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PHYS 501 
HANDOUT 5 - Questions on curvilinear coordinate systems   

 
5.1 In the spherical polar coordinate system q1 = r,  q2 =θ ,  q3 =ϕ . The 
transformation equations are:  

x = rsinθ cosϕ
y = rsinθ sinϕ
z = rcosθ

 

 Calculate the spherical polar coordinate scale factors hr ,  hθ ,  hϕ . 

 

5.2 In Minkowski space (which is used in Relativity) we define 
x1 = x,  x2 = y,  x3 = z,  x4 = ict . Show that the metric in Minkowski space is 
gij = δij  or  

gij( ) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 

 

5.3 With e1a unit vector in the direction of increasing q1  show that  

(a) ∇
!"
⋅e1 =

1
h1h2h3

∂ h2h3( )
∂q1

,  (b)  ∇
!"
× e1 =

1
h1
e2

∂h1
h3∂q3

− e3
∂h1
h2∂q2

⎡

⎣
⎢

⎤

⎦
⎥ . Note that although 

e1 is a unit vector, its divergence and curl do not necessarily vanish.  

5.4 The Navier-Stokes equations of hydrodynamics contain a nonlinear term 
∇
!"
× v× ∇

!"
× v( )⎡

⎣⎢
⎤
⎦⎥

, where v is the fluid velocity. Calculate this term in the case of 

a fluid flowing through a cylindrical pipe in the z-direction where v = kv(ρ).   

5.5 Resolve the circular cylindrical unit vectors into their Cartesian 
components and vice versa.  

5.6 From the results of the previous problem show that 

∂ρ̂0
∂ϕ

= ϕ̂0 , ∂ϕ̂0
∂ϕ

= −ρ̂0  

and that all other first derivatives of the circular cylindrical unit vectors with 
respect to the circular cylindrical coordinates vanish. 
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5.7 Compare ∇
!"
⋅V  with the gradient operator ∇

!"
= ρ̂0

∂
∂ρ

+ ϕ̂0
1
ρ
∂
∂ϕ

+k ∂
∂z

 dotted 

into V. Note that the differential operator ∇
!"

 differentiate both the unit vectors 

and the components of V. Hint. ϕ̂0
1
ρ
∂
∂ϕ

⎛

⎝
⎜

⎞

⎠
⎟⋅ ρ̂0Vρ  becomes ϕ̂0 ⋅

1
ρ
∂
∂ϕ

ρ̂0Vρ( )  and 

does not vanish. 

5.8 (a) Show that r = ρ̂0ρ +kz . (b) Working entirely in circular cylindrical 

coordinates, show that ∇
!"
⋅r = 3  and ∇

!"
×r = 0 . 

5.9 A rigid body is rotating about a fixed axis with a constant angular velocity 
ω
!"

. Take ω
!"

 to lie along the z-axis. Express r in circular cylindrical coordinates 
and using circular cylindrical coordinates. (a) Calculate v =ω

!"
×r . (b) ∇

!"
× v . 

5.10 A particle is moving through space. Find the circular cylindrical 
components of its velocity and acceleration. 

5.11 Solve Laplace’s equation ∇
!"2
ψ = 0 , in cylindrical coordinates for ψ =ψ ρ( ) . 

5.12 In right circular cylindrical coordinates a particular vector function is 
given by V ρ,ϕ( ) = ρ̂0Vρ ρ,ϕ( )+ ϕ̂0Vϕ ρ,ϕ( ) . Show that ∇

!"
×V  has only a z-

component. 

5.13 For the example shown in question 5.4 we have that ∇
!"2

∇
!"
× v( ) = 0 . Show 

that this relation leads to 1
ρ
d
dρ

ρ
d 2v
dρ2

⎛

⎝
⎜

⎞

⎠
⎟=
1
ρ
dv
dρ

 and that is satisfied by 

v = v0 + a2ρ
2 . 

5.14 A conducting wire along the z-axis carries a current I . The resulting  

magnetic vector potential is given by A = k µI
2π
ln 1

ρ

⎛

⎝
⎜

⎞

⎠
⎟ . Show the the magnetic 

induction B is given byB = ϕ̂0
µI
2πρ

 . 

5.15 A force is described by  

F = −i y
x2 + y2

+ j x
x2 + y2

. 

(a) Express F in circular cylindrical coordinates. 

Operating entirely on circular cylindrical coordinates 
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(b) Calculate the curl of F.  

(c) Calculate the work of the force in encircling the unit circle once 
counterclockwise. 

(d) How do you reconcile the results of (b) and (c)? 

5.16 A transverse E/M wave in a coaxial wave guide has an electric field 
E =E ρ,ϕ( )ei kz−ωt( )  and a magnetic induction field of B = B ρ,ϕ( )ei kz−ωt( ) . Since 
the magnetic field is transverse neither E nor B has a z component. The two 
fields satisfy the Laplace equation  

!
∇2E ρ,ϕ( ) = 0
!
∇2B ρ,ϕ( ) = 0

 

(a) Show that E = ρ̂0E0 a / ρ( )ei kz−ωt( )  and B = ϕ̂0B0 a / ρ( )ei kz−ωt( )  are solutions. 

Here a is the radius of the inner conductor and E0  and B0  are 
amplitudes. 

(b) Find the ratio B0 / E0 . 

