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Abstract In this paper, we first review the theory of Dunkl operators for complex
reflection groups and then the theory of hyper-Bessel functions, which are a particular
case of Meijer’s G-function and satisfy a higher order differential equation. Then we
show that there exists a close relation between both theories. In fact, the components
of the eigenfunctions of a Dunkl operator for a complex reflection group in the rank
one case can be expressed in terms of hyper-Bessel functions.
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1 Introduction

Dunkl theory generalizes the theory of special functions of one or several variables,
which leads to generalizations of classical Fourier analysis and builds up the frame-
work for a theory of special functions and integral transforms. This theory started
20 years ago with Dunkl, Heckman, and Cherednik. They showed that Weyl group
invariant special functions associated with root systems can be obtained by sym-
metrization of certain special functions in several variables which are not Weyl group
invariant, but which are in a sense more simple. These non-invariant special functions
are joint eigenfunctions of Dunkl type operators. Roughly speaking, these are com-
muting differential or difference operators with reflection terms, associated to some
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finite reflection group, which can be a Weyl group or Coxeter group, or a complex
reflection group [5].

The theory of special functions associated with real reflections and their related
harmonic analysis has been intensively developed, but the one related to complex
reflection group needs more study. In this work, we investigate in the rank one case
some particular cases of complex reflection Dunkl operators and their relationship to
the class of hyper-Bessel functions, Meijer’s G-function, and H -function. Moreover,
we show that the symmetrization of the eigenfunctions of complex reflection Dunkl
operators are solution of higher order differential equations.

The specialization of this theory to the case of rank one has its own interest because
everything can be done there in a much more explicit way, and new results for special
functions in one variable can be obtained. In the rank one case, the complex reflection
groups are cyclic groups of the form

G = 〈1, ε, . . . , εm−1〉, ε = e
2iπ
m .

Dunkl operator T (k) related to G is given by

T (k)f (z) := df (z)

dz
+

m−1∑

i=1

ki

z

m−1∑

j=0

ε−ij f
(
εj z
)
, (1.1)

which is a particular case of the more general differential-complex reflections opera-
tor

TAf (z) := df (z)

dz
+

m−1∑

i=1

A′
i (z)

Ai(z)

m−1∑

j=0

ε−ij f
(
εj z
)
, (1.2)

where Ai,1 ≤ i ≤ m − 1 are real functions satisfying

Ai(εz) = Ai(z). (1.3)

We will prove in Sect. 4 that the mth power T m(k) of the operator (1.1) acts on
G-invariant functions as the hyper-Bessel operator

Bm :=
m−1∏

j=1

(
d

dz
+ mνj + m − j

z

)
d

dz
. (1.4)

The remaining sections of this paper are organized as follows. In Sect. 2, we first
recall notations and some results for Dunkl operators and we establish a new repre-
sentation for the complex Dunkl operator by using circular matrices. In Sect. 3, we
discuss various types of generalizations of Bessel functions which can be found in
the literature. In Sects. 4 and 5, we compute the eigenfunctions of the complex Dunkl
operator related to the groups G(m,1,1) and Z/m1Z × · · · × Z/mNZ in terms of
hyper-Bessel functions.
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2 Dunkl operators for complex reflection groups

In C
N , we consider the standard hermitian form

〈z,w〉 :=
N∑

k=1

zkwk.

Let U(N) be the group of unitary transformations of C
N . The basic ingredient in the

Dunkl theory are finite complex reflections acting on C
N . An element s ∈ U(N) is

called a complex reflection if s has finite order and Hs := Ker(s −Id) is a hyperplane
in C

N . Let s be a complex reflection then there exists a nonzero vector w ∈ C
N and

mth primitive root of unity ε such that

s(z) := sw,ε(z) = z − (1 − ε)
〈z,w〉
|w|2 w, (2.1)

so that the matrix of sw is given by

(s)i,j = δij − (1 − ε)
wiwj

|w|2 ,

where |w| = √〈w,w〉.
If t is a unitary transform for C

N , we have

tsv,εt
−1 = st (v),ε.

