King Saud University Academic Year (G) 2018-2019
College of Sciences
Mathematics Department
Academic Year (H) 1439-1440
Bachelor AFM: M. Eddahbi
Final exam ACTU. 362 ; Spring 2019 (40\%) (two pages)

May 2, 2019 (three hours 8-11 AM)

Problem 1. (8 marks)

1. An individual aged 40 is subject to the survival function

$$
S_{40}(t)=\left\{\begin{array}{ccc}
1-\frac{1}{200} t & \text { if } & t<20 \\
\frac{13}{10}-\frac{1}{50} t & \text { if } & 20 \leq t \leq 65
\end{array}\right.
$$

Calculate the probability that an individual aged 50 survives at least 30 years.
2. According to the following mortality table:

x	ℓ_{x}	d_{x}	$x-60 \mid q_{60}$
60	1000		
61	-	100	
62	-	-	0.07
63	780	-	-

Calculate q_{60}

3. Given the density $f_{0}(t)=\frac{20-t}{200}$ for $0 \leq t \leq 20$, calculate the force of mortality at age 10 .
4. Assume that ${ }_{t} p_{x}=1-\frac{t^{2}}{100}$ for $0<t \leq 10$. Find μ_{x+5}.

Problem 2. (8 marks)

1. Future lifetime of (20) is subject to force of mortality $\mu_{x}=\frac{1}{100-x}$ for $x<100$. Calculate $\stackrel{\circ}{e}_{20}$:50
2. For a life whose survival function is $S_{0}(t)=1-\frac{t}{\omega}$ you are given that $e_{20: 50}=18$. Determine the limiting age ω.
3. A person age 70 is subject to the following force of mortality:

$$
\mu_{70+t}=\left\{\begin{array}{lll}
0.01 & \text { if } & t \leq 5 \\
0.02 & \text { if } & t>5
\end{array}\right.
$$

Calculate è ${ }_{70}$ for this person.
4. Consider the following Mortality is select and ultimate table

x	$q_{[x]}$	$q_{[x]+1}$	$q_{[x]+2}$	q_{x+3}	$x+3$
40	0.002	0.005	0.008	0.012	43
41	0.003	0.006	0.009	0.015	44
42	0.004	0.007	0.010	0.018	45

Calculate ${ }_{2 \mid 3} q_{[41]}$.

Problem 3. (8 marks)

1. If $\ell_{x}=103-x$ for $0 \leq x \leq 103$, and the force of interest is $=0.06$, calculate $\bar{A}_{45:\left.20\right|^{\circ}}$
2. A 20 -year deferred insurance on (35) pays a benefit of 5000 at the moment of death if death occurs no earlier than 20 years from now. You are given: (i) Mortality for (35) is uniformly distributed with $\omega=100$. (ii) $\delta=0.06$, (iii) Z is the random variable for the present value of the insurance. Calculate $E[Z]$.
3. For a special whole life insurance policy on (55) with benefits payable at the moment of death, you are given:
(i) $b_{t}=\frac{50}{50-t}$, for $t<50$. (ii) $\mu_{x}=\frac{2}{105-x}$, for $x<105$. (iii) $\delta=0.04$. Calculate the net single premium for this insurance.
4. The net single premium for a 20 -year term insurance on a person currently age 40 with benefit of 1 payable at the moment of death is 0.065 . Now assume that (i) $\delta=0.04$, (ii) ${ }_{20} p_{40}=0.88$, (iii) $p_{60}=0.99$ and (iv) Deaths occurring between ages 60 and 61 are uniformly distributed.
Calculate the net single premium for a 21 -year endowment insurance on a person currently age 40 with benefit of 1 payable at the moment of death.

Problem 4. (8 marks)

1. You are given the following: (i) $A_{x}=0.25$, (ii) $A_{x+15}=0.40$, (iii) $A_{x: 15 \mid}=0.50$, determine $A_{x: 15 \mid}^{1}$.
2. For a 20 -year term insurance on a life currently age 40 : (i) $q_{40+k}=0.01, k \geq 0$, (ii) if death occurs in the interval $(k, k+1]$, the benefit is $2000(1.03)^{k}$. (iii) The benefit is paid at the end of the year of death. Calculate the expected present value of the insurance when $i=6 \%$..
3. A continuously increasing whole life insurance on (40) pays a benefit of t at the moment of death if death occurs at time t. Calculate the net single premium for this insurance when $\delta=0.02$ and the mortality follows $\ell_{x}=120-x, 0 \leq x \leq 120$.
4. For a whole life insurance of 1000 on (80), with death benefits payable at the end of the year of death, you are given:
(i) Mortality follows a select and ultimate mortality table with a one-year select period.
(ii) $q_{[80]}=0.5 q_{80}, i=0.06$, (iv) $1000 A_{80}=679.80$, (v) $1000 A_{81}=689.52$. Calculate $1000 A_{[80]}$.

