PHYS 501

HANDOUT 3 - Questions on successive applications of vector operators

3.1 Calculate $\vec{\nabla} \cdot \vec{\nabla} g(r)$. What is the result if $g(r)=r^{n}$?
3.2 Show that the curl of the gradient of a scalar function is zero.
3.3 Show that the divergence of a curl vanishes, i.e. all curls are solenoidal.
3.4 Show that for an electromagnetic field in vacuum
a) $\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$,
b) $\vec{\nabla} \cdot \vec{\nabla} \mathbf{E}=\varepsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$
given that $\vec{\nabla} \times(\vec{\nabla} \times \mathbf{V})=\vec{\nabla} \vec{\nabla} \cdot \mathbf{V}-\vec{\nabla} \cdot \vec{\nabla} \mathbf{V}$ and the following Maxwell's equations

$$
\vec{\nabla} \cdot \mathbf{B}=0, \quad \vec{\nabla} \cdot \mathbf{E}=0, \quad \vec{\nabla} \times \mathbf{B}=\varepsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}, \quad \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

3.5 Prove that $\vec{\nabla} \times(\varphi \vec{\nabla} \varphi)=0$.
3.6 Prove that $(\vec{\nabla} u) \times(\vec{\nabla} v)$ is solenoidal where u and v are differentiable scalar functions.
3.7 If φ is a scalar function satisfying Lapalace's equation $\vec{\nabla}^{2} \varphi=0$. Show that $\vec{\nabla} \varphi$ is both solenoidal and irrotational.
3.8 From the Navier-Stokes equation for the steady flow of an incompressible viscous fluid we have the term

$$
\vec{\nabla} \times[\mathbf{v} \times(\vec{\nabla} \times \mathbf{v})]
$$

where \mathbf{v} is the fluid velocity. Show that this term vanishes for the special case $\mathbf{v}=\mathbf{i} v(y, z)$.
3.9 You are given that the curl of \mathbf{F} equals the curl of \mathbf{G}. Show that \mathbf{F} and \mathbf{G} may differ by (a) a constant and (b) a gradient of a scalar function.
3.10 Verify the relation $\vec{\nabla} \times(\vec{\nabla} \times \mathbf{V})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{V})-\vec{\nabla} \cdot \vec{\nabla} \mathbf{V}$.
3.11 In the Pauli theory of the electron one encounters the expression

$$
(\mathbf{p}-e \mathbf{A}) \times(\mathbf{p}-e \mathbf{A}) \psi
$$

where ψ is a scalar function. A is the magnetic vector potential related to the magnetic induction B by $\mathbf{B}=\vec{\nabla} \times \mathbf{A}$. Given that $\mathbf{p}=-i \hbar \vec{\nabla}$, show that this expression reduces to $i e \hbar \mathbf{B} \psi$.
3.12 In a (nonrotating) isolated mass such as a star, the condition for equilibrium is

$$
\vec{\nabla} P+\rho \vec{\nabla} \phi=0 .
$$

Here P is the total pressure, ρ the density, and ϕ the gravitational potential. Show that at any given point the normal to the surfaces of a constant pressure and constant gravitational potential are parallel.
3.13 Show that any solution of the equation $\vec{\nabla} \times(\vec{\nabla} \times \mathbf{A})-k^{2} \mathbf{A}=0$ automatically satisfies the vector Helmholtz equation

$$
\vec{\nabla}^{2} \mathbf{A}+k^{2} \mathbf{A}=0
$$

and the solenoidal condition

$$
\vec{\nabla} \cdot \mathbf{A}=0 .
$$

Hint. Let $\vec{\nabla}$. operate on the first equation.
3.14 The theory of heat conduction leads to an equation

$$
\nabla^{2} \Psi=k|\vec{\nabla} \Phi|^{2}
$$

where Φ is a potential satisfying Laplace's equation: $\vec{\nabla}^{2} \Phi=0$. Show that a solution of this equation is $\Psi=\frac{1}{2} k \Phi^{2}$.

