Equilibrium constant

Equilibrium constant

- Many reactions that occur in nature are reversible and do not proceed to completion.
- They come to an equilibrium where the net velocity = 0
- The velocity of forward reaction is equal to the reverse reaction.
- The position of equilibrium is described by equilibrium constant, K_{eq} .

Equilibrium constant cont'ed

• Example: dissociation of a weak acid:

HA
$$K_1$$
 $H^+ + A^-$
 K_{-1}

The forward velocity, is proportional to the [HA]

 $V_f \quad \alpha [HA]$

 $V_{f} = k_{1} [HA]$

 K_1 is proportional to the constant rate

 $V_r \alpha [H^+]$ and $V_r \alpha [A^-]$

 $V_r \alpha [H^+][A^-]$

 $V_r = k_1 [H^+][A^-]$

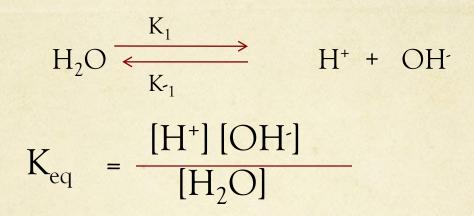
Equilibrium constant cont'ed

At equilibrium: $V_f = V_r$ $k_1 [HA] = k_1 [H^+][A^-]$ Or $\frac{k_1}{k_1} = \frac{[H^+][A^-]}{[HA]}$ $K_{eq} = \frac{k_1}{k_1}$ $K_{eq} = \frac{[H^+][A^-]}{[HA]}$

Acids and Bases

Acids and Bases

- Acid: is a substance that can donate protons (hydrogen ions).
- Base: is a substance that can accept protons.
- Bronsted concept:


Ionization of strong acids and bases

• A strong acid is a substance that ionizes 100% in aqueous solutions.

HCl +
$$H_2O \longrightarrow H_3O^+ + Cl^-$$

• A strong base is a substance that ionizes totally in solution to produce OH⁻ ions.

Ionization of Water

- Water is amphoteric it can accept and donate protons.
- In pure water 1 mole of $[H^+]$ produces 1 mole of $[OH^-]$, ie. $[H^+] = [OH^-]$
- The pH of water = 7
- Then: $[H^+] = [OH^-] = 10^{-7} M$

Ionization of Water cont'ed

• Thus the molarity of water:

In 1 liter of water = 1000g of water Mwt H₂O = 18 No. of moles 1000 / 18 = 55.6 moles M = 55.6 / 1 = 55.6 M

Since part of water molecules is ionized The actual conc. of the water is = 55.6 -10⁻⁷

M

Ionization of Water cont'ed

- The 10⁻⁷ is very small it can be neglected
- Since the concentration of the water is constant thus K_{eq} of water can be written as follows:

 $K_{eq} = [H^+] [OH^-]$ $K_{w} = [H^{+}] [OH^{-}]$ $K_w = 10^{-7} \times 10^{-7}$ $K_{\rm w} = 10^{-14}$ p $K_{\rm w} = -\log 10^{-14}$ $pK_{w} = 14$

Ionization of weak acids

• Weak acids have a weak affinity towards their proton

 $CH_3COOH + H_2O \iff CH_3COO' + H_3O^+$

$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$

The concentration of water is not considered since it is a constant

Ionization of weak acids cont'ed $HA \longleftrightarrow H^+ + A^ K_a = \frac{[H^+][A^-]}{[HA]}$

• Since weak acids ionize partially only thus their K_a value will always be less than one because the concentration of [HA] is always higher than the concentration of both [H⁺] and [A⁻]

Between weak acids the higher the K_a the stronger the acid.

Ionization of Weak Bases

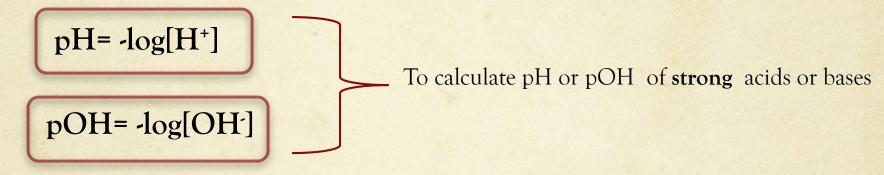
• Weak bases have a weak affinity towards their proton.