Problem 5. (8 marks)

1. A special temporary 3 -year life annuity-due on (30) pays k at the beginning of year $k, k=1,2,3$. Given: (i) $q_{30}=0.01$, (ii) $q_{31}=0.015$, (iii) $q_{32}=0.02$ (iv) $i=0.04$, compute the expected present value of this annuity.
2. You are given: $\bar{A}_{40}=0.4, \bar{A}_{40: 10 \mid}=0.7,{ }_{10} p_{40}=0.9$ and the force of interest at time t is given by

$$
\delta_{t}=\left\{\begin{array}{lll}
0.05 & \text { if } & t \leq 10 \\
0.04 & \text { if } & t>10
\end{array}\right.
$$

Calculate \bar{a}_{40}
3. You are given the following:
(i) $A_{x: \bar{n} \mid}=0.693$ (ii) ${ }_{n} E_{x}=0.566$
(iii) $\mu_{x}=0.008$ (iv) $\mu_{x+n}=0.025$, (v) $\delta=0.04$.

Estimate $\ddot{a}_{x: \eta}^{(4)}$
(a) using Woolhouse's formula with two terms.
(b) using Woolhouse's formula with three terms.
4. Assume that the force of mortality is given by $\mu_{x}=\frac{1}{100-x}, 0 \leq x<100$. Calculate $\bar{a}_{75: 20}$ for $\delta=0.06$.

King Saud University	Academic Year (G) 2018-2019
College of Sciences	Academic Year (H) 1439-1440
Mathematics Department	Bachelor AFM: M. Eddahbi

Useful formulas ACTU-362: May 2, 2019

$$
\begin{aligned}
{ }_{t} p_{x} & =S_{x}(t)=\frac{\ell_{x+t}}{\ell_{x}},{ }_{t+u} p_{x}={ }_{t} p_{x} \times{ }_{u} p_{x+t},{ }_{t} p_{x}=e^{-\int_{0}^{t} \mu_{x+r} d r}=e^{-\int_{x}^{x+t} \mu_{r} d r} \text { and } S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)} \\
{ }_{t \mid u} q_{x} & ={ }_{t} p_{x} \times{ }_{u} q_{x+t}={ }_{t} p_{x}-{ }_{t+u} p_{x}={ }_{t+u} q_{x}-{ }_{t} q_{x}, \dot{e}_{x}=\int_{0}^{\infty}{ }_{t} p_{x} d t, \stackrel{\circ}{e}_{x: n}=\int_{0}^{n} p_{x} d t, e_{x}=\sum_{k=1}^{\infty}{ }_{k} p_{x}
\end{aligned}
$$

${ }_{n} p_{x}=\frac{\ell_{x+n}}{\ell_{x}}=P((x)$ remains alive at age $x+n)$, and $q_{x}=\frac{d_{x}}{\ell_{x}}=P((x)$ dies between age x and $x+1$ ${ }_{m i n} q_{x}=\frac{\ell_{x+m}-\ell_{x+m+n}}{\ell_{x}}=\frac{{ }_{n} d_{x+m}}{\ell_{x}}=\frac{\sum_{k=0}^{n-1} d_{x+m+k}}{\ell_{x}}=P((x)$ dies between age $x+m$ and $x+m+n)$
under UDD ${ }_{r} q_{x}=r q_{x}, f_{x}(r)=q_{x}$ and $\dot{e}_{x}=e_{x}+\frac{1}{2}, \dot{e}_{x: \bar{n} \mid}=e_{x: \bar{n} \mid}+0.5_{n} q_{x}$ and $\dot{e}_{x: n}={ }_{n} p_{x}(n)+{ }_{n} q_{x}\left(\frac{n}{2}\right)$. under CFM $\mu_{x+r}=\frac{q_{x}}{1-r q_{x}} \forall x \in \mathbb{N}$ and $0<r<1 .{ }_{(r} p_{x+u}=p_{x}^{r} \quad \forall x \in \mathbb{N}, 0<r<1$ and $\left.0<u+r \leq 1\right)$.

