
Arduino and Android Powered Object Tracking Robot

1

Arduino and Android Powered Object Tracking Robot

Mejdl Safran and Steven Haar

Department of Computer Science

Southern Illinois University Carbondale

Carbondale, Illinois 62901 USA

mejdl.safran@siu.edu, info@stevehaar.com

Arduino and Android Powered Object Tracking Robot

2

Abstract

We have built a four wheeled robot with an Arduino microcontroller, specifically the Arduino Mega 2650.

We have written Arduino and Android libraries to allow an Android device to control the robot through a

USB connection. The robot is designed to track objects by spinning left and right to keep the object in sight

and driving forward and backward to maintain a constant distance between the robot and the object. Images

are acquired through the camera of an Android device which is attached to the robot. The camera is attached

to servos on the robot which allow the camera to pan and tilt. Several image processing techniques are used

to detect the location of the object being tracked in the images.

Two different kernel based trackers are implemented as Android applications. One of them uses a color

based tracking method and the other uses a template based tracking method. Both applications use Android's

OpenCV library to help with the image processing. The experimental results of the robot using both methods

show robust tracking of a variety of objects undergoing significant appearance changes, with a low

computational complexity.

Arduino and Android Powered Object Tracking Robot

3

I. INTRODUCTION

We have built a mobile robotic system for tracking and following moving objects. Such a system provides

important capabilities for assistance of humans in various settings, e.g., home use, health care and

transportation. Tracking with mobile robots is an active research area and many successful systems have been

developed, such as hospital assistance [5] and pedestrian tracking [6]. The reason for using a mobile robot is

that a mobile robot can cover a wide area over time and can reposition itself in response to the movement of

the tracked objects for efficient tracking.

Tracking is not only important for mobile robotic systems but also for a number of applications. Visual

surveillance, motion capture and medical imaging all require robust tracking of objects in real time. The task

of tracking becomes difficult to handle when the target objects change their appearance and shading

conditions. Moreover, an important parameter of the tracker is the computational complexity which

determines whether the tracker can be used in real time applications or not. The tracking methods used by the

robot described in this paper overcome these main challenges.

To track an object, two Android applications which use image processing technology were implemented.

The applications were installed on an Android device which was attached to a four wheeled robot powered by

an Arduino microcontroller. The Android device is used to control the robot through the Arduino

microcontroller and process the images acquired through its camera. All image processing tasks are

performed using the Android device without the need of sending the images to a server to perform the image

processing tasks.

One of the Android applications uses color based tracking method and the other uses a template based

tracking method. The color based tracking method uses range thresholding and contour detection techniques.

The template based tracking method uses Powell’s direct set method for object localization [2]. Both

applications use Android's OpenCV library [1] to help with the image processing.

Arduino and Android Powered Object Tracking Robot

4

The experimental results of the robot using the color based tracking method show robust tracking of

colored objects at an average frame rate of 25 frames per second, which is sufficient for real-time

applications. The template based tracking method is not so efficient for real-time applications due to the less

powerful processor in Android devices. However, the experimental results of the template based tracking

method using a more powerful processor and a stationary camera show efficient tracking of any object

regardless the color and shape at an average frame rate of 80 frames per second, which is sufficient for real-

time applications. All experimenters show that our robot is a low cost, high performance robot.

The rest of the paper is organized as follows. Section II reviews related work. Section III describes our

robot and its components. Section IV shows how an android device controls the robot. Section V describes

the two methods used for tracking. Section VI shows our experimental results, and finally Section VII

concludes our work.

II. RELATED WORK

Our project uses the Android Open Accessory Development Kit for communication between the Android

device and the Arduino microcontroller. The Arduino microcontroller can sense the environment by receiving

input from the Android device and can affect its surroundings by controlling the motors and the Android

device’s camera attached to the robot. We modified and expanded the concepts and the sample code in [7] to

establish the communication link between the Android device and the Arduino microcontroller.

A number of tracking algorithms have been proposed in the literature. The trackers presented in this paper

and used in our project are kernel based trackers that have gained popularity due to their simplicity and

robustness to track a variety of objects in real time. Kernel based trackers can be classified [9] into three main

classes. (1) template trackers; (2) density-based appearance model trackers; (3) multi-view appearance model

trackers. Our project uses the template tracker and the density-based tracker.