 $NH_4OH \longrightarrow NH_4^+ + OH^-$

 $\mathbf{K}_{b} = \frac{[\mathrm{NH}_{4}^{+}] [\mathrm{OH}^{-}]}{[\mathrm{NH}_{4}\mathrm{OH}]}$

pН

- Although the concentration of both OH⁻ and H⁺ are very effective in reactions, it's usually the concentration of the [H⁺] ions in solutions that is measured.
- The concentration of [H⁺] ions in solutions is usually very low; thus it's expressed as pH.


pH and pOH

- By definition pH is the negative logarithm of hydrogen ion activity.
- Similarly pOH is the negative logarithm of the hydroxyl ion activity.

pH: pH= $\log a_{\rm H}^+$ pOH:

 $pOH = -log a_{OH}$

In dilute solutions of acids and bases and in pure water, the activities of H⁺ and OH⁻ may be considered to be the same as their concentrations.

• In all aqueous solutions the equilibrium for the ionization of water must be satisfied, that is, $[H^+][OH^2] = K_w = 10^{-14}$. Thus, if $[H^+]$ is known, we can easily calculate $[OH^2]$.

Furthermore, we can derive the following relationship between pH and pOH: Taking the logarithm:

> $\log [H^+] + \log [OH^-] = \log K_w$ $-\log [H^+] - \log [OH^-] = -\log K_w$ $-\log [H^+]=pH$ $-\log [OH^-]=pOH$ $-\log K_w=pK_w$ $pH + pOH = pK_w$ $K_{\rm w} = 10^{-14}$ $pK_w = -log 10^{-14} = +14$ pH + pOH = 14

pH of Solutions of Weak Acids

- The dissociation of a weak monoprotic acid, HA, yields, H⁺ and A⁻ in equal concentration.
- If K_a and the initial concentration of HA are known, H⁺ can be calculated easily:

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{[H^+]^2}{[HA]}$$

 $[H^{+}]^{2} = K_{a}[HA]$ $[H^{+}] = \sqrt{K_{a}[HA]}$ $Log[H^{+}] = \frac{1}{2} Log K_{a}[HA]$

pH of Solutions of Weak Acids Cont'ed

Multiply by -1

 $- Log[H^+] = \frac{1}{2} (-Log K_a - Log [HA])$

 $pH = \frac{1}{2} (pK_a + p[HA])$

 \rightarrow To calculate pH of <u>weak</u> acids

• A similar relationship can be derived for <u>weak bases</u>: $[OH_{2}] = \sqrt{K_{b}[A_{2}]}$

 $pOH = \frac{1}{2} (pK_b + p[A])$

Example 1

What are the:

- 1. H^+ ion concentration.
- 2. pH.
- 3. OH⁻ ion concentration.
- 4. pOH.

of a 0.001 M solution of HCl?

Answer

- A. HCl is a strong inorganic acid; it is 100% ionized in dilute solution. So when 0.001 mole of HCl is introduced into a litre of H_2O , it immediately dissociates into 0.001 M H⁺ and 0.001 M Cl⁻. The ionization of water in neglected.
- B. $pH=-log[H^+]$ = $-log10^{-3}$ = -(-3)=+3

C. $[H^+][OH^-] = K_w$ [OH⁻] = $K_w/[H^+]$ [OH⁻] = $(1 \times 10^{-14})/(1 \times 10^{-3})$ [OH⁻] = 1×10^{-11}

D. $pOH= -log[OH^{-1}]$ $= -log(10^{-11})$ = -(-11) pOH= 11OR: pH + pOH = 14 pOH= 14 - pHpOH= 14 - pH

Example 2

- What are the:
- A. [H⁺].
- B. [OH⁻].
- C. pH.
- D. pOH.

Of a 0.002 M solution of HNO₃?

