dν
f (α) .

The generic set Aq,t (resp. At
q ) is the same as the one (resp. is a correctly reduced

generic set of the one because rn was 1/(2(n(log n)2)1/q)) of Jaffard and Meyer [27],
in which they computed the Hölder spectrum for functions whenmoreover 0 < q ≤ 1.
(Note that, for q > 1, it was proved (see [27]) that quasi-all functions in Bm/t,q

t (Rm)

are not locally bounded, so Hölder spectra are meaningless). This leads to Theorem
3 which confirms the effectiveness of the wavelet leader profile method compared to
the sunny wavelet profile method.
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