PHYS 501 HANDOUT 5 - Questions on curvilinear coordinate systems

5.1 In the spherical polar coordinate system $q_1 = r$, $q_2 = \theta$, $q_3 = \varphi$. The transformation equations are:

 $x = r\sin\theta\cos\varphi$ $y = r\sin\theta\sin\varphi$ $z = r\cos\theta$

Calculate the spherical polar coordinate scale factors h_r , h_{θ} , h_{ω} .

5.2 In Minkowski space (which is used in Relativity) we define $x_1 = x, x_2 = y, x_3 = z, x_4 = ict$. Show that the metric in Minkowski space is $g_{ij} = \delta_{ij}$ or

$$(g_{ij}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

5.3 With \mathbf{e}_1 a unit vector in the direction of increasing q_1 show that

(a)
$$\vec{\nabla} \cdot \mathbf{e}_1 = \frac{1}{h_1 h_2 h_3} \frac{\partial (h_2 h_3)}{\partial q_1}$$
 (b) $\vec{\nabla} \times \mathbf{e}_1 = \frac{1}{h_1} \left[\mathbf{e}_2 \frac{\partial h_1}{h_3 \partial q_3} - \mathbf{e}_3 \frac{\partial h_1}{h_2 \partial q_2} \right]$. Note that although

e₁ is a unit vector, its divergence and curl *do not necessarily vanish*.

5.4 The Navier-Stokes equations of hydrodynamics contain a nonlinear term $\vec{\nabla} \times \left[\mathbf{v} \times (\vec{\nabla} \times \mathbf{v}) \right]$, where \mathbf{v} is the fluid velocity. Calculate this term in the case of a fluid flowing through a cylindrical pipe in the z-direction where $\mathbf{v} = \mathbf{k}v(\rho)$.

5.5 Resolve the circular cylindrical unit vectors into their Cartesian components and vice versa.

5.6 From the results of the previous problem show that

$$\frac{\partial \hat{\rho}_{0}}{\partial \varphi} = \hat{\varphi}_{0}, \ \frac{\partial \hat{\varphi}_{0}}{\partial \varphi} = -\hat{\rho}_{0}$$

and that all other first derivatives of the circular cylindrical unit vectors with respect to the circular cylindrical coordinates vanish.

5.7 Compare $\vec{\nabla} \cdot \mathbf{V}$ with the gradient operator $\vec{\nabla} = \hat{\rho}_0 \frac{\partial}{\partial \rho} + \hat{\varphi}_0 \frac{1}{\rho} \frac{\partial}{\partial \varphi} + \mathbf{k} \frac{\partial}{\partial z}$ dotted into **V**. Note that the differential operator $\vec{\nabla}$ differentiate *both* the unit vectors and the components of **V**. *Hint*. $\hat{\varphi}_0 \left(\frac{1}{\rho} \frac{\partial}{\partial \varphi}\right) \cdot \hat{\rho}_0 V_{\rho}$ becomes $\hat{\varphi}_0 \cdot \frac{1}{\rho} \frac{\partial}{\partial \varphi} (\hat{\rho}_0 V_{\rho})$ and does not vanish.

5.8 (a) Show that $\mathbf{r} = \hat{\rho}_0 \rho + \mathbf{k}z$. (b) Working entirely in circular cylindrical coordinates, show that $\vec{\nabla} \cdot \mathbf{r} = 3$ and $\vec{\nabla} \times \mathbf{r} = 0$.

5.9 A rigid body is rotating about a fixed axis with a constant angular velocity $\vec{\omega}$. Take $\vec{\omega}$ to lie along the z-axis. Express **r** in circular cylindrical coordinates and using circular cylindrical coordinates. (a) Calculate $\mathbf{v} = \vec{\omega} \times \mathbf{r}$. (b) $\vec{\nabla} \times \mathbf{v}$.

5.10 A particle is moving through space. Find the circular cylindrical components of its velocity and acceleration.

5.11 Solve Laplace's equation $\vec{\nabla}^2 \psi = 0$, in cylindrical coordinates for $\psi = \psi(\rho)$.

5.12 In right circular cylindrical coordinates a particular vector function is given by $\mathbf{V}(\rho,\varphi) = \hat{\rho}_0 V_{\rho}(\rho,\varphi) + \hat{\varphi}_0 V_{\varphi}(\rho,\varphi)$. Show that $\vec{\nabla} \times \mathbf{V}$ has only a z-component.