Arduino and Android Powered Object Tracking Robot

5

Two different kernel based trackers are implemented. The first is color based tracking method. It uses

range thresholding and contours detection techniques which are basic concepts in the field of digital image

processing [8]. The second is template based tracking method that uses Powell’s direct set method for object

localization [2]. The Android's OpenCV library is used to help with the image processing for both trackers. In

our project, we did not include obstacle avoidance or occlusion handling. These two issues are left as a future

work.

III. ROBOT

The robot consists of the following components that are listed with their online links in Appendix A. This

section describes each component in detail.

1. Lynxmotion - A4WD1 Chassis

2. Lynxmotion - Off Road Robot Tires

3. Arduino - Arduino ADK R3

4. Pololu - 50:1 Metal Gearmotor 37Dx54L mm with 64 CPR Encoder

5. Sabertooth - Dual 12A Motor Driver

6. MaxBotix - MB1000 LV‑MaxSonar EZ0

7. Lynxmotion - Base Rotate Kit

8. Lynxmotion - Pan and Tilt Kit

9. Hitec Robotics - S-422 Servo Motor

10. Tenergy Coporation - Li-Ion 18650 11.1V 10400mAh Rechargeable Battery Pack

To give us the best flexibility, we built our robot from scratch rather than purchasing a robot kit. The

chassis [A1] consists of an 8” x 9.75” aluminum base with flat lexan panels on top and bottom. For the

wheels we used large 4.75” diameter off road rubber tires [A2]. The Arduino microcontroller is mounted

inside the robot. We chose to go with the Arduino Mega 2560 ADK board [A3]. We chose this board because

it is specifically designed to be used with the Android Open Accessory Kit. The board has a USB A plugin

for plugging in an Android device. Figure 1 shows the Arduino Mega 2560 ADK board.

Arduino and Android Powered Object Tracking Robot

6

Figure 1: shows the Arduino Mega 2560 ADK board

To power the wheels we purchased four 12v 50:1 gear motors [A4]. The gear motors run at 200 rpm and

have a stall torque of 12 kg-cm. Each motor also has a built in encoder to provide feedback to the

microcontroller on how far the wheel has turned. Because the Arduino microcontroller is not capable of

powering such 12v motors, we used a 12 amp dual motor driver [A5]. This motor controller allows the

wheels to be controlled in two independent sets. In order to steer the robot left and right we connected both

left wheels to one channel and both right wheels to the other channel. Figure 2 shows the gear motors and

motors controller used in our project.

Figure 2: gear motors and motor controller

To enable the robot to detect obstacles while driving forward or backward, we installed an ultrasonic

rangefinder [A6] in the front and rear of the robot, Figure 3. Because we wanted to detect large obstacles

which the robot could not navigate over, we chose to use a rangefinder with a wide beam pattern.

Arduino and Android Powered Object Tracking Robot

7

Figure 3: ultrasonic rangefinder

To give the Android device range of motion, we installed a rotating base [A7] on top of the robot. This

allows the Android device to rotate 180 degrees horizontally. On top of the rotating base we attached a pan

and tilt kit [A8] which held the dock for the Android device. This kit allows the Android device to tilt up and

down. To power the rotating base and the pan and tilt kit, we used several small servo motors [A9]. Figure 4

shows the rotating base, the pan and tilt kit and the servo motor, respectively.

Figure 4: rotating base, pan and tilt kit and the servo motor

As for the power supply we used an 11.1V 10.4 amp lithium ion battery [A10]. We employed a series of

splitters and switches to connect power from the battery to the microcontroller and to the motor driver. Figure

5 shows the robot after installing all the components. For more pictures of the robot, see Appendix B.

Arduino and Android Powered Object Tracking Robot

8

Figure 5: The robot after installing its components.

IV. ANDROID

The Android device plugs into the microcontroller with a standard USB A to USB mini cable. We created

two Android libraries that are used by our Android app. The video processing library retrieves raw data from

the Android’s camera and passes this data to a frame processor one frame at a time. It is the job of the frame

processor to analyze the data and detect the location of the object in the given frame. The frame processor

then invokes a method in the main Android application which in turn uses the robot controller library to

control the robot.

Figure 6: Communication between the implemented libraries

Arduino and Android Powered Object Tracking Robot

9

A. Video Processing Library

The video processing library is an Android library contains several classes for processing frames from

the Android's camera and passing the frame data to the frame processor. When initialized, this library will

initialize the Android OpenCV library and establish communication to the Android device’s camera.

OpenCV is an open source image processing library available for Android as well as many other

platforms. In order to use the OpenCV Android library in any part of an application, the library must be

properly initialized. Initializing the library is just “boiler plate” code and many frame processors will use

the OpenCV library. It is for these reasons that the video processing library takes it upon itself to initialize

the Android OpenCV library. The video processing library accesses the camera on the Android device and

captures frames one at a time. The frames are then sent to a frame processor for processing.

B. Frame Processor

The frame processor attempts to detect where the object is located in the frame and then invokes a

method in the main android application, passing in information obtained from processing the camera

frame. In this way multiple different frame processors can be written and can be swapped in and out to be

used with different Android applications. We have implemented two frame processors that we have

included in the library. Both of these frame processors are discussed in detail in the Section V.

C. Android Application

This refers to the main application that is installed on the Android device. This application will use the

other libraries mentioned. This application is responsible for initializing the video processing library with

a particular frame processor. Also it is responsible for all user interaction (e.g., allowing the user to select

an object to track, displaying feedback to the user).

Arduino and Android Powered Object Tracking Robot

10

D. Robot Controller Library

The robot controller library is an Android library which provides an object oriented interface for

controlling the robot from within an Android application. The library works by establishing a USB

connection between the Android and the Arduino microcontroller. Once the connection is established, the

library exposes a set of methods that can be called from any Android code through a Robot class. The

seven primary methods exposed by the Robot class are explained below.

1) Drive Forward / Backward

This method accepts a speed (0 – 100) as an argument. This tells the robot to drive forward or

backward indefinitely. The robot will only stop if it detects that it will collide with an obstacle or if it

receives another command.

2) Travel Forward / Backward Distance

This method accepts a speed (0 – 100) and a distance (in centimeters) as arguments. The robot will

drive forward or backward, but will use its drive motor encoders to stop once it has travelled the

specified distance. The robot will also stop if it detects that it will collide with an obstacle or if it

receives another command.

3) Spin Left / Right

This method accepts a speed (0 – 100) as an argument. This tells the robot to spin left or right

indefinitely. In order to do this, one set of wheels (either left or right) rotates forward while the other

set of wheels rotates backward.

4) Rotate Left / Right

This method accepts a speed (0 – 100) and a degree (e.g., 45°, 180°, 360°, 720°) as arguments. The

robot will spin left or right, but it will use its drive motor encoders to stop once the robot has rotated

according to the specified degree.

Arduino and Android Powered Object Tracking Robot

11

5) Rotate Android Horizontally

This method accepts a degree (0 to 180) as an argument. This will rotate the base the Android rests on.

6) Tilt Android Vertically

This method accepts a degree (0 to 180) as an argument. This will turn the servo holding the Android

dock which will cause the Android to tilt up or down.

7) Track Object

This method accepts a rectangle as an argument. This method should be called once for each frame

processed. The rectangle should represent the coordinates of the object being tracked in the processed

frame. This method works by analyzing the rectangle passed in and comparing it to the center of the

frame and to an original object rectangle. The robot attempts to keep the object centered in the frame.

By comparing the rectangle to the center of the frame the robot can determine if should tilt or rotate the

Android device or if it should spin its wheels in an effort to center the object. By comparing the

rectangle to the original object rectangle, the robot can determine if the object is getting bigger or

smaller, (i.e. if the object is moving closer or further away). This will dictate whether the robot will

drive forward, backward, or remain stationary. When tracking an object, the robot maintains an internal

state. Each time the track object method is called (once per processed frame) the robot acts according to

its current state and regarding the rectangle passed into the method.

When driving forward and backward the robot uses a proportional control method to keep the robot

driving in a straight line. One side of the robot (either left or right) is marked as the master and the other side

is marked as the slave. The robot uses its drive motor encoders to detect the rotations of the master and slave

sides of the robot. Periodically, the robot will poll the encoders and make adjustments to the speed of the

motors. The slave side motors remain unchanged, but the master side motors are adjusted in an effort to keep

the robot traveling on a straight line. For example, if the master side motors have rotated more than the slave

Arduino and Android Powered Object Tracking Robot

12

side motors, then the master side motors are slowed down. If the master side motors had rotated less than the

slave side motors, then the master side motors would have their speed increased.

In addition to calling these methods, an Android application can also add a listener to the robot and will be

notified periodically of the status of the rangefinder. The rangefinder statuses are given in centimeters which

represents the distance between the sensor and a known obstacle. The following diagram, Figure 7, is the

state diagram of the robot.

Figure 7: The state diagram of the robot

Arduino and Android Powered Object Tracking Robot

13

V. TRACKING

When the android device is ready to process the frames received from the camera, the task now is how the

frames are processed to identify the new position of the tracked object. In our project we used two different

methods for object tracking: color based tracking and template based tracking. Any new methods can be

easily added to the system since the system is built to be extendable. Both of these methods will be discussed

in detail in this section.

A. Color Based Tracking Method

The method starts from the first frame when the user touches the object that is wanted to be tracked on

the android device screen. The result of the user touch is an RGB pixel. Using only one pixel to determine

the target color is not sufficient. So we define a touched rectangle by including four neighbor pixels from

each side, i.e., forming 9 x9 rectangle. Then, the touched region will be converted from RGB color space

to HSV color space. After producing the HSV touched region, the average of each component (hue,

saturation and value) is computed among all the pixels in the touched region, called average touched pixel.

Looking for the exact values of the average touched pixel in the next frame is not a practical way to

identify the new position of the tracked object. Therefore, minimum and maximum values should be

defined for each component in the average touched pixel. Color radius for range checking in the HSV

color space is used for each component. We use a radius of 25 for hue and 50 for both saturation and

value. Instead of comparing the pixels in the processed frame with only one value for each component

(average touched pixel), we compare with a range of values for each component. The result of this step is

having lower bound and upper bound values for the three components of the average touched pixel.

When the second frame is ready to be processed to identify the new position for the tracked object, the

following steps are applied on the frame:

1. The frame is downsampled twice by rejecting even rows and columns.

Arduino and Android Powered Object Tracking Robot

14

2. The result of step 1 is converted to HSV color space.

3. “In Range” [1] function is applied on the result of step 2. A function called “in Range” produces

binary image where 1 means the pixel’s component values lay in the range of the upper and lower

bounds of the average touched pixel and 0 means the pixel’s component values don’t lay in that

range.

4. The binary image is dilated.

5. The contours are found.

The contour that has the maximum area will be selected as the next position of the object. The

aforementioned steps are applied for each frame. The whole tracking algorithm is summarized as

flowgraph in Figure 8.

Figure 8: The flowgraph representation of color based tracking method.

Apply InRange

Find contours

Dilation

Object Selection
Average touched pixel
Define a range (max

and min)

Fetch Next Frame

Downsampling

To HSV

Arduino and Android Powered Object Tracking Robot

15

B. Template Based Tracking Method

The previous method can only track a fully colored object. The method discussed in this section

overcomes the previous method since it can track any object regardless its color and shape. The method

starts from the first frame when the user fits the object that is wanted to be tracked in a template

(rectangle) on the android device screen and decides to start tracking the object. The original template of

the will be saved for future use in next frames. The next frames will go through three steps: object

localization, object scaling handling and template adaptation.

1. Object Optimized Localization Using Powell’s Gradient Ascent Method

The template based tracking method uses Powell’s direct set method [2] for optimized localization

of object in every frame since the brute-force search method, which uses Image Similarity Measure

(ISM), is computationally complex and inefficient as well. To reduce the number of ISM operations,

we use Powell’s gradient ascent method for optimizing the object search. Many tracking systems [4]

and medical image registration [3] use the same method. The steps of object localization are giving as

follows [4]:

• Step 1: Select rectangular target region (Template, T) in the first frame and let (��, ��) be its

center and ℎ�	and ℎ� being its width and height, respectively.

