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Abstract: Doxorubicin (DOX) is a cytotoxic anthracycline antibiotic and one of the important
chemotherapeutic agents for different types of cancers. DOX treatment is associated with adverse
effects, particularly cardiac dysfunction. This study examined the cardioprotective effects of carvedilol
(CAR) and/or resveratrol (RES) and liposomal RES (LIPO-RES) against DOX-induced cardiomyopathy,
pointing to their modulatory effect on oxidative stress, inflammation, S100A1 and sarco/endoplasmic
reticulum calcium ATPase2a (SERCA2a). Rats received CAR (30 mg/kg) and/or RES (20 mg/kg) or
LIPO-RES (20 mg/kg) for 6 weeks and were challenged with DOX (2 mg/kg) twice per week from
week 2 to week 6. DOX-administered rats exhibited a significant increase in serum creatine kinase-MB
(CK-MB), troponin-I and lactate dehydrogenase (LDH) along with histological alterations, reflecting
cardiac cell injury. Cardiac toll-like receptor 4 (TLR-4), inducible nitric oxide synthase (iNOS),
tumor necrosis factor (TNF)-α and interleukin (IL)-6 protein expression were up-regulated, and lipid
peroxidation was increased in DOX-administered rats. Treatment with CAR, RES or LIPO-RES as well
as their alternative combinations ameliorated all observed biochemical and histological alterations
with the most potent effect exerted by CAR/LIPO-RES. All treatments increased cardiac antioxidants,
and the expression of S100A1 and SERCA2a. In conclusion, the present study conferred new evidence
on the protective effects of CAR and its combination with either RES or LIPO-RES on DOX-induced
inflammation, oxidative stress and calcium dysregulation.
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1. Introduction

Doxorubicin (DOX) is a member of the anthracyclines and one of the most effective anti-cancer
agents for solid tumors and leukemia [1]. The main antitumor effects of DOX are attributed to inhibition
of topoisomerase II that leads to DNA damage and suppression of protein synthesis [2]. However, its
use is restricted by its cardiotoxic adverse effects, including arrhythmia and cardiomyopathy which
may consequently lead to congestive heart failure (CHF) [3]. Different mechanisms appear to be
responsible for DOX cardiotoxicity. One of these mechanisms is the increased production of free
radicals that lead to oxidative stress and lipid peroxidation [1]. Other mechanisms include the increase
in intracellular iron and suppression of natural antioxidants, such as reduced glutathione (GSH).
Furthermore, DOX can activate inducible nitric oxide synthase (iNOS) and NO production that can
provoke cardiomyocyte apoptosis [4]. Moreover, DOX provokes apoptosis either by up-regulating the
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expression of p53 and caspase-3 [5] or by increasing intracellular calcium level [6]. DOX also stimulates
the inflammatory process and increases the levels of tumor necrosis factor-alpha (TNF-α) [7].

Toll-like receptors (TLRs) are important for initiating the innate immune responses [8]. TLRs in
the heart are expressed mainly in cardiac myocytes, smooth muscle cells and endothelial cells [9].
TLR-4 is considered to be the main member of the TLRs implicated in DOX-induced cardiomyopathy
that initiates left ventricles (LV) damage [7]. Besides TLR-4, TLR-2 has been reported to play a role
in regulating inflammation and apoptosis in the heart after DOX administration [10]. Activation
of TLR-4 by a ligand stimulates nuclear factor-kappa B (NF-κB) transcriptional activity and the
liberation of NF-κB from its inhibitor IkBα and translocation into the nucleus. Activated NF-κB
promotes the production of pro-inflammatory cytokines, such as, TNF-α and interleukin (IL)-6 [11,12].
Riad et al have reported that DOX causes oxidative stress that stimulates NF-kB, which enhances
the inflammatory pathway, and demonstrated the crucial role of the TLR-4/NF-kB pathway in LV
dysfunction in DOX-induced cardiomyopathy [7].

S100 proteins are Ca2+ binding proteins of the EF-hand type that can be expressed in many
tissues and play important functions. Various heart diseases are related to S100 proteins which are
considered as new markers for cardiac toxicity [13]. S100A1 protein improves cardiac contractility
and its expression is reduced following cardiac damage [14]. Human cardiomyopathy exhibited
down-regulation of S100A1 expression that decreased the performance of myocardial contraction
as documented by Remppis et al [15]. Additionally, Ritterhoff’s group revealed that the mRNA of
S100A1 was decreased following dilated and ischemic human cardiomyopathy [16]. Reduced mRNA
expression of sarcoplasmic/endoplasmic reticulum calcium ATPase2a (SERCA2a) is a characteristic
feature of heart failure (HF). SERCA2a is the main protein involved in calcium reabsorption during
relaxation and its low level causes a rise in diastolic calcium [17]. Brinks et al reported that gene therapy
with S100A1 in cardiac cell dysfunction enhanced SERCA2a activity 2-fold [18]. During diastole,
S100A1 augments SERCA2a function that reduces sarcoplasmic reticulum (SR) Ca2+ sparks and raises
SR Ca2+ load leading to cardiac relaxation; while in systole, S100A1 elevates both SR Ca2+ load and
ryanodine receptor 2 (RyR2) opening that mediates a high level of intracellular Ca2+ transients and
supports heart contractile function [16].