5.13 For the example shown in question 5.4 we have that $\vec{\nabla}^2 (\vec{\nabla} \times \mathbf{v}) = 0$. Show that this relation leads to $\frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{d^2 v}{d\rho^2} \right) = \frac{1}{\rho} \frac{dv}{d\rho}$ and that is satisfied by $v = v_0 + a_2 \rho^2$.

5.14 A conducting wire along the z-axis carries a current I. The resulting

magnetic vector potential is given by $\mathbf{A} = \mathbf{k} \frac{\mu I}{2\pi} \ln\left(\frac{1}{\rho}\right)$. Show the magnetic induction **B** is given by $\mathbf{B} = \hat{\varphi}_0 \frac{\mu I}{2\pi\rho}$.

5.15 A force is described by

$$\mathbf{F} = -\mathbf{i}\frac{y}{x^2 + y^2} + \mathbf{j}\frac{x}{x^2 + y^2}.$$

(a) Express F in circular cylindrical coordinates.

Operating entirely on circular cylindrical coordinates

- (b) Calculate the curl of **F**.
- (c) Calculate the work of the force in encircling the unit circle once counterclockwise.
- (d) How do you reconcile the results of (b) and (c)?

5.16 A transverse E/M wave in a coaxial wave guide has an electric field $\mathbf{E} = \mathbf{E}(\rho, \varphi)e^{i(kz-\omega t)}$ and a magnetic induction field of $\mathbf{B} = \mathbf{B}(\rho, \varphi)e^{i(kz-\omega t)}$. Since the magnetic field is transverse neither **E** nor **B** has a *z* component. The two fields satisfy the Laplace equation

$$\vec{\nabla}^{2} \mathbf{E}(\rho, \varphi) = 0$$

$$\vec{\nabla}^{2} \mathbf{B}(\rho, \varphi) = 0$$

(a) Show that $\mathbf{E} = \hat{\rho}_0 E_0 (a / \rho) e^{i(kz - \omega t)}$ and $\mathbf{B} = \hat{\varphi}_0 B_0 (a / \rho) e^{i(kz - \omega t)}$ are solutions. Here *a* is the radius of the inner conductor and E_0 and B_0 are amplitudes.

(b) Find the ratio B_0 / E_0 .

5.17 A calculation of the magnetohydrodynamics pinch effect involves the evaluation of $(\mathbf{B} \cdot \vec{\nabla})\mathbf{B}$. If the magnetic induction **B** is taken to be $\mathbf{B} = -\hat{\varphi}_0 B_{\varphi}(\rho)$, show that $(\mathbf{B} \cdot \vec{\nabla})\mathbf{B} = -\hat{\rho}_0 B_{\varphi}^2 / \rho$.

5.18 The linear velocity of particles in a rigid body rotating with angular velocity ω is given by $\mathbf{v} = \hat{\varphi}_0 \rho \omega$. Integrate $\oint \mathbf{v} \cdot d\mathbf{l}$ around a circle in the *xy*-plane and verify that

$$\frac{\oint \mathbf{v} \cdot d\mathbf{l}}{area} = \overrightarrow{\nabla} \times \mathbf{v} \Big|_z$$

5.19 Working in spherical coordinates prove the following relations:

$$\vec{\nabla}f(r) = \hat{\mathbf{r}}\frac{df}{dr}, \quad \vec{\nabla}r^n = \hat{\mathbf{r}}nr^{n-1}, \quad \vec{\nabla}\cdot\hat{\mathbf{r}}f(r) = \frac{2f(r)}{r} + \frac{df}{dr}, \quad \vec{\nabla}\cdot\hat{\mathbf{r}}r^n = (n+2)r^{n-1}$$
$$\vec{\nabla}^2 f(r) = \frac{2}{r}\frac{df}{dr} + \frac{d^2f}{dr^2}, \quad \vec{\nabla}^2 r^n = n(n+1)r^{n-2}, \quad \vec{\nabla}\times\hat{\mathbf{r}}f(r) = 0.$$

5.20 The computation of the magnetic vector potential of a single current loop in the *xy* plane involves the evaluation of $\mathbf{V} = \vec{\nabla} \times \left[\vec{\nabla} \times \hat{\varphi}_0 A_{\varphi}(r,\theta)\right]$. Evaluate this quantity.

5.21 Resolve the spherical polar unit vectors into their cartesian components and vice versa.

5.22 From the results of 5.21 calculate the partial derivatives of $\hat{\mathbf{r}}$, $\hat{\theta}_0$ and $\hat{\varphi}_0$.