• Step 2: Initialize step-size, 	 = 3 and fetch the next frame.

• Step 3: Compute Mean Absolute Difference (MAD) as given in Equation 1 between the

template T and each of the five candidates (C) by shifting center of the rectangle to five

position: (��, ��) , (�� ± 	, ��) , (��, �� ±). Let
��� be the candidate that has the

minimum MAD and let (��, ��) represents its center.

• Step 4: If (��, ��) is same as (��, ��) , then

Arduino and Android Powered Object Tracking Robot

16

o If 	 is greater than 0, reduce 	 by one and go to Step 3.

o If 	 is equal 0, it means the object is localized by the most likely target-region. The

template may need to be processed through scaling and adaptation as described in the

subsequent sections, then go back to Step 2 for next frame.

 If (��, ��) is not equal to	(��, ��), then set (��, ��) equal to (��, ��) and go back to Step 3.

��� = 	 ∑ |�(�,�)���(�,�)|�,�
��	∙�� ; "	 = 1, . . , 5 (1)

2. Object Scale Handling

Object Scaling is performed only if the Normalized Cross Correlation (NCC) between template, T,

and selected candidate region,	
���, is above a threshold which was fixed to 0.8. The Normalized

Cross Correlation (NCC) is given by Equation 2 where &' and &
��� are the mean intensity values of

template, T and selected candidate region	
���, respectively. Scaling can be done as follows:

• Step 1: Scaling ℎ�	and ℎ� of the selected candidate region by	±5%. The aspect ratio and the

center of the selected candidate region must be the same as before.

• Step 2: Resizing template, T, to match the rescaled candidate regions.

• Step 3: Compute MAD between resized templates and each corresponding rescaled candidate

regions.

• Step 4: The one that minimizes MAD will be selected and also the template, T will be replaced

with corresponding resize template.

)

 = 	 ∑ ∑ *�(�,�)�+�,*�-�.(�,�)�+�-�.,/�01�23/�01�23
4∑ ∑ *�(�,�)�+�,/�01�23 	/�01�23 4∑ ∑ *�-�.(�,�)�+�-�.,/�01�23 	/�01�23

 (2)

Arduino and Android Powered Object Tracking Robot

17

3. Template Adaptation

As the case in object scaling, template adaptation is performed only if NCC is above a threshold

which was fixed to 0.8. Template adaptation is an important task in tracking objects that change their

appearance. So template adaptation will try to keep the template, T, up-to-date. Template adaptation

can be done using Equation 3 which is a weighed sum of resized template, T, and selected candidate

region,
��� where 5 for our simulation was fixed to 0.9.

'(�, �) = 	5'(�, �) 6 (1 7 5)
���(�, �)	 (3)

VI. EXPERIMENT

In this section, we present the experimental results of our robot by tracking different objects using the

tracking methods discussed above. The source code of the libraries implemented in this project was uploaded

to Google code and linked in [C1]. A video made from one of the experiment in this section was also

uploaded to YouTube and linked in [C2].

A. Using Color Based Tracking Method

This method was implemented in OpenCV for Android and experimentation has been performed on

the robot that uses a Galaxy Note (android device with 1.4 GHz dual-core processor) to record and

process the frames. The robot can track any fully colored object using the color based tracking algorithm

at an average frame rate of 25 frames per second, which is sufficient for real-time applications. Figure 9

shows a sequence of frames while the robot is tracking a green ball. Figure 10 shows a sequence of

frames while the robot is tracking a blue ball.

Arduino and Android Powered Object Tracking Robot

18

Figure 9: Sequence of frames of tracking a green ball

Figure 10: Sequence of frames of tracking a blue ball

B. Using Template Based Tracking Method

When we run the robot to track objects using template based tracking algorithm, the robot sometimes

loses the tracked object. The reason is that the template based tracking algorithm demands more

Arduino and Android Powered Object Tracking Robot

19

powerful processor than the Galaxy Note’s processor. The robot would not lose the tracked object only if

the object moves slowly.