A finite complex reflection group is a finite subgroup of U(N) generated by complex
reflections. Let m,p ∈ N be such that p|m. The subgroup G(m,p,N) of U(N) con-
sists of permutation matrices whose nonzero entries are mth roots of unity and the
product of the nonzero entries is an (m/p)th root of unity. This subgroup is a complex
reflection group (see [6]). Let G ⊂ U(N) be a finite complex reflection group acting
in its reflection representation C

N . Denote by A the set of reflection hyperplanes of
reflection of G and write GH for the (pointwise) stabilizer of H ∈ A in G.

Each GH is a cyclic subgroup of G of order mH ≥ 2. For H ∈ A, fix vH ∈ C
N

with H = 〈vH 〉⊥ and write sH for the complex reflection svH ,εH
where εH =

exp(2iπ/mH ). The characters of GH form a cyclic group, generated by the restric-
tion χH of the determinant to GH . We will thus label the character group of GH

by

ĜH = {χ−j
H ; j = 0, . . . ,mH − 1

}
.

Consider the natural action of U(N) on a function f : C
N → C which is given by

g.f (z) = f
(
g−1z
)
, g ∈ U(N).

We define

pH,i := 1

mH

mH −1∑

j=0

χ−i
H

(
s
j
H

)
s
−j
H , i = 0, . . . ,mH − 1. (2.2)
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These obey

id =
mH −1∑

i=0

pH,i, pH,ipH,j = δijpH,i . (2.3)

Then, the elements pH,i are idempotents which are generalizations of the primitive
idempotents (1 − s)/2 and (1 + s)/2 for a real reflection s.

For every C ∈ A/G, we choose a vector kC = T (kC,1, . . . , kC,mC−1,0) ∈ C
mC .

Let H ∈ A, we put

aH := aH (k) =
mH −1∑

i=1

kH,ipH,i . (2.4)

For every H ∈ A, we denote by ΩH the nH × nH matrix which is given by (see [2])

ΩH := 1

m
1/2
H

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 1 1 · · · 1
1 χ−1

H (sH ) χ−1
H (s2

H ) · · · χ−1
H (s

mH −1
H )

1 χ−2
H (sH ) χ−2

H (s2
H ) · · · χ−2

H (s
mH −1
H )

...
...

...
. . .

...

1 χ
−mH +1
H (sH ) χ

−mH +1
H (s2

H ) · · · χ
−mH +1
H (s

mH −1
H )

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (2.5)

For every 0 ≤ i, j ≤ nH − 1, we have

χ
−j
H

(
si
H

)= χ−i
H

(
s
j
H

)= χi
H

(
s
j
H

)
.

Hence, ΩH is a symmetric matrix.
Let f : C

N → C and H ∈ A, we denote by ΛH (f )(z) the vector-valued function
from C

N into C
mH , defined by

ΛH (f )(z) :=

⎛

⎜⎜⎜
⎝

f (z)

f (sH z)
...

f (s
mH −1
H z)

⎞

⎟⎟⎟
⎠

. (2.6)

Let w ∈ C
N . The Dunkl operator is a differential-complex reflection operator as-

sociated to G defined by [6]

Tw(f )(z) := ∂wf (z) +
∑

H∈A

〈w,vH 〉mH

〈z, vH 〉mH

aH (f )(z),

= ∂wf (z) +
∑

H∈A

1

mH

〈w,vH 〉mH

〈z, vH 〉mH

mH −1∑

i=1

mH −1∑

j=0

kiχ
−j
H

(
si
H

)
f
(
si
H z
)
, (2.7)

where ∂w denotes the directional derivative corresponding to w ∈ C
N .
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Proposition 2.1

Twf (z) = ∂wf (z) +
∑

H∈A

〈w,vH 〉mH
〈ΩH ΛH f,kH 〉mH

〈z, vH 〉mH

.

Proof A simple calculation shows that

aH (f )(z) = 〈ΩH ΛH (f )(z), kH

〉
mH

.

Hence,

Twf (z) = ∂wf (z) +
∑

H∈A

〈w,vH 〉mH
〈ΩH ΛH f,kH 〉mH

〈z, vH 〉 .
�

We denote by P := C[z] the C-algebra of polynomial functions of N variables
z = (z1, . . . , zN ). It has the natural grading

P =
⊕

n∈N

Pn,

where Pn is the subspace of homogeneous polynomials of (total) degree n.

Lemma 2.2

1. If f ∈ EN(C) then Twf ∈ EN(C).
2. The Dunkl operator Tw is a homogeneous differential-difference operator of de-

gree −1 on P , that is, Twp ∈ Pn−1 for p ∈ Pn.

Proof This follows immediately from the fact that for i = 1, . . . ,mH − 1,

pH,i(f )(z) = 1

mH

mH −1∑

j=0

χ−j
(
s
j
H

)
f
(
sj z
)

= 〈z, vH 〉
(

−
mH −1∑

j=0

(1 − ε
j
H )χ−j (si

H )

mH |vH |2

×
∫ 1

0
∂vH

f

(
z − t
(
1 − ε

j
H

) 〈z, vH 〉
|vH |2 vH

)
dt

)

.
�

The following proposition follows by an easy calculation.

Proposition 2.3

1. g ◦ Tw ◦ g−1 = Tgw for all g ∈ G.
2. If f ∈ EN(C) is G-invariant then Twf = ∂w .
3. If f,g ∈ EN(C), and least one of them is G-invariant, then

Tw(fg) = Tw(f )g + f Tw(g).
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Theorem 2.4 [6] Let G a finite complex reflection group. Then for all z,w ∈ C
N

TwTz = TzTw.

Example 2.1 (Coxeter groups) Let G be a finite Coxeter group and R be a fixed root
system associated to G. Under the standard embedding R

N ⊂ C
N , we assume that R

is a root system in C
N , so that we can define the positive root system R+ ⊂ R

N ⊂ C
N .

Moreover, for any real reflection s ∈ O(N), we can regard s as complex reflection. In
particular, the groups G(1,1,N), G(2,1,N), and G(2,2,N) are the Coxeter groups
of types AN−1, BN , and DN , respectively. In this case, each GH is generated by a
real reflection sH of order mH = 2, the corresponding idempotents are given by

eH,0 = (1 + sH )/2 and eH,1 = (1 − sH )/2,

and the related Dunkl operator is defined by [5]

Twf (z) = ∂wf (z) +
∑

α∈R+
k(α)〈α,w〉f (z) − f (sαz)

〈z,α〉 .

Example 2.2 (The group G(m,1,N)) Let ε := εm = e
2iπ
m . The group G(m,1,N),

consists of the N × N permutation matrices with the nonzero entries being powers
of ε. The group is generated by the transpositions (i, i + 1), i = 1, . . . ,N − 1, and by
the complex reflection s which is defined by

siz = (z1, . . . , εzi, . . . , zN).

The symmetric group SN is obviously a subgroup of G(m,1,N). In this notation, the
Dunkl operator is given by [6]

Ti = ∂

∂xi

+ k0

∑

j =i

m−1∑

r=0

1 − s−r
i (i, j)sr

i

xi − εrxj

+
m−1∑

j=1

kj

m−1∑

r=0

ε−rj sr
i

xi

.

The classical real reflection groups occur as the special cases AN−1 = SN =
G(1,1,N), BCN = G(2,1,N), and DN = G(2,2,N).

2.1 Decomposition of functions with respect to the cyclic group

Let G be a finite complex reflection group, denote by A the set of reflection hyper-
planes of reflections in G, and write GH for the stabilizer of H ∈ A in G.

Definition 2.1 Let H ∈ A and 0 ≤ j ≤ mH − 1. A function f : C
N → C is called of

type j with respect to H if

f (sH z) = χ
j
H (sH )f (z)

holds for every z ∈ C
N .
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Lemma 2.5 Let H ∈ A and f : C
N → C. Then, f can be decomposed uniquely in

the form

f =
mH −1∑

j=0

fH,j , (2.8)

where the component function fH,j is of type j and given by

fH,i(z) = pH,i(f )(z) = 〈ΩH ΛH (f )(z), ei

〉
mH

, (2.9)

where {ei} is the standard canonical basis of C
mH and < ·, · >mH

is the canonical
hermitian product in C

mH .