Several treatments are used as cardioprotective agents against DOX-induced cardiomyopathy.
β-blockers such as carvedilol (CAR) are examples of these drugs [19]. CAR possesses an antioxidant
effect and inhibits oxygen radical generation, which is related to its carbazole moiety [20]. Furthermore,
CAR restores calcium dysregulation by the enhancement of SERCA2a activity in myocytes [21].
The anti-inflammatory action of CAR was documented in adriamycin-induced cardiotoxicity where
CAR significantly attenuated the TNF-α/NF-κB pathway and consequently cyclooxygenase 2 (COX2)
and IL-6 expression [22]. However, CAR enhanced hepatic dysfunction and protected against
cardiotoxicity induced by DOX as confirmed by the biochemical and histopathological examinations
of the hepatic and cardiac tissues [23]. The protective effect of CAR against DOX cardiomyopathies
has been reported in rodent models as well as in humans [24–27]. Given its ability to selectively
block β1-adrenoceptor (AR), CAR improves heart function and is effective in the treatment of HF [28].
In contrast, the beneficial role of β2-AR blockade in patients with HF is debated [28]. Previous reports
have demonstrated a moderate β1-AR selectivity and a slight β2-selectivity of CAR [29]. However,
CAR can block β2-AR more selectively than β1 and accumulate in the cardiac tissue [30]. The higher
selectivity towards β2-AR resulted in persistent blockade of these receptors and contributed to the
beneficial effects of CAR in HF [30]. Therefore, CAR may preferentially inhibit arrhythmias and other
harmful effects of adrenaline [30]. Additionally, CAR prevented tissue injury and decreased β3-AR
expression in the ventricle of diabetic rats subjected to myocardial infarction [31].

Resveratrol (RES) is a small natural polyphenol product with the chemical structure 3,5,4′-
trihydroxystilbene [32]. RES plays a protective role against cardiovascular disease (CVD) that
is documented by its action against oxidation, inflammation and thrombus aggregation [33].
Vella et al reported that RES has multiple pharmacological actions, including anti-inflammatory
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and antioxidant activities. Furthermore, it reduces the left ventricular remodeling and dysfunction [34].
The anti-inflammatory action of RES is mediated via inhibition of lipopolysaccharide (LPS)-TLR-4/

NF-κB pathway [35,36]. RES affects many calcium signaling pathways in the cardiac cells. These
pathways mediate different mechanisms that control calcium influx, release and other calcium sensitive
molecules. Previous studies have reported that RES improved heart function and reduced cardiac
hypertrophy, which was attributed to silent information regulator 1 (SIRT1) protein that enhanced
SERCA2a expression [32,37]. Additionally, RES inhibited l-type Ca2+ channels which are the main
plasma membrane targets of RES mediating low extracellular Ca2+ influx. In normal conditions, Ca2+

enters the cell by l-type Ca2+ channels which facilitates potassium ion efflux. RES indirectly causes a
reduction of potassium efflux and relaxation in the endothelium. The effect of RES on potassium efflux
is responsible for its effects on hypertension and arteriosclerosis reduction [37]. Although RES can
prevent oxidative stress and inflammation, there is a disagreement regarding its beneficial effects on
cardiovascular markers and endothelial dysfunction and in type 2 diabetes patients. The contrasting
effects of RES reported in different studies could be explained in terms of different factors, including
doses, administration medium and form, age, gender, health status of the intestinal microbiota and
its pharmacokinetics [38]. The pharmacokinetic properties of RES are less acceptable and limit its
success. RES has poor bioavailability, inadequate water solubility, is chemically unstable and rapidly
metabolized in the body with a very short half-life [39]. In order to overcome these pharmacokinetic
limitations, a drug delivery system using liposomes becomes an excellent option in order to provide
many advantages for the enhancement of RES bioavailability. In this study, we investigated the
cardioprotective effect of CAR and/or RES or liposomal (LIPO)-RES against DOX-induced cardiotoxicity
with emphasis on inflammation, oxidative stress and calcium dysregulation.

2. Materials and Methods

2.1. Chemicals

RES and CAR raw powders were purchased from Sigma (St. Louis, MO, USA). DOX (Ebewe
Pharma Co, Unterach Am Attersee, Austria) was obtained from a local pharmacy in Riyadh (Saudi
Arabia) and marketed liposomal Trans RES® (particle size = 200 nm) was purchased from Lipolife®

(Drakes Lane, Chelmsford, UK). Primary antibodies for S100A1 (ab4066), iNOS (ab15323) and GAPDH
(ab9483) were purchased from Abcam® (Cambridge, MA, USA). The primary antibody for TLR-4
(NB100-56580) was obtained from Novus Biologicals® (Centennial, CO, USA). The primary antibody
for horseradish peroxidase (HRP) conjugated secondary antibody (sc-516102) was obtained from Santa
Cruz Biotechnology (Dallas, TX, USA). All other chemicals were of analytical grade and obtained from
standard commercial sources.

2.2. Animal and Experimental Design

Adult male 8-week old albino Wistar rats weighing 150–180 g were supplied by the Animals
Care Centre at the College of Pharmacy, King Saud University (Riyadh, Saudi Arabia). The rats were
housed in standard cages and adapted to laboratory conditions (temperature 23 ± 2 ◦C with 12 h
light/dark cycle) for one week prior to the experiment. They were provided food and water ad libitum.
The experimental protocol was conducted according to the Research Ethics Committee at King Saud
University (Ref. No: KSU-SE-18-31).