To test the template based tracking algorithm further, we run it on a PC with a 3.2 GHz Core i7

processor, a 9 GB RAM and a webcam for recording. The algorithm can track any rectangular target

region specified by the user at an average frame rate of 80 frames per second, which is sufficient for real-

time applications. The red rectangles in the following figures are the templates that need to be tracked.

Figure 11 shows a sequence of frames where the tracked object is a toy car controlled by radio frequency

remote control. Figure 12 shows a sequence of frames where the tracked object is a human eye. Figure

13 shows a sequence of frames where the tracked object is a toy rabbit.

Figure 11: Sequence of frames of tracking a toy car

Figure 12: Sequence of frames of tracking a human eye

Arduino and Android Powered Object Tracking Robot

20

Figure 13: Sequence of frames of tracking a rabbit toy

VII. CONCLUSION

This paper describes a four wheeled robot built with an Arduino microcontroller controlled by an Android

device for tracking and following moving objects. Android and Arduino libraries are implemented to allow

an Android device to control the robot. The Android device is also used to process the images acquired

through its camera. For image processing in the purpose of tracking moving objects, two different kernel

based trackers are implemented as Android applications: color based tracker and template based tracker. The

experimental results of the robot show robust tracking of a variety of objects undergoing significant

appearance changes, with a low computational complexity.

Arduino and Android Powered Object Tracking Robot

21

REFERENCES

[1] OpenCV for Android, version 2.4.2. http://opencv.org/

[2] M. Powell, “An Efficient Method for Finding the Minimum of a Function of Several Variables without

Calculating Derivatives”, In Computer Journal, vol. 7, pp. 155-162, 1964.

[3] X. Xu and R.D. Dony, “Differential Evolution with Powell’s Direction Set Method in Medical Image

Registration”, In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Canada,

vol. 1, pp. 732-735, 2004.

[4] S. Sarwar, M. F. Khan and N. Rao, “Real-time Object Tracking using Powell’s Direct Set Method for

Object Localization and Kalman Filter for Occlusion Handling” , In Proc. of International Conference on

Digital Image Computing: Techniques and Applications DICTA, Australia, 2012.

[5] J.F. Engelberger, “Health-care Robotics Goes Commercial: The Helpmate Experience”, in Robotics, vol.

11, pp. 517-523, 1993.

[6] L. Davis, V. Philomin and R. Duraiswami, “Tracking Humans from a Moving Platform” , in

Proceedings of the International Conference on Pattern Recognition, vol. 4, p.4171, 2000, IEEE

Computer Society.

[7] M. Bohmer. “Beginning Android ADK with Arduino”, 2012. Apress.

[8] R. Gonzalez and R. Woods. “Digital Image Processing”, 3rd, 2008. Prentice Hall.

[9] O. Javed and M.S. Yilmaz, “Object Tracking: A survey”, ACM Journal of Computing Surveys, vol. 38,

2006.

Arduino and Android Powered Object Tracking Robot

22

APPENDIX A (MAJOR COMPONENTS)

[1] Lynxmotion - A4WD1 Chassis

[2] Lynxmotion - Off Road Robot Tires

[3] Arduino - Arduino ADK R3

[4] Pololu - 50:1 Metal Gearmotor 37Dx54L mm with 64 CPR Encoder

[5] Sabertooth - Dual 12A Motor Driver

[6] MaxBotix - MB1000 LV‑MaxSonar EZ0

[7] Lynxmotion - Base Rotate Kit

[8] Lynxmotion - Pan and Tilt Kit

[9] Hitec Robotics - S-422 Servo Motor

[10] Tenergy Coporation - Li-Ion 18650 11.1V 10400mAh Rechargeable Battery Pack

Arduino and Android Powered Object Tracking Robot

23

APPENDIX B (PICTURES)

[1]

[2]

[3]

Arduino and Android Powered Object Tracking Robot

24

APPENDIX C (SOURCE CODE AND EXPERIMENT VIDEO)

 [1] The Source Code of our project

http://code.google.com/p/android-arduino-object-tracking-robot/

[2] One of the Videos of the Robot Experiments

http://youtu.be/mw__gOjdyYI