5.17 A calculation of the magnetohydrodynamics pinch effect involves the evaluation 
of B ⋅∇

!"
( )B . If the magnetic induction B is taken to be B = −ϕ̂0Bϕ ρ( ) , show that 

B ⋅∇
!"

( )B = −ρ̂0Bϕ2 / ρ . 

5.18 The linear velocity of particles in a rigid body rotating with angular velocity ω is 
given by v = ϕ̂0ρω . Integrate v ⋅d l!∫  around a circle in the xy-plane and verify that 

v ⋅d l!∫
area

=∇
!"
× v

z
. 

5.19 Working in spherical coordinates prove the following relations: 

∇
!"
f (r) = r̂ df

dr
,   ∇
!"
rn = r̂nrn−1,   ∇

!"
⋅ r̂f (r) = 2 f (r)

r
+
df
dr

,   ∇
!"
⋅ r̂rn = n+ 2( )rn−1  

∇
!"2
f (r) = 2

r
df
dr
+
d 2 f
dr2

,   ∇
!"2
rn = n n+1( )rn−2 ,   ∇

!"
× r̂f (r) = 0 . 

5.20 The computation of the magnetic vector potential of a single current loop 
in the xy plane involves the evaluation of V =∇

!"
× ∇
!"
×ϕ̂0Aϕ (r,θ )

⎡
⎣

⎤
⎦ . Evaluate this 

quantity. 

5.21 Resolve the spherical polar unit vectors into their cartesian components 
and vice versa. 
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5.22 From the results of 5.21 calculate the partial derivatives of r̂ , θ̂0  and ϕ̂0  . 

5.23 A rigid body is rotating about a fixed axis with a constant angular 
velocity ω

!"
. Take ω

!"
 to lie along the z-axis. Using spherical coordinates (a) 

Calculate v =ω
!"
×r . (b) ∇

!"
× v . 

5.24 The direction of one vector is given by the angles θ1,  ϕ1 . For a second 
vector the corresponding angles are θ2 ,  ϕ2 . Show that the cosine of the 
included angle γ is given by 

cosγ = cosθ1 cosθ2 + sinθ1 sinθ2 cos(ϕ1 −ϕ2 ) . 

5.25 A certain vector V has no radial component. Its curl has no tangential 
components. What does this imply about the radial dependence of the 
tangential components of V? 

5.26 With A any vector A ⋅∇
!"

( )r = A . Verify this result in Cartesian coordinates 

and in spherical polar coordinates. 

5.27 Express ∂ / ∂x,  ∂ / ∂y,  ∂ / ∂z  in spherical polar coordinates. (Hint: Equate 

∇
!"
xyz  and ∇

!"
rθϕ . 

5.28 From the previous question show that  

−i x ∂
∂y
− y ∂

∂x

⎛

⎝
⎜

⎞

⎠
⎟= −i

∂
∂ϕ

 

This is the quantum mechanical operator corresponding to the z-component 
of angular momentum. 

5.29 With the quantum mechanical, angular momentum operator defined as 
L = −i! r×

!
∇( ) , show that 

(a) Lx + iLy = e
iϕ ∂
∂θ

+ icotθ ∂
∂ϕ

⎛

⎝
⎜

⎞

⎠
⎟ ,  (b) Lx − iLy = −e

−iϕ ∂
∂θ

− icotθ ∂
∂ϕ

⎛

⎝
⎜

⎞

⎠
⎟ . 

5.30 Verify that L×L = i!L  in spherical coordinates. With L = −i! r×
!
∇( ) . 

5.31 From the expression for ∇
!"
ψ  show that 

L = −i! r×
!
∇( ) = i! θ̂0

1
sinθ

∂
∂ϕ

− ϕ̂0
∂
∂θ

⎛

⎝
⎜

⎞

⎠
⎟ . 

5.32 Resolving θ̂0  and ϕ̂0  into Cartesian components, determine Lx ,  Ly ,  Lz  in 
terms of θ  and ϕ . 
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5.33 With L = −i! r×
!
∇( )  verify the operator identities 

(a) 
!
∇ = r ∂

∂r
− i r×L
!r2

,    (b) r2
!
∇2 −

!
∇ 1+ r ∂

∂r
⎛

⎝
⎜

⎞

⎠
⎟=
i
!

"
∇×L . 

The later identity is useful in relating angular momentum and Legendre’s 
differential equation. 

5.34 Show that the following three forms (spherical coordinates) of 
!
∇2ψ r( )  

are equivalent. (a) 1
r2
d
dr
r2
dψ r( )
dr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, (b) 1

r
d 2

dr2
rψ(r)⎡⎣ ⎤⎦  (c) 

d 2ψ r( )
dr2

+
2
r
dψ r( )
dr

. 

5.35 One model of the solar corona assumes that the steady-state equation of 
heat flow ∇

!"
⋅ k∇
!"
T( ) = 0  is satisfied. Here, k, the thermal conductivity, is 

proportional to T 5/2 . Assuming that the temperature T is proportional to rn , 
show that the heat flow equation is satisfied by T =T0 (r0 / r)

2/7 . 

5.36 A certain force field is given by  

F = r̂ 2Pcosθ
r3

+θ̂0

P
r3

sinθ ,      r ≥ P / 2  

(in spherical polar coordinates). (a) Calculate ∇
!"
×F , (b) Calculate F ⋅d l!∫  for a 

unit circle in the plane θ = π / 2 . 

 