Answer

A. HNO_3 is a strong inorganic acid.

 $[H^+]= 0.002 M = 2 \times 10^{-3} M$

B. [H⁺][OH⁻]= 1 x 10⁻¹⁴

 $[OH^{-}] = (1 \times 10^{-14})/(2 \times 10^{-3}) = 0.5 \times 10^{-11}$

[OH⁻]= 5 X 10⁻¹⁴ M

C. pH= $\log 1/[H^+]$

 $= \log 0.5 \ge 10^3$

 $= \log 5 \ge 10^2 = 0.699 + 2$

pH= 2.699

D. pH + pOH= 14

pOH= 14.000 - 2.699 = 11.301

Example 3

- What is the concentration of HNO₃ in a solution that has a pH of 3.4 ?
- $[H^+]$ = antilog -pH
- $=10^{-pH}$ = $10^{-3.4}$ [H⁺]= $3.98 \ge 10^{-4}$

Example 4

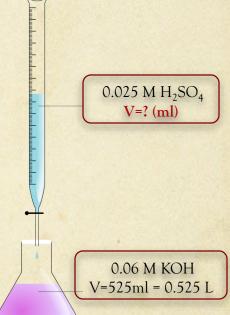
• How many: (a) H⁺ ions , (b) OH⁻ ions present in 250 ml of a solution of a pH 3?

pH = 3 [H⁺] = 10³ M (g/L) 1 g/L = 6.023×10^{23} ion/L 10⁻³ g/L = ? ion/L 6.023×10^{20} 4 = 1.506 × 10²⁰ ion/250 ml

pH + pOH = 143 + pOH = 14pOH = 14 - 3 = 11 $[OH^{-}] = 10^{-11}$ $1 \text{ g/L} = 6.023 \times 10^{23} \text{ ion/L}$ $10^{-11} \text{ g/L} = ? \text{ ion/L}$ 6.023×10^{12} 4 $= 1.506 \times 10^{12} \text{ ion}/250 \text{ ml}$

Neutralization of strong acids and bases

- To answer any question related to neutralization, follow the steps below:
 1-Know that to neutralize an acid or a base and form salt +water (pH=7):
 no. of moles /equivalents of H⁺ = no. of moles /equivalents of OH2- Choose either moles /equivalents depending on the (n) if it is for both acid and base:
 - same \rightarrow then moles
 - •Different \rightarrow then equivalents
- 3- finally, calculate according to what is ordered in the Q.


Example1

- 1- How many ml of 0.025 M H_2SO_4 are required to neutralize exactly 525 ml of 0.06 M KOH?
- 2- What is the pH of the neutralized solution?

No. of equivalents of H^+ required = no. of equivalents of OH^- present

$$V(in L)_{acid} \times N_{acid} = no. of equivalents$$

$$V(in L)_{acid} \times N_{acid} = V(in L)_{base} \times N_{base}$$

<u>Note</u>: No of equivalents is calculated instead of moles, since H_2SO_4 release 2 H+ and KOH release 1 OH- (i.e. different (n) number)

Cont'ed

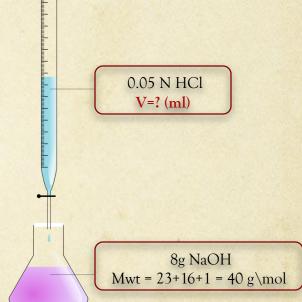
 $N_{acid} = M \ge n = 0.025 M \ge 2 = 0.05 N$ $N_{base} = M \ge n = 0.06 M \ge 1 = 0.06 N$ $V (in L)_{acid} \ge 0.05 = 0.525 \ge 0.06$ $V (in L)_{acid} = (0.525 \ge 0.06) / 0.05$ = 0.63 L = 630 ml

The neutralized solution contains only K₂SO₄ "a salt" of a strong acid and strong base has no effect on pH

pH =7

Example 2

• How many ml of 0.05 N HCl are required to neutralize exactly 8g of NaOH?


At the equivalent point:

The no. of moles H^+ added = no. of moles OH^- present

 $V(in L)_{acid} \times M_{acid} = no. of molesof H^+ added$

 $M=N/n \rightarrow 0.05/1 = 0.05M$

 $wt_{NaOH} / Mwt_{NaOH} = no. of moles of OH⁻ present$

<u>Note</u>: No of moles is calculated, since HCl release 1 H+ and NaOH release 1 OH-(i.e. same (n) number)

Cont'ed

 $V (in L)_{HCl} \times N_{HCl} = wt_{NaOH} / Mwt_{NaOH}$ $V (in L)_{HCl} \times 0.05 = 8 / 40$ $V (in L)_{HCl} = 0.2 / 0.05 = 4 L \text{ or } 4000 \text{ ml}$

Relationship between K_a and K_b for weak acids and bases

Weak acids (HA) dissociates in water: 0

$$HA \longleftrightarrow H^{+} + A^{-}$$
$$K_{a} = \underline{[H^{+}][A^{-}]}$$

 $[\Pi][A]$

A⁻ + HOH
$$\longleftrightarrow$$
 HA + OH⁻
 $K_b = \frac{[HA][OH-]}{[A-]}$

$$[H^+] = \frac{[HA] K_a}{[A^-]}$$

$$[H^+] = \frac{[A^-] K_b}{[OH^+] = [HA]}$$

$$[H^+] [OH^+] = K_w$$

$$[H^-] K_a \times \frac{[A^+] K_b}{[HA]} = K_w$$

$$[A^-] K_a \times K_b = K_w$$

$$[A^-] K_a \times K_b = K_w$$

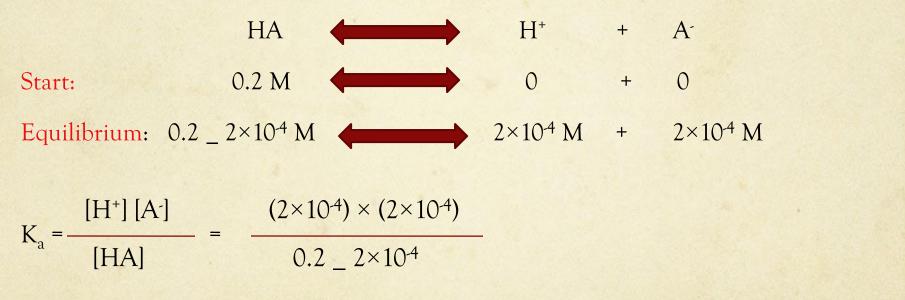
$$Log K_a + Log K_b = Log K_w$$

$$- Log K_a - Log K_b = - Log K_w$$

$$pk_a + pK_b = pK_w$$

$$14 = pK_w$$

$$pk_a + pK_b = 14$$


Example

- A weak acid HA, is 0.1% ionized (dissociated) in a 0.2 M solution.
- a) What is the equilibrium constant of the acid K_a ?
- b) What is the pH of the solution?
- c) How much weaker is the active acidity of the HA solution compared to a 0.2 M solution of HCl?
- d) How many ml of 0.1 N KOH would be required to neutralize completely 500 ml of 0.2 M HA solution?

A) First, calculate the <u>dissociation fraction</u> by multiplying the starting conc (0.2M) with the dissociation% to find the conc. of both ions at equilibrium.

The dissociation fraction = $(0.1/100) \times 0.2 = 2 \times 10^{-4}$ M

When the amount of HA that has dissociated is small, <u>10% or less</u> the K_a is simplified by

ignoring the subtraction from [HA]

 $K_{2} = ((2 \times 10^{-4}) \times (2 \times 10^{-4})) / 0.2$ $K_{2} = 4 \times 10^{-8} / 2 \times 10^{-1}$ $K_{a} = 2 \times 10^{-7}$ **B**) $pH = -Log[H^+]$ $pH = -Log 2 \times 10^{-4}$ pH = 3.7C) A 0.2 M HCl would be 100% ionized and yields 0.2 M H⁺ $pH = -Log[H^+]$ pH = -Log 0.2pH = 0.7

The weak acid is 3 pH units less than HCl but this is a log scale, actually HA is 1000 times weaker than HCL

D) No. of moles of OH⁻ required = no. of moles of H⁺ present $V (\text{in L})_{\text{base}} \times M_{\text{base}} = V (\text{in L})_{\text{acid}} \times M_{\text{acid}}$ $N_{\text{base}} = M_{\text{base}} (n = 1)$ $V (\text{in L})_{\text{base}} \times 0.1 = 0.5 \times 0.2$ $V_{\text{base}} = 0.1/0.1 = 1 \text{ liter} = 1000 \text{ ml}$

<u>Note</u>: No of moles is calculated, since HA release 1 H+ and KOH release 1 OH-(i.e. same (n) number)

V=500ml = 0.5