Forty-two rats were randomly allocated into seven groups (n = 6) as following:
Group I (Control): received 1% carboxy methylcellulose (CMC) as the vehicle of the drugs orally

for 6 weeks and intraperitoneal (i.p.) injection of physiological saline twice/week from week 2 to
week 6.

Group II (DOX): received 1% CMC orally for 6 weeks and DOX (2 mg/kg i.p.) twice/week for
5 weeks (from week 2 to 6) to produce a total cumulative dose of 20 mg/kg [40].

Group III (CAR): received CAR (30 mg/kg) orally for 6 weeks [41] and DOX as per group II.
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Group IV (RES): received RES (20 mg/kg) orally for 6 weeks [42,43] and DOX as per group II.
Group V (CAR/RES): received CAR (30 mg/kg) and RES (20 mg/kg) orally for 6 weeks and DOX

as per group II.
Group VI (LIPO-RES): received LIPO-RES (20 mg/kg) orally for 6 weeks and DOX as per group II.
Group VII (CAR/LIPO-RES): received CAR (30 mg/kg) and LIPO-RES (20 mg/kg) orally for 6 weeks

and DOX as per group II.
CAR, RES and LIPO-RES were dissolved in 1% CMC. At the end of week 6, all rats were

anesthetized, and blood was collected and centrifuged at 3000 rpm for 20 min at 4 ◦C to separate
serum. The rats were dissected, and hearts were removed, washed and parts of the LV were fixed in
10% neutral buffered formalin whereas other parts were frozen in liquid nitrogen and stored at −80 ◦C.

2.3. Assay of Markers of Cardiac Injury, SERCA2a and Cytokines

Serum CK-MB and troponin-I were assayed using ELISA kits (MyBioSource, San Diego, CA, USA)
and LDH was determined using a kit supplied by Randox (Crumlin, UK). To assay cardiac SERCA2a,
TNF-α and IL-6, samples from the LV were homogenized (10% w/v) in cold phosphate buffered saline
(PBS) with proteinase inhibitors, centrifuged and the supernatant was separated. Protein content in the
supernatant was assayed using Bradford reagent [44] and SERCA2a, TNF-α and IL-6 were determined
using ELISA kits (MyBioSource, San Diego, CA, USA), following the provided instructions.

2.4. Assay of Lipid Peroxidation, GSH and Superoxide Dismutase (SOD)

The levels of malondialdehyde (MDA), a marker of lipid peroxidation, and GSH were measured
according to the methods of Ohkawa et al [45] and Beutler et al [46], respectively. SOD activity was
assayed following the method of Marklund and Marklund [47].

2.5. Histology and Immunohistochemistry

Samples of the LV fixed in 10% neutral buffered formalin were dehydrated and embedded in
paraffin wax. The blocks were cut into 5-µm sections which were subjected to deparaffinization,
rehydration and staining with hematoxylin and eosin (H&E) for examination using a light microscope.
To determine the expression levels of TLR-4 and iNOS, the ABC technique was used as previously
described [48]. Briefly, the sections were deparaffinized, rehydrated and washed under tap water
and incubated in 3% hydrogen peroxide (H2O2) for 10 min. The sections were blocked with 5%
bovine serum albumin in Tris-buffered saline (TBS) and incubated with anti-TLR-4 or anti-iNOS
(1:100 dilution). The sections were washed 3 times in TBS and incubated with secondary antibodies.
After washing in TBS, the peroxidase activity was developed using diaminobenzidine followed by
hematoxylin counter-staining. The sections were washed in water, dehydrated, cleared, mounted and
examined. Quantitative analysis of TLR-4 and iNOS immunostaining was performed using ImageJ
(version 1.32j, NIH, USA) and the results are expressed as percent of control.

2.6. Western Blotting

To determine the effect of DOX and CAR and/or RES and LIPO-RES on cardiac S100A1 expression,
samples from the LV were homogenized in RIPA buffer with proteinase inhibitors, centrifuged and the
supernatant was separated. Forty µg total protein was subjected to 12% SDS/PAGE and the separated
bands were transferred to a nitrocellulose membrane. After blocking in 5% skimmed milk in TBST,
the membranes were probed with anti-S100A1 overnight at 4 ◦C or anti-GAPDH for 1 h at room
temperature. The membranes were washed with TBST and incubated with secondary antibodies and
then washed. Thereafter, the membranes were developed using a Bio-Rad ECL kit, scanned, and the
band intensity was determined using ImageJ (version 1.32j, NIH, USA).
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2.7. Statistical Analysis

The data were expressed as mean ± standard error of the mean (SEM). The results were analyzed
using one-way ANOVA followed by Tukey’s test on GraphPad 7 (GraphPad Software Inc., La Jolla,
CA, USA). A p value ≤ 0.05 was considered significant.

3. Results

3.1. CAR, RES and LIPO-RES Prevent DOX-Induced Cardiac Injury

To evaluate the protective effects of CAR and/or RES and LIPO-RES on DOX cardiotoxicity, we
determined serum CK-MB, troponin-I and LDH and conducted a histopathological investigation. DOX
caused significant elevation of serum CK-MB (Figure 1A), troponin-I (Figure 1B) and LDH (Figure 1C).
Treatment of the DOX-intoxicated rats with CAR, RES or LIPO-RES ameliorated serum troponin-I
levels and CK-MB and LDH activities. Treatment with CAR/RES and CAR/LIPO-RES significantly
ameliorated troponin-I and LDH when compared with RES and LIPO-RES, respectively.
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Figure 1. Carvedilol (CAR) and/or resveratrol (RES) and LIPO-RES ameliorate serum CK-MB (A),
troponin-I (B) and LDH (C) in DOX-intoxicated rats. Data are expressed as mean ± SEM, (n = 6).
*** p < 0.001 versus Control. # p < 0.05, ## p < 0.01 and ### p < 0.001 versus DOX.

The cardiotoxic effect of DOX was further confirmed by the histopathological examination.
While the control rats (Figure 2A) showed normal structure, examination of sections in the heart of
DOX-intoxicated rats revealed foci of degenerated myocardium, infiltration of inflammatory cells in the
endomysium, along with other manifestations (Figure 2B). Heart sections from DOX-intoxicated rats
treated with CAR showed mild cell degeneration (Figure 2C), whereas foci of degenerated myocardium
were seen in rats received RES (Figure 2D). Treatment with CAR/RES resulted in moderate improvement
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with few inflammatory cells (Figure 2E). LIPO-RES supplementation resulted in moderate decrease
in degenerated myocardium cells with inflammatory cellular infiltration (Figure 2F), whereas its
combination with CAR resulted in the absence of cellular degeneration and inflammatory cells, and
the cardiomyocytes appear normal (Figure 2G).
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Figure 2. Photomicrographs of sections in the left ventricles (LV) of (A) control rats showing normal
histology of cardiomyocyte cytoplasm (star) and nuclei (arrows) and normal distribution of endomysium
(bold arrow). (B) DOX-intoxicated rats showing foci of degenerated cardiomyocytes and collection of
inflammatory cells in the endomysium (bold arrow). (C) CAR-treated rats showing mild improvement
of myocardium with less degeneration (arrow) and inflammatory cells (bold arrow). (D) RES-treated
rats showing foci of degenerated cardiomyocytes (arrow) and few inflammatory cells (bold arrow).
(E) CAR/RES- and (F) LIPO-RES-treated rats showing moderate decrease in degeneration (arrow)
and inflammatory cells (bold arrow); and (G) CAR/LIPO-RES-treated rats with no degeneration or
inflammatory cells and the cardiomyocytes appear normal. (× 400; H&E; scale bar: 50 µm).
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3.2. CAR, RES and LIPO-RES Attenuate Cardiac Inflammation in DOX-Intoxicated Rats

Stimulation of TLR-4 has been reported to decrease cardiomyocyte contractility and provoke the
activation of NF-κB-dependent inflammatory response, resulting in increased expression of TNF-α, IL-6,
iNOS and other inflammatory mediators [11]. Therefore, we determined the effect of CAR and/or RES
and LIPO-RES on the expression of TLR-4, TNF-α, IL-6 and iNOS in the heart of DOX-intoxicated rats.

Control rats exhibited normal immune staining of TLR-4 in the myocardium as represented in
Figure 3A. In contrast, the heart of DOX-intoxicated rats showed very strong immune positivity of
TLR-4 in the cardiomyocytes (Figure 3B). Sections in the heart of DOX-intoxicated rats treated with CAR
(Figure 3C), RES (Figure 3D) and their combination (Figure 3E) showed mild, strong positive and very
mild TLR-4 expression, respectively. Oral supplementation of LIPO-RES (Figure 3F) and its combination
with CAR (Figure 3G) resulted in moderate and marked decrease in TLR-4 expression, respectively.
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Figure 3. Photomicrographs of anti-TLR-4-stained LV sections in: (A) Control rats showing the
absence of immune reaction in cardiomyocytes cytoplasm and nuclei (arrow); (B) DOX-intoxicated rats
showing very strong immune positivity; (C) CAR-treated rats showing mild immune positive reaction;
(D) RES-treated rats showing strong positive immune reaction; (E) CAR/RES-treated rats showing
very mild immunostaining; (F) LIPO-RES-treated rats showing moderate immune reaction and (G)
CAR/LIPO-RES-treated rats showing marked decrease in TLR-4 immune reactivity. (H) Mean ± SEM
of TLR-4 immunostaining in LV sections of different groups, (n = 6). *** p < 0.001 versus Control and
### p < 0.001 versus DOX.