$$
\begin{aligned}
& A_{x}=v q_{x}+v p_{x} A_{x+1}, \quad \ddot{a}_{x}=\frac{1-A_{x}}{d} \text { and }{ }_{n \mid} \ddot{a}_{x}={ }_{n} E_{x} \ddot{a}_{x+n}, \quad a_{x}=\ddot{a}_{x}-1, \quad \ddot{a}_{x}=1+v p_{x} \ddot{a}_{x+1} \\
& a_{x: \overline{n-1} \mid}=\ddot{a}_{x: \bar{n} \mid}-1, \quad \ddot{a}_{x: \bar{n} \mid}=\sum_{k=0}^{n-1} v^{k}{ }_{k} p_{x} \text { and }(I \bar{a})_{x: n}=\int_{0}^{n}\lfloor t+1\rfloor e^{-t \delta}{ }_{t} p_{x} d t, \\
& (I \ddot{a})_{x: n}=\sum_{k=0}^{n-1}(k+1) v^{k}{ }_{k} p_{x},(I a)_{x: \bar{n} \mid}=\sum_{k=1}^{n} k v^{k}{ }_{k} p_{x},
\end{aligned}
$$

$A_{x: \bar{n}]}^{1}=\sum_{k=0}^{n-1} v^{k+1}{ }_{k \mid} q_{x}=\sum_{k=0}^{n-1} v^{k+1}{ }_{k} p_{x} q_{x+k}$ and $A_{x: \bar{n} \mid}^{1}=A_{x}-{ }_{n} A_{x}=A_{x}-{ }_{n} E_{x} A_{x+n}$ and $\bar{a}_{x: \bar{n} \mid}=\bar{a}_{x}-{ }_{n} E_{x} \bar{a}_{x+n}$

Recursions:

$$
\begin{aligned}
& \stackrel{\circ}{e}_{x}=\stackrel{\circ}{e}_{x: \bar{\eta}}+{ }_{n} p_{x} \stackrel{\circ}{e}_{x+n} \text {, (Under UDD } \stackrel{\circ}{e}_{x: \bar{n}}=e_{x: n}+0.5{ }_{n} q_{x} \text {) } \\
& \ddot{a}_{x: \bar{n}}=1+v p_{x} \ddot{a}_{x+1: \overline{n-1}}, A_{x: \bar{n}}=v q_{x}+v p_{x} A_{x+1: \overline{n-1}}, A_{x: \bar{n} \mid}^{1}=v q_{x}+v p_{x} A_{x+1: \bar{n}-1}^{1} \\
& (I A)_{x: \bar{n}]}^{1}=v q_{x}+v p_{x}\left(A_{x+1: \overline{n-1}]}^{1}+(I A)_{x+1: \overline{n-1}}^{1}\right),(D A)_{x: n}^{1}=n v q_{x}+v p_{x}(D A)_{x+1: \overline{n-1}}^{1} \\
& (I A)_{x: \bar{n}]}^{1}=\sum_{k=0}^{n-1}(k+1) v^{k+1}{ }_{k} p_{x} q_{x+k} ; \quad(D A)_{x: n}^{1}=\sum_{k=0}^{n-1}(n-k) v^{k+1}{ }_{k} p_{x} q_{x+k}, \\
& \bar{A}_{x: \bar{n}}=\bar{A}_{x: \bar{n}}^{1}+{ }_{n} E_{x}, A_{x: \bar{n}}=A_{x: n}^{1}+{ }_{n} E_{x},{ }_{n} E_{x}=v^{n}{ }_{n} P_{x} ; \text { and }(I \bar{A})_{x: \bar{n}}=(I \bar{A})_{x: \bar{n} \mid}^{1}+n_{n} E_{x} \\
& \operatorname{UDD} \bar{A}_{x}=\frac{i}{\delta} A_{x} \text { and } \bar{A}_{x: \eta}^{1}=\frac{i}{\delta} A_{x: \eta \emptyset}^{1} . \operatorname{CRM} \bar{A}_{x: n}^{1}=\frac{\mu}{\delta+\mu}\left(1-{ }_{n} E_{x}\right) \text { and }{ }_{n} E_{x}=e^{-(\delta+\mu) n}
\end{aligned}
$$