5.23 A rigid body is rotating about a fixed axis with a constant angular velocity $\vec{\omega}$. Take $\vec{\omega}$ to lie along the z-axis. Using spherical coordinates (a) Calculate $\mathbf{v} = \vec{\omega} \times \mathbf{r}$. (b) $\vec{\nabla} \times \mathbf{v}$.

5.24 The direction of one vector is given by the angles θ_1 , φ_1 . For a second vector the corresponding angles are θ_2 , φ_2 . Show that the cosine of the included angle γ is given by

$$\cos\gamma = \cos\theta_1 \cos\theta_2 + \sin\theta_1 \sin\theta_2 \cos(\varphi_1 - \varphi_2).$$

5.25 A certain vector V has no radial component. Its curl has no tangential components. What does this imply about the radial dependence of the tangential components of V?

5.26 With **A** any vector $(\mathbf{A} \cdot \vec{\nabla})\mathbf{r} = \mathbf{A}$. Verify this result in Cartesian coordinates and in spherical polar coordinates.

5.27 Express $\partial / \partial x$, $\partial / \partial y$, $\partial / \partial z$ in spherical polar coordinates. (Hint: Equate ∇_{xyz} and $\nabla_{r\theta\varphi}$.

5.28 From the previous question show that

$$-i\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right) = -i\frac{\partial}{\partial\varphi}$$

This is the quantum mechanical operator corresponding to the *z*-component of angular momentum.

5.29 With the quantum mechanical, angular momentum operator defined as $\mathbf{L} = -i\hbar (\mathbf{r} \times \vec{\nabla})$, show that

(a)
$$L_x + iL_y = e^{i\varphi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right)$$
, (b) $L_x - iL_y = -e^{-i\varphi} \left(\frac{\partial}{\partial \theta} - i \cot \theta \frac{\partial}{\partial \varphi} \right)$.

5.30 Verify that $\mathbf{L} \times \mathbf{L} = i\hbar \mathbf{L}$ in spherical coordinates. With $\mathbf{L} = -i\hbar (\mathbf{r} \times \vec{\nabla})$.

5.31 From the expression for $\nabla \psi$ show that

$$\mathbf{L} = -i\hbar \left(\mathbf{r} \times \vec{\nabla} \right) = i\hbar \left(\hat{\theta}_0 \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} - \hat{\varphi}_0 \frac{\partial}{\partial \theta} \right).$$

5.32 Resolving $\hat{\theta}_0$ and $\hat{\varphi}_0$ into Cartesian components, determine L_x , L_y , L_z in terms of θ and φ .

5.33 With $\mathbf{L} = -i\hbar (\mathbf{r} \times \vec{\nabla})$ verify the operator identities

(a)
$$\vec{\nabla} = \mathbf{r} \frac{\partial}{\partial r} - i \frac{\mathbf{r} \times \mathbf{L}}{\hbar r^2}$$
, (b) $r^2 \vec{\nabla}^2 - \vec{\nabla} \left(1 + r \frac{\partial}{\partial r} \right) = \frac{i}{\hbar} \vec{\nabla} \times \mathbf{L}$.

The later identity is useful in relating angular momentum and Legendre's differential equation.

5.34 Show that the following three forms (spherical coordinates) of $\vec{\nabla}^2 \psi(r)$ are equivalent. (a) $\frac{1}{r^2} \frac{d}{dr} \left[r^2 \frac{d\psi(r)}{dr} \right]$, (b) $\frac{1}{r} \frac{d^2}{dr^2} \left[r\psi(r) \right]$ (c) $\frac{d^2\psi(r)}{dr^2} + \frac{2}{r} \frac{d\psi(r)}{dr}$.

5.35 One model of the solar corona assumes that the steady-state equation of heat flow $\vec{\nabla} \cdot (k \vec{\nabla} T) = 0$ is satisfied. Here, *k*, the thermal conductivity, is proportional to $T^{5/2}$. Assuming that the temperature *T* is proportional to r^n , show that the heat flow equation is satisfied by $T = T_0 (r_0 / r)^{2/7}$.

5.36 A certain force field is given by

$$\mathbf{F} = \hat{\mathbf{r}} \frac{2P\cos\theta}{r^3} + \hat{\theta}_0 \frac{P}{r^3}\sin\theta, \quad r \ge P/2$$

(in spherical polar coordinates). (a) Calculate $\nabla \times \mathbf{F}$, (b) Calculate $\oint \mathbf{F} \cdot d\mathbf{I}$ for a unit circle in the plane $\theta = \pi/2$.