Quantitative analysis of TLR-4 expression revealed a significant up-regulation in DOX-intoxicated
rats (p < 0.001) when compared with the control group (Figure 3H). CAR, RES and LIPO-RES decreased
TLR-4 expression significantly in DOX-intoxicated rats (p < 0.001). CAR/RES and CAR-LIPO-RES
reduced TLR-4 expression significantly when compared with RES and LIPO-RES, respectively.
Additionally, LIPO-RES decreased TLR-4 significantly when compared with RES (Figure 3H).
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Control rats exhibited normal expression of iNOS (Figure 4A) whereas DOX increased its expression
markedly (Figure 4B). Sections in the heart of rats received CAR (Figure 4C), RES (Figure 4D), CAR/RES
(E), LIPO-RES (Figure 4F) and CAR/LIPO-RES (Figure 4G) showed significant decrease in iNOS
expression (Figure 4H). The statistical analysis showed non-significant differences between the different
treatments on iNOS expression in the heart of DOX-intoxicated rats (Figure 4H).
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Figure 4. Photomicrographs of anti-iNOS-stained LV sections in: (A) Control rats showing the
absence of immune reaction in cardiomyocytes cytoplasm and nuclei (arrow); (B) DOX-intoxicated rats
showing multiple scattered foci of strong immune positivity; (C) CAR- (D) RES- (E) CAR/RES- and (F)
LIPO-RES-treated rats showing moderate decrease in iNOS expression, and; (G) CAR/LIPO-RES-treated
rats showing marked decrease in iNOS immune reactivity. (H) Mean ± SEM of iNOS immunostaining
in LV sections of different groups, (n = 6). *** p < 0.001 versus Control and ### p < 0.001 versus DOX.

The pro-inflammatory cytokines TNF-α (Figure 5A) and IL-6 (Figure 5B) were significantly
increased in the heart of rats that received DOX. CAR, RES and LIPO-RES decreased TNF-α and IL-6
significantly in DOX-intoxicated rats. LIPO-RES was more effective in reducing TNF-α (p < 0.05) and
IL-6 (p < 0.01) when compared with RES. The combination of CAR with RES or LIPO-RES reduced
TNF-α and IL-6 significantly when compared with the individual drugs.
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3.3. CAR, RES and LIPO-RES Prevent Oxidative Stress in the Heart of DOX-Intoxicated Rats

MDA, GSH and SOD were measured to assess the protective effect of CAR, RES and LIPO-RES
on DOX-induced oxidative stress. DOX-intoxicated rats exhibited a significant increase in cardiac
MDA (Figure 6A) and decreased GSH (Figure 6B) and SOD (Figure 6C). Treatment with CAR, RES
and LIPO-RES markedly decreased MDA and increased antioxidants. When compared with RES,
LIPO-RES and CAR/RES decreased cardiac MDA levels significantly.
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3.4. CAR, RES and LIPO-RES Upregulate Cardiac S100A1 and SERCA2a in DOX-Intoxicated Rats

Given the role of the Ca2+ binding protein S100A1 in improving Ca2+ handling and contractile
performance of the cardiomyocytes via its interaction with SERCA2a RyR2 [49], we investigated the
impact of DOX and the effects of CAR and/or RES and LIPO-RES on the expression levels of S100A1
(Figure 7) and SERCA2a (Figure 8). DOX suppressed S100A and SERCA2a in the heart of rats when
compared with the control group (p < 0.001). Treatment with RES didn’t improve the expression of
both S100A1 and SERCA2a, whereas CAR and LIPO-RES exerted a significant ameliorative effect.
In addition, the combination of CAR with RES and LIPO-RES significantly improved the expression of
S100A1 and SERCA2a.
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4. Discussion

DOX is a broad-spectrum antibiotic and antineoplastic agent for hematological and solid tumors.
The use of DOX has been limited by the occurrence of dose-dependent toxicity to vital organs,
particularly the heart [3]. Although the mechanisms of DOX-induced cardiotoxicity are not fully
understood, oxidative stress, intracellular calcium dysregulation, inflammation and apoptosis of
cardiomyocytes are the most proposed mechanisms [1]. The challenge for the management of its
cardiotoxicity is selecting an agent that has cardioprotective effects and at the same time does not
affect its antitumor activity. In this context, CAR showed some promising effects against DOX-induced
cardiotoxicity [22]. RES is a polyphenol product possessing important pharmacological effects such as
antioxidant- and anti-inflammatory activities [43,50]. It produced cardio-protective effects in different
cardiac disorders including DOX-induced cardiomyopathy [19]. However, these treatments do not
produce sufficient therapeutic effects. Therefore, there is an urgent need for novel strategies for the
control DOX’s cardiac side effects. LIPO-RES is considered as one of these promising cardioprotective
approaches [51]. Therefore, we aimed to explore the cardioprotective effects of RES and LIPO-RES
alone and in combination with CAR in DOX-intoxicated rats, pointing to their ability to modulate
oxidative stress, inflammatory response, S100A1 and SERCA2a.

Herein, the cardiotoxicity of DOX in rats was manifested by elevated serum levels of troponin-I,
LDH and CK-MB, and was also confirmed by the histopathological examination, which revealed
massive changes in the cardiac tissue, fragmentation and degeneration of cytoplasm and nuclei.
These data were supported by previous studies where similar findings have been reported [40,52].
CAR, RES and LIPO-RES reduced the cardiotoxicity induced by DOX administration as evidenced by
significant reduction of CK-MB, LDH and troponin-I levels and decreased myocardium degeneration
in the histopathological findings that were in line with previous studies [40,53,54]. The combination
of CAR and LIPO-RES showed significant reduction in serum LDH and troponin-I and the better
enhancement in cardiac architecture that indicated improvement of cardiac injury following DOX
administration versus other treated groups. However, RES treatment showed weak ameliorative effects
on CK-MB, LDH and troponin-I in the DOX-administered group and this was also confirmed by the
histopathological examination which indicated more degeneration of cardiac muscle versus the other
treated groups.

Inflammation is one of the critical characteristics of DOX cardiotoxicity. DOX stimulates TLR-4
that consequently activates NF-κB which is necessary for cardiac apoptosis [55,56]. NF-κB is a
sensitive transcription factor that controls inflammatory signaling cascades that mediate transcription
of important inflammatory mediators, such as COX-2, IL6, iNOS and TNF-α [57,58]. There is a growing
evidence revealing that cardiac NO level is raised in cardiotoxicity induced by DOX treatment [59].
The increase in cardiac NO level by DOX is attributed to the overexpression of iNOS that is generated
through inflammation. The high levels of NO produce peroxynitrite by reacting with the free
radical superoxide anion, then peroxynitrite induces cardiac oxidative damage, apoptosis and lipid
peroxidation [4]. In accordance to the previously mentioned data, the present study revealed significant
elevation of cardiac TNF-α, IL6 levels, TLR-4 and iNOS protein expression in the DOX-administered
group. CAR, RES and LIPO-RES significantly attenuated the myocardial TNF-α level and decreased
TLR-4 and iNOS protein expression. These results were in parallel with the findings of previous
studies that proved the anti-inflammatory effect of CAR and RES [22,60,61]. Clearly, the combination
of CAR and LIPO-RES exerted a more potent anti-inflammatory effect than each individual agent,
and the combination CAR/RES showed a better effect than either drug alone on TNF-α levels and
TLR-4 protein expression. Therefore, it is noteworthy assuming that CAR has synergistic effects with
RES as well as LIPO-RES on TNF-α and TLR-4. Interestingly, concurrent administration of CAR and
LIPO-RES exerted a superior effect matched with the other treated groups regarding to TLR-4 pathway
that consequently produced low levels of the main cytokines IL-6 and TNF-α which reflect the additive
anti-inflammatory effect of this combination. The present results were in line with Mahmoud et al who
found that CAR administration significantly decreased iNOS that is mediated via its inhibitory effect
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on NF-κB expression [62]. One of the possible mechanisms of the cardioprotective effects of RES is the
anti-inflammatory action that mediated by its ability to increase the expression of SIRT1 and AMPK
proteins [61]. RES inhibits NF-κB inflammatory pathway through stimulating the AMPKa/SIRT1
pathway, thereby alleviating the inflammatory process [63]. SIRT1 controls the transcription of NF-κB
and p53. SIRT1 inactivates NF-κB p65 subunit and causes deacetylation of NF-κB that consequently
inhibits the transcription of inflammatory cytokines, including IL-6, iNOS and TNF-α [64,65]. Csiszar
et al reported that TNF-α induces NF-κB activation, and RES directly attenuates the expression of
TNF-α in human coronary arterial cells [66]. The current study showed that the liposomal product
enhanced the anti-inflammatory action of native RES as evidenced by the significantly decreased
TNF-α and IL-6 in rats received LIPO-RES.

Besides inflammation, oxidative stress has been implicated in cardiotoxicity induced by
DOX [40,41]. Here, DOX administration induced oxidative stress evidenced by the significant increase
in cardiac MDA levels along with abolished GSH and SOD. Accordingly, previous studies have
demonstrated that DOX increases ROS generation mediated via NADPH oxidase and MDA and
decreases SOD and catalase activities in the heart of rodents [40]. Excess ROS are well-acknowledged to
damage cellular macromolecules, such as proteins, lipids and DNA. In this context, Tatlidede et al have
shown increased DNA damage in DOX-intoxicated rats [40]. Therefore, attenuation of oxidative stress
plays a role, at least in part, in the protective effects of CAR and/or RES and LIPO-RES. This notion is
supported by previous studies showing the ability of CAR and RES to suppress ROS and MDA, and
boost antioxidant enzymes in DOX-intoxicated rats [40,41]. Interestingly, LIPO-RES reduced MDA
significantly in the heart of DOX-intoxicated rats when compared with RES. These findings support
the superior cardioprotective effect of LIPO-RES.

Disturbance of calcium homeostasis is another mechanism involved in DOX-induced cardiac
toxicity. Doxorubicinol, a major metabolite of DOX, alters the ability of SR to sequester calcium by
interfering with SERCA2 function and stimulates the release of calcium from SR [19]. In the present
work, DOX exhibited a significant reduction of SERCA2a that is similar to the results of Zhang et
al, who reported that DOX decreased SERCA2a expression in rats [67]. In contrast, concomitant
administration of CAR, RES and LIPO-RES significantly restored SERCA2a activity. Of note, LIPO-RES
significantly restored SERCA2a when compared with RES. The present results were supported by the
finding of Kalay et al, who documented that CAR enhanced SERCA2a activity and increased its gene
expression [21]. The effect of CAR on SERCA2a gene transcription is mediated mainly by its effect on
specificity protein 1 (Sp1) sites in the SERCA2a gene promoter region [68]. Moreover, the present study
is in agreement with previous studies proving the beneficial effect of RES on SERCA2a [69,70]. RES
affects SERCA2a gene expression mostly through the SIRT1 transcriptional pathway. SIRT1 function is
involved in cardiac contractility via regulating SERCA2a promoter activity [71]. To further explore the
ameliorative mechanism of CAR and/or RES and LIPO-RES on DOX cardiotoxicity, the expression of
S100A1 was determined. This study is considered the first one that discussed the effect of DOX, CAR,
RES and LIPO-RES individually as well as the alternative combinations on S100A1 protein expression.
S100A1 exhibits its actions mainly in the heart but is also expressed in skeletal muscle, brain and
kidneys [72]. It interacts with both SERCA2a and RyR2, which are important for Ca2+ handling and
cardiac contraction. S100A1 enhances Ca2+ transient and reduces diastolic Ca2+ overload by decreasing
SR Ca2+ leakage to modulate cardiac function [49]. The data of this study revealed that DOX caused
down-regulation of S100A1 and that may be considered as one of the causes for the reduction of
SERCA2a. Up till now, there has not been enough data to demonstrate the regulation of S100A1 protein
expression. Kiewitz et al reported that SP1 elements are involved in the S100A1 promoter region [73].
Additionally, cyclic adenosine monophosphate (cAMP) responsive elements were also detected in the
S100A1 gene [73,74]. Previous data showed that Sp1 was down-regulated after DOX administration,
and Fatemi et al found that cAMP-stimulating agents ameliorated DOX-induced apoptosis [75]. As a
result, DOX may affect S100A1 via decreasing SP1 protein level. In the present work, CAR and
LIPO-RES increased S100A1 protein expression while RES showed non-significant increase versus
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the DOX-administered group. It was expected that CAR may affect S100A1 protein expression as
mentioned previously by its effects on SP1 similar pathway to SERCA2 protein. Whereas the beneficial
effect of LIPO-RES on S100A1 is suggested to be attributed to its effect on cAMP activation [76].
The beneficial effect of CAR or LIPO-RES on S100A1 may be the reason for the improvement of cardiac
contractility and enhancement of the SERCA2 level.

5. Conclusions

This study is the first one that evaluated the protective effect of the combination of CAR with either
RES or LIPO-RES against inflammation, oxidative stress and calcium dysregulation induced by DOX
administration, as well as their effect on S100A1 protein. The present results proved that treatment
of DOX-administered rats with either CAR or LIPO-RES alone or together alleviated inflammation,
oxidative stress and tissue injury evidenced by biochemical and molecular as well as histopathological
studies. The combination of CAR and LIPO-RES clearly exerted the best beneficial effects according
to most of the previous aforementioned measured parameters. Concomitant administration of CAR
in combination with LIPO-RES could be considered as a promising candidate for protection against
DOX cardiotoxicity.
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21. Kalay, N.; Başar, E.; Ozdogru, I.; Er, O.; Cetinkaya, Y.; Dogan, A.; Oguzhan, A.; Eryol, N.K.; Topsakal, R.;
Ergin, A.; et al. Protective Effects of Carvedilol Against Anthracycline-Induced Cardiomyopathy. J. Am. Coll.
Cardiol. 2006, 48, 2258–2262. [CrossRef] [PubMed]

22. Sari, F.R.; Arozal, W.; Watanabe, K.; Harima, M.; Veeravedu, P.T.; Thandavarayan, R.A.; Suzuki, K.;
Arumugam, S.; Soetikno, V.; Kodama, M. Carvedilol Attenuates Inflammatory-Mediated Cardiotoxicity in
Daunorubicin-Induced Rats. Pharmaceuticals 2011, 4, 551–566. [CrossRef]

23. Ibrahim, S.S.; Barakat, M.A.; Helmy, H.S. Modulating Effect of Carvedilol on Doxorubicininduced
Cardiomyopathy and Hepatic Damage. J. Am. Sci. 2010, 6, 20–32.

24. Fazio, S.; A Palmieri, E.; Ferravante, B.; Bonè, F.; Biondi, B.; Saccà, L. Doxorubicin-Induced Cardiomyopathy
Treated with Carvedilol. Clin. Cardiol. 1998, 21, 777–779. [CrossRef]

25. Matsui, H.; Morishima, I.; Numaguchi, Y.; Toki, Y.; Okumura, K.; Hayakawa, T. Protective Effects of Carvedilol
against Doxorubicin-Induced Cardiomyopathy in Rats. Life Sci. 1999, 65, 1265–1274. [CrossRef]

26. Chen, Y.-L.; Chung, S.-Y.; Chai, H.-T.; Chen, C.-H.; Liu, C.-F.; Chen, Y.-L.; Huang, T.-H.; Zhen, Y.-Y.; Sung, P.-H.;
Sun, C.-K.; et al. Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy.
J. Pharmacol. Exp. Ther. 2015, 355, 516–527. [CrossRef]

27. Beheshti, A.T.; Toroghi, H.M.; Hosseini, G.; Zarifian, A.; Fazlinezhad, A.; Shandiz, F.H. Carvedilol
Administration Can Prevent Doxorubicin-Induced Cardiotoxicity: A Double-Blind Randomized Trial.
Cardiology 2016, 134, 47–53. [CrossRef]

28. A Poole-Wilson, P.; Swedberg, K.; Cleland, J.G.F.; Di Lenarda, A.; Hanrath, P.; Komajda, M.; Lubsen, J.;
Lutiger, B.; Metra, M.; Remme, W.J.; et al. Comparison of Carvedilol and Metoprolol on Clinical Outcomes in
Patients with Chronic Heart Failure in the Carvedilol or Metoprolol European Trial (COMET): Randomised
Controlled Trial. Lancet 2003, 362, 7–13. [CrossRef]

