PHYS 501 HANDOUT 2 - Questions on Vector Operators

- 2.1 Show that the gradient operator is a vector.
- **2.2** Calculate the gradient of the function *r*.
- **2.3** If $S(x, y, z) = (x^2 + y^2 + z^2)^{-3/2}$, find
 - (a) ∇S at the point (1, 2, 3);
 - (b) $|\vec{\nabla}S|$ at the point (1, 2, 3);
 - (c) the direction cosines of ∇S at the point (1, 2, 3).

2.4 (a) Show that on a surface where a function $\phi(x, y, z)$ maintains a constant value the $\overrightarrow{\nabla}\phi$ is perpendicular to $d\mathbf{r}$.

(b) Find a unit vector perpendicular to the surface $x^2 + y^2 + z^2 = 3$ at the point (1, 1, 1).

(b) Derive the equation of the plane tangent to the surface (1, 1, 1).

2.5 If a vector function **F** depends on both space coordinates (*x*, *y*, *z*) and time *t*, show that

$$d\mathbf{F} = \left(d\mathbf{r} \cdot \overrightarrow{\nabla}\right)\mathbf{F} + \frac{\partial \mathbf{F}}{\partial t}dt$$

2.6 Show that $\vec{\nabla}(uv) = v\vec{\nabla}u + u\vec{\nabla}v$, where *u* and *v* are differentiable scalar functions of *x*, *y*, and *z*.

2.7 Show that a necessary and sufficient condition that u(x, y, z) and v(x, y, z) are related by some function f(u,v)=0 is that $(\nabla u) \times (\nabla v) = 0$.

2.8 If u=u(x, y) and v=v(x, y) two differentiable functions, show that the condition $(\nabla u) \times (\nabla v) = 0$ leads to the two-dimensional Jacobian

$$J\left(\frac{u,v}{x,y}\right) = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = 0.$$

2.9 Calculate the quantity $\nabla \cdot \mathbf{r}$.

- **2.10** Calculate the quantity $\nabla \cdot \mathbf{r} f(r)$.
- **2.11** Calculate the quantity $\nabla \cdot \mathbf{r} r^{n-1}$.
- **2.12** For a particle moving in a circular orbit \mathbf{r} = $\mathbf{i}r\cos\omega t$ + $\mathbf{j}r\sin\omega t$,
 - (a) evaluate $\mathbf{r} \times \mathbf{r}$
 - (b) $r + \omega^2 r = 0$
- **2.13** Show that $\vec{\nabla} \cdot (f\mathbf{V}) = (\vec{\nabla}f) \cdot \mathbf{V} + f(\vec{\nabla} \cdot \mathbf{V}).$

- Connecti 2.14 Show by differentiating components, that

(a)
$$\frac{d}{dt} (\mathbf{A} \cdot \mathbf{B}) = \frac{d\mathbf{A}}{dt} \cdot \mathbf{B} + \mathbf{A} \cdot \frac{d\mathbf{B}}{dt}$$

(b)
$$\frac{d}{dt} (\mathbf{A} \times \mathbf{B}) = \frac{d\mathbf{A}}{dt} \times \mathbf{B} + \mathbf{A} \times \frac{d\mathbf{B}}{dt}$$

2.15 Prove $\overrightarrow{\nabla} \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \overrightarrow{\nabla} \times \mathbf{A} - \mathbf{A} \cdot \overrightarrow{\nabla} \times \mathbf{B}$.

2.16 The electrostatic field of a point charge is $\mathbf{E} = \frac{q}{4\pi\varepsilon_0} \cdot \frac{\mathbf{r}_0}{r^2}$. Calculate the divergence of E. What happens at the origin?

2.17 Show, by rotating the coordinates, that the components of the curl of a vector transform as a vector.

2.18 Show that **u** × **v** is solenoidal if **u** and **v** are each irrotational.

2.19 If **A** is irrotational, show that $\mathbf{A} \times \mathbf{r}$ is solenoidal.

2.20 A rigid body is rotating with constant angular velocity ω . Show that the linear velocity **v** is solenoidal.

2.21 A vector function f(x, y, z) is not irrotational but the product of f and a scalar function g(x, y, z) is irrotational. Show that $\mathbf{f} \cdot \nabla \times \mathbf{f} = 0$.

2.22 If (a) $\mathbf{V} = \mathbf{i} V_x(x, y) + \mathbf{j} V_y(x, y)$ and (b) $\nabla \times \mathbf{V} \neq 0$, prove that $\nabla \times \mathbf{V}$ is perpendicular to V.

2.23 Classically the angular momentum is defined by $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, where \mathbf{p} is the momentum. To go from classical mechanics to quantum mechanics we replace **p** with the operator $-i\hbar \nabla$. Find the Cartesian components of the angular momentum operator.

2.24 Show the relation $L \times L = i\hbar L$ for the quantum mechanical angular momentum operator L.

2.25 You are given that:
$$\overrightarrow{\nabla} (\mathbf{A} \cdot \mathbf{B}) = (\mathbf{A} \times \overrightarrow{\nabla}) \times \mathbf{B} + (\mathbf{B} \times \overrightarrow{\nabla}) \times \mathbf{A} + (\mathbf{B} \cdot \overrightarrow{\nabla}) \mathbf{A} + (\mathbf{A} \cdot \overrightarrow{\nabla}) \mathbf{B}$$

Verify the identity $\mathbf{A} \times (\vec{\nabla} \times \mathbf{A}) = \frac{1}{2} \vec{\nabla} (A^2) - (\mathbf{A} \cdot \vec{\nabla}) \mathbf{A}$.

2.26 If **A** and **B** are constant vectors, show that $\overrightarrow{\nabla} (\mathbf{A} \cdot \mathbf{B} \times \mathbf{r}) = \mathbf{A} \times \mathbf{B}$.

2.27 A distribution of electric currents creates a constant magnetic moment **m**. The force on **m** in an external magnetic induction **B** is given by $\mathbf{F} = \vec{\nabla} \times (\mathbf{B} \times \mathbf{m})$. Show that $\mathbf{F} = \vec{\nabla} (\mathