PHYSICS 404
$4^{\text {th }}$ HOMEWORK-FALL 2019
Prof. V. Lempesis
Hand in: Wednesday $\mathbf{2 6}^{\text {th }}$ of November 2019

1. Use the relation $H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)$ to find the polynomial $H_{4}(x)$.
2. Use the relation $L_{n}(x)=\frac{e^{x}}{n!}\left(\frac{d}{d x}\right)^{n}\left(e^{-x} x^{n}\right)$ to find the Laguerre polynomial $L_{3}(x)$
3. Use the relation $L_{n}^{k}(x) \equiv(-1)^{k}\left(\frac{d}{d x}\right)^{k} L_{n+k}(x)$ and the result from question 2 to find the associated Laguerre polynomial $L_{2}^{1}(x)$
4. Use the recurrence relation $x L_{n}^{\prime}(x)=n L_{n}(x)-n L_{n-1}(x)$ to find the integral $\int_{0}^{\infty} x e^{-x} L_{m}^{\prime}(x) L_{n}(x) d x$