29. Baker, J.G. The Selectivity of Beta-Adrenoceptor Antagonists at the Human Beta1, Beta2 and Beta3
Adrenoceptors. Br. J. Pharmacol. 2005, 144, 317–322. [CrossRef]

30. Molenaar, P.; Christ, T.; Ravens, U.; Kaumann, A. Carvedilol Blocks β2- more than β1-Adrenoceptors in
Human Heart. Cardiovasc. Res. 2006, 69, 128–139. [CrossRef]

http://dx.doi.org/10.1038/cddis.2016.140
http://dx.doi.org/10.1161/01.CIR.0000146889.46519.27
http://dx.doi.org/10.1016/j.cardiores.2006.09.011
http://www.ncbi.nlm.nih.gov/pubmed/17054926
http://dx.doi.org/10.1016/j.cell.2010.01.022
http://www.ncbi.nlm.nih.gov/pubmed/20303872
http://www.ncbi.nlm.nih.gov/pubmed/25214961
http://dx.doi.org/10.1371/journal.pone.0145418
http://www.ncbi.nlm.nih.gov/pubmed/26682543
http://dx.doi.org/10.1016/0167-4889(96)00097-3
http://dx.doi.org/10.1038/gt.2012.8
http://dx.doi.org/10.1016/j.jacc.2011.03.054
http://dx.doi.org/10.1016/j.ijcha.2015.11.004
http://dx.doi.org/10.4103/ijmr.IJMR_1323_14
http://dx.doi.org/10.1016/j.jacc.2006.07.052
http://www.ncbi.nlm.nih.gov/pubmed/17161256
http://dx.doi.org/10.3390/ph4030551
http://dx.doi.org/10.1002/clc.4960211017
http://dx.doi.org/10.1016/S0024-3205(99)00362-8
http://dx.doi.org/10.1124/jpet.115.225375
http://dx.doi.org/10.1159/000442722
http://dx.doi.org/10.1016/S0140-6736(03)13800-7
http://dx.doi.org/10.1038/sj.bjp.0706048
http://dx.doi.org/10.1016/j.cardiores.2005.08.024


Antioxidants 2020, 9, 159 15 of 17

31. Zhang, R.; Kang, X.; Wang, Y.; Wang, F.; Yu, P.; Shen, J.; Fu, L. Effects of Carvedilol on Ventricular Remodeling
and the Expression of Beta3-Adrenergic Receptor in a Diabetic Rat Model Subjected Myocardial Infarction.
Int. J. Cardiol. 2016, 222, 178–184. [CrossRef] [PubMed]

32. Raj, P.; Louis, X.L.; Thandapilly, S.J.; Movahed, A.; Zieroth, S.; Netticadan, T. Potential of Resveratrol in the
Treatment of Heart Failure. Life Sci. 2014, 95, 63–71. [CrossRef] [PubMed]

33. Bonnefont-Rousselot, D. Resveratrol and Cardiovascular Diseases. Nutrients 2016, 8, 250. [CrossRef]
[PubMed]

34. Vella, R.K.; Pullen, C.; Coulson, F.R.; Fenning, A.S. Resveratrol Prevents Cardiovascular Complications in
the SHR/STZ Rat by Reductions in Oxidative Stress and Inflammation. BioMed Res. Int. 2015, 2015, 1–8.
[CrossRef]

35. Li, J.; Xie, C.; Zhuang, J.; Li, H.; Yao, Y.; Shao, C.; Wang, H. Resveratrol Attenuates Inflammation in the Rat
Heart Subjected to Ischemia-Reperfusion: Role of the TLR4/NF-κB Signaling Pathway. Mol. Med. Rep. 2015,
11, 1120–1126. [CrossRef]

36. Wang, G.; Hu, Z.; Fu, Q.; Song, X.; Cui, Q.; Jia, R.; Zou, Y.; He, C.; Li, L.; Yin, Z. Resveratrol Mitigates
Lipopolysaccharide-Mediated Acute Inflammation in Rats by Inhibiting the TLR4/NF-κBp65/MAPKs
Signaling Cascade. Sci. Rep. 2017, 7, 45006–45019. [CrossRef]

37. Wang, H.; Yang, Y.J.; Qian, H.Y.; Zhang, Q.; Xu, H.; Li, J.J. Resveratrol in Cardiovascular Disease: What Is
Known from Current Research? Heart Fail. Rev. 2012, 17, 437–448. [CrossRef]

38. Ramírez-Garza, S.L.; Laveriano-Santos, E.P.; Marhuenda-Muñoz, M.; Storniolo, C.E.; Tresserra-Rimbau, A.;
Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Health Effects of Resveratrol: Results from Human
Intervention Trials. Nutrients 2018, 10, 1892. [CrossRef]

39. Reis, S.; Neves, A.R.; Lúcio, M.; Martins, S.; Lima, J. Novel Resveratrol Nanodelivery Systems Based on Lipid
Nanoparticles to Enhance Its Oral Bioavailability. Int. J. Nanomed. 2013, 8, 177–187. [CrossRef]
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