Let EN(C) be the C-algebra of entire functions in C
N , and we denote by EH,j (C)

the subspace of EN(C) of functions of type j with respect to the hyperplane H . Of
course, we have

EN(C) =
mj −1⊕

j=0

EH,j (C).

Example 2.3 1. Let κ := κm = e
iπ
m and let G = 〈1, ε, . . . , εm−1〉 be a cyclic group

where ε = e
2iπ
m . The hyper-trigonometric functions are a components of the expo-

nential function eκz with respect to G. Also these functions can be considered as
a generalization of the elementary trigonometric functions cos(z) and sin(z) (see
[7, 12]).

The m-cosine is given by

cosm(z) = sinm,m(z) : = 1

m

m−1∑

j=0

eiκεj z

=
∞∑

n=0

(−1)n
znm

(nm)! . (2.10)

The m-sine functions of type l with 1 ≤ l ≤ m − 1 are given by

sinm,l(z) = 1

mκl

m−1∑

j=0

εlj eiκεj z

=
∞∑

n=0

(−1)n
znm+l

(nm + l)! .

The function y(z) = cosm(λz) is the unique C∞-solution of the system

{
y(m)(z) = −λmy(z),

y(0) = 1, y(1)(0) = · · · = y(m−1)(0) = 0.
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Furthermore, we have

dk

dzk
sinm,l(z) =

⎧
⎨

⎩

sinm,l−k(z) for 1 ≤ k ≤ l − 1,

cosm(z) for k = l,

− sinm,m+l−k(z) for l ≤ k.

(2.11)

2. The components of type j (0 ≤ j ≤ n − 1) of the generalized hypergeometric
series pFq with respect to G is given by (see [1])

(a1)j · · · (ap)j

(b1)j · · · (bq)j

zj

j ! p

Fq

(
(n,a1 + j), . . . ,(n, ap + j)

∗(n, j + 1),(n, b1 + j), . . . ,(n, bp + j)

∣∣∣∣
zn

n(1−p+q)n

)
,

where (n,a) is the following set

a

n
,
a + 1

n
, . . . ,

a + n − 1

n
,

and ∗(n, j + 1) represents the fact that the denominator n
n

is always omitted.

3 Generalizations of Bessel functions

3.1 The Bessel functions

The normalized Bessel function jα(z) is defined by

jα(z) :=
∞∑

j=0

(− 1
4z2)j

(α + 1)j j ! ; z ∈ C. (3.1)

Here we use the notation of the shifted factorial:

(a)j := a(a + 1) · · · (a + j − 1) (j = 1,2, . . .); (a)0 := 1.

The function jα(x) is related to the Bessel functions Jα (see [13]) by

jα(z) := 2αΓ (α + 1)

zα
Jα(z).

The function y(z) = jα(λz) is the unique C∞-solution of the problem

B2y(z) = −λ2y(z), y(0) = 1, y′(0) = 0,

where

B2 := d2

dz2
+ 2α + 1

z

d

dz
. (3.2)

The cases α = − 1
2 and α = 1

2 yield the functions

j−1/2(z) = cos(z), j1/2(z) = sin(z)

z
.
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Then we get the elementary formulas

eiλz = j−1/2(λz) + iλzj1/2(λz) and
d

dz
eiλz = iλeiλz.

Dunkl [5] generalized the operator d
dx

to a mixture of a differential and a real reflec-
tion operator

T = T (α) := d

dz
+ α + 1/2

z
(1 − s), (3.3)

where

(sf )(z) := f (−z).

The generalized exponential function is defined by

Eα(iλz) := jα(λz) + iλzjα+1(λz).

Then it follows immediately from well-known differential recurrence formulas for
Bessel functions that

T Eα(iλz) = iλEα(iλz).

Consider the Dunkl type operator TA,τ ,

TA,τ =: d

dz
+ 1

2

(
A′

A
− 2τ

)
(1 − s) − τ, (3.4)

where A is a real function and τ a real number.
The simplest examples of the operator TA,τ are provided by

1. The Dunkl operator for which (A(z) = |z|2α+1, τ = 0);
2. The Dunkl–Heckman operator (A(z) = sinhk1+k2/2(|z|) coshk2/2(|z|), τ = 0)

T (k1,k2) := d

dz
+
(

k1
1 + e−2z

1 − e−2z
+ 2k2

1 + e−2z

1 − e−2z

)
(1 − s). (3.5)

3. The Cherednik operator (A(z) = sinh2(k1+k2)(|z|) cosh2k2(|z|), τ = k1 + 2k2)

where

Y (k1,k2) := d

dz
+
(

2k1

1 − e−2z
+ 4k2

1 − e−2z

)
(1 − s) − (k1 + 2k2). (3.6)

A simple computation shows that the square of A,τ is given by

T 2
A,τ = d2

dz2
+ A′

A

d

dz
+
(

1

2

(
A′

A

)′
+ τ

A′

A
+ 2τ 2

)
(1 − s) + τ 2. (3.7)

Thus, on even functions the square of the operator TA,τ acts as the following second
order differential operator

LA,τ := d2

dz2
+ A′

A

d

dz
+ τ. (3.8)
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3.2 The hyper-Bessel functions

The hyper-Bessel differential operator, or a Bessel type differential operator, is a sin-
gular linear differential operator of arbitrary order m ≥ 2 of the form (see [12])

Bm := dm

dzm
+ a1

z

dm−1

dzm−1
+ · · · + am−1

zm−1

d

dz
, (3.9)

with arbitrary real numbers a1, . . . , am−1.
The operator Bm can be written in the form

Bm = z−m+1
m−1∏

k=1

(
z

d

dz
+ mνk + 1

)
d

dz
, (3.10)

where the coefficients am−k are given by

am−k =
k∑

j=1

(−1)j

j !(k − j)!
m−1∏

s=1

(mνs + k − j), k = 0,1, . . . ,m − 1. (3.11)

By the following formula
(

z
d

dz
+ α

)
zβ = zβ

(
z

d

dz
+ α + β

)
,

the operator Bm takes the form:

Bm =
m−1∏

j=1

(
d

dz
+ mνj + m − j

z

)
d

dz
. (3.12)

The simplest higher order hyper-Bessel operator is the operator of m-fold differenti-
ation

dm

dzm
= z−m

(
z

d

dz

)(
z

d

dz
− 1

)
· · ·
(

z
d

dz
− m + 1

)
.

For m = 2 and a1 = 2α + 1, the hyper-Bessel operator generalizes the well known
second order differential operator of Bessel B2 defined in (3.2).

In 1953, Delerue [3] introduced for the first time the hyper-Bessel functions Jν(x)

with a vector index ν = (ν1, . . . , νm−1) ∈ R
m−1 satisfying for j = 1, . . . ,m− 1, νj >

−1, that is,

Jν(z) : = ( z
m

)|ν|

Γ (ν + 1) 0
Fm−1

( ∅
ν + 1

∣∣∣∣−
(

z

m

)m)
, (3.13)

where

|ν| = ν1 + · · · + νm−1,

ν + n = (ν1 + n, . . . , νm−1 + n) (n ∈ N),

Γ (ν) = Γ (ν1) × · · · × Γ (νm−1).
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The normalized hyper-Bessel function of index ν is defined by [11]

Jν(z) :=
(

z

m

)−|ν|
Γ (ν + 1)Jν(z)

=
∞∑

n=0

(−1)nΓ (ν + 1)

n!Γ (ν + n + 1)

(
z

m

)nm

. (3.14)

The function Jν(λz) is the unique C∞-solution of the following problem [11]
{

Bm(f )(z) = −λmf (z),

f (0) = 1, f (1)(0) = · · · = f (m−1)(0) = 0.
(3.15)

From Corollary 2 in [11] and (3.14), we obtain the following differential recurrence
relations for the normalized hyper-Bessel functions Jν(x)

d

dz
Jν(z) = − ( z

m
)m−1

(ν1 + 1) · · · (νm−1 + 1)
Jν+1(z), (3.16)

(
d

dz
+ mνk

z

)
Jν(z) = mνk

z
Jν−ek

(z), (3.17)

where ej (1 ≤ j ≤ m − 1) is the standard basis of R
m−1.

The normalized hyper-Bessel function has the Poisson integral representation [4]

Jν(z) = m3/2Γ (ν + 1)

(2π)(m−1)/2

∫ 1

0
G

m−1,0
m−1,m−1

(
ν1, ν2, . . . , νm−1

− 1
m

, . . . ,−m−1
m

∣∣∣∣t
m

)
tm−1 cosm(tz) dt,

(3.18)
where the function cosm is defined in (2.10), the Meijer’s G-function G

m,n
p,q (z) is given

by means of the contour integral in the complex plane

Gm,n
p,q (z) := Gm,n

p,q

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣z
)

= 1

2iπ

∫

C
G

m,n
p,q (s)zs ds,

and

G
m,n
p,q (s) := Πm

k=1Γ (bk − s)Πn
k=1Γ (1 − ak + s)

Π
q

k=m+1Γ (1 − bk + s)Π
p

k=n+1Γ (ak − s)
.

Here C is a suitable contour in C; m,n,p,q are integers such that 0 ≤ m ≤ q , 0 ≤
n ≤ q; the parameters ak and bk are complex numbers for which

bk + l = aj − l′ − 1; j = 1, . . . , p; k = 1, . . . , q; l, l′ = 0,1,2, . . . .

The Meijer’s G-function plays an important role in the theory of special functions
because almost all the special functions, as well as the elementary functions, can be
represented as G-functions. In particular, the generalized hypergeometric series pFq

is related to Meijer’s G-function by

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣z
)
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=
∏q

j=1 Γ (bj )
∏p

k=1 Γ (ak)
G

1,p
p,p+q

(
1 − a1,1 − a2, . . . ,1 − ap

0,1 − b1,1 − b2, . . . ,1 − bq

∣∣∣∣− z

)
.

Furthermore, the hyper-Bessel can be represented as a product of m-integrals

Jν(z) = (m
2 )|ν|+m−1/2Γ (ν + 1)

(2π)(m−1)/2Γ (ν + 1/2)

×
∫ 1

0
· · ·
∫ 1

0

m−1∏

k=1

(
1 − tmk

)νk−k/m
tk−1
k cosm(zt1 · · · tm−1) dt1 · · ·dtm−1,

(3.19)

3.3 G-Bessel function

Let n = 1,2, . . ., and m = 0,1, . . .. The G-Bessel function is defined by [10]

G(z) := G
n,0
0,n

( ∅
b1 + m,b2 + m, . . . , bq + m

∣∣∣∣z
)

. (3.20)

The function y(z) = G
m,n
p,q (z) satisfies the linear ordinary differential equation

[

(−1)p−m−nz

p∏

j=1

(
z

d

dz
− aj + 1

)
−

q∏

k=1

(
z

d

dz
− bk

)]

y(z) = 0.

In particular, for n,m ≥ 1, the function G(z) defined in (3.20) is an eigenfunction of
the hyper-Bessel type operator

n,mG(z) = (−1)mG(z),

where

n,m := z−m
n∏

k=1

m−1∏

j=1

(
z

d

dz
− bk − m + j

)
.

4 Complex reflection Dunkl operator associated to G(m,1,1)

In the one-dimensional case (N = 1), we take p = 1. The corresponding reflection
group G(m,1,1) (m ≥ 2) is a cyclic group Z/mZ acting on C by multiplication

by the mth roots of unity ε := εm = e
2iπ
m . In this case, we have only one reflection

“hyperplane”, with multiplicities k = (k1, . . . , km−1,0) where kj = mνj +m− j and
the corresponding Dunkl operator T (k) is given by

T (k)f (z) = df (z)

dz
+

m−1∑

i=1

ki

z

m−1∑

j=0

ε−ij f
(
εj z
)
. (4.1)
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These operators and their connection to hyper-Bessel functions are also investigated
in [8].

Theorem 4.1 Under the condition

kj = mνj + m − j ≥ 0, j = 1, . . . ,m − 1, (4.2)

the following system
{

T (k)f (z) = κλf (z),

f (0) = 1.
(4.3)

has a unique C∞-solution which is given by

Dν(λ, z) =
m∑

j=1

(κλ)−jAj Jν(λz)

= Jν(λz) +
m−1∑

j=1

(κλ)j

mj (ν1 + 1) · · · (νm−j + 1)
J(ν1+1,...,νj +1,νj+1,...,νm−1)(λz),

(4.4)

where

Am = 1, Am−1 = d

dz
, Aj =

m−1∏

k=j+1

(
d

dz
+ mνk + m − k

z

)
d

dz
, 2 ≤ j ≤ m.

(4.5)

Proof Let f be a solution of the system (4.3). We decompose f as

f =
m∑

j=1

fj ,

where the function fj is of type j . Then the system (4.3) is equivalent to
{∑m

j=1 f ′
j (z) +∑m−2

j=1
mνj +m−j

z
fj (z) = κλ

∑m
j=1 fj (z),

fm(0) = 1, f1(0) = · · · = fm−1(0) = 0.
(4.6)

For j = 1, . . . ,m, the functions f ′
j and z−1fj are of type j − 1, and the functions f ′

1,

z−1f1 are of type m.
Hence, we can write the system (4.6) in the following equivalent form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f ′
1 + mν1+m−1

z
f1 = κλfm,

f ′
2 + mν2+m−2

z
f2 = κλf1,

· · ·
f ′

m−1 + mνm−1+1
z

fm−1 = κλfm−2,

f ′
m = κλfm−1,

fm(0) = 1, f1(0) = · · · = fm−1(0) = 0.
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Therefore, the function fm satisfies
{∏m−1

j=1 ( d
dz

+ mνj +m−j

z
) d
dz

fm = −λmfm,

fm(0) = 1, f
(1)
m (0) = · · · = f

(m−1)
m (0) = 0.

(4.7)

Thus,

fm = Jν(λz),

fj (z) = (κλ)j−mAj Jν(λz) (1 ≤ j ≤ m − 1),

where

Am = 1, Am−1 = d

dz
,

Aj =
m−1∏

k=j+1

(
d

dz
+ mνk + m − k

z

)
d

dz
, 1 ≤ j ≤ m − 2.

(4.8)

More precisely, one has

f (z) = Jν(λz) +
m−1∑

j=1

(κλ)j

mj (ν1 + 1) · · · (νm−j + 1)
J(ν1+1,...,νj +1,νj+1,...,νm−1)(λz).

�

Proposition 4.2

1. If f is of type j , with 1 ≤ j ≤ m, then T (k) is of type j − 1 and

T (k)f (z) = df (z)

dz
+ kj

z
f (z).

2. If f is of type m, then

T m(k)f = Bmf,

where

Bm =
m−1∏

j=1

(
d

dz
+ kj

z

)
d

dz
.

4.1 Integral representation

In [4], Dimovski and Kiryakova studied the generalized Riemann–Liouville trans-
form Rν,m, which is defined by

Rν,mf (z) := m1/2Γ (ν + 1)

(2π)(m−1)/2

∫ 1

0
G

m−1,0
m−1,m−1

(
ν1, ν2, . . . , νm−1

− 1
m

, . . . ,−m−1
m

∣∣∣∣t
m

)
tm−1f (tz) dt

= (m
2 )|ν|+m−1/2Γ (ν + 1)

(2π)(m−1)/2Γ (ν + 1/2)
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×
∫ 1

0
· · ·
∫ 1

0

m−1∏

k=1

(
1 − tmk

)νk−k/m
tk−1
k f (zt1 · · · tm−1) dt1 · · ·dtm−1.

(4.9)

The operator Rm
ν intertwines the hyper-Bessel operator Bm operator defined by (3.10)

and the mth differential operator dm

dzm (see [9])

Bm ◦ Rν,m = Rν,m ◦ dm

dzm
. (4.10)

For m = 2, the transform Rν,m is reduced to the so-called Riemann–Liouville trans-
form

Rν,2f (z) = 2Γ (ν + 1)

Γ ( 1
2 )Γ (ν + 1

2 )

∫ 1

0

(
1 − t2)ν− 1

2 f (zt) dt. (4.11)

From (3.18), we get

Jν(λz) = Rν,m

(
cosm(λ·))(z) (4.12)

Let consider the operator Vm defined by

Vm :=
m∑

j=1

Aj ◦ Rν,m ◦ Im−j ◦ pj , (4.13)

where the operator pj is the projection operator defined in (2.2) and I is given by

I (f )(z) =
∫ z

0
f (t) dt.

The operator I is the right inverse of the derivative operator d
dz

:

d

dz
◦ I = 1.

Lemma 4.3 For n = 1,2, . . ., we have

(
In ◦ dn

dzn

)
(f )(z) = f (z) −

n−1∑

k=0

f (k)(0)

k! zk.

Theorem 4.4 The hyper-Dunkl–Bessel function has the integral representation

D(λ, z) = Vm

(
eκλ·)(z).

Proof The exponential function eκλz has the following decomposition with respect
to the cyclic group of order m

eκλz = cosm(λz) +
m−1∑

j=1

κj sinm,l(λz).
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From the relation (2.11), we get

sinm,j (λz) = 1

λm−j

dm−j

dzm−j
cosm(λz).

By Lemma 4.3, we can write

Im−j ◦ pj

(
eκλz
)= 1

(κλ)m−j

(
Im−j ◦ dm−j

dzm−j

)
cosm(λz)

= 1

(κλ)m−j

(

cosm(λz) −
m−j−1∑

k=0

(−1)k
(λz)km

(km)!

)

.

Hence,

Rν,m ◦ Im−j ◦ pj

(
eκλ·)(z)

= (κλ)j−m

(

Jν(λz) −
m−j−1∑

k=0

(−1)k
Γ (ν + 1)

Γ (ν + k + 1)k!
(

λz

m

)km
)

.

The order of differential operator Aj is equal to m − j (j = 1, . . . ,m), then

Aj

(
m−j−1∑

k=0

(−1)k
Γ (ν + 1)

Γ (ν + k + 1)k!
(

λz

m

)km
)

= 0.

Thus,

Vm

(
eκλ.
)
(z) =

m∑

j=1

(κλ)j−mAj Jν(λz) = D(λ, z).
�

5 Complex reflection Dunkl operator associated to Z/m1Z × ···× Z/mNZ

Let e1, . . . , eN be the standard basis of C
N . We denote by sj (1 ≤ j ≤ N ) the re-

fection with respect to the hyperplane perpendicular to ej , that is to say, for every
z = (z1, . . . , zN ) ∈ C

N ,

sj (z) := z − (1 − εj )
〈z, ej 〉
‖ej‖ ej

= (z1, . . . , zj−1, εj zj , zj+1, . . . , zN), (5.1)

where εj = e
i 2π
mj , and mj = 2,3, . . . . Let G be the finite reflection group generated

by {sj : j = 1, . . . ,N}, so G is isomorphic to Z/m1Z × · · · × Z/mNZ. The corre-
sponding group has the relations

sj sk = sksj and s
mj

j = 1. (5.2)
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For 1 ≤ j ≤ N and 1 ≤ i ≤ mj − 1, let νi,j be real numbers satisfying mjνr,j −mj +
r ≥ 0. Associated with these objects are the Dunkl operators Tj (for j = 1, . . . ,N )

Tjf (z) = ∂jf (z)

∂zj

+
mj −1∑

r=1

mjνr,j − mj + r

zj

mj −1∑

i=0

ε−ri
j f
(
si
j (z)
)
.

Proposition 5.1 For λ = (λ1, . . . , λN) ∈ C
N , the initial system problem

Tjf (z) = κjλjf (z), f (0) = 1, j = 1, . . . ,N,

has a unique C∞-solution DN
ν (z,λ) called Dunkl kernel and given by

DN
ν (λ, z) :=

N∏

j=1

Dνj
(λj , zj ),

where κj = e
i π
mj , ν = (νi,j ), νj = (νi,j )

mj

i=1, and Dνj
(λj , zj ) is defined in (4.4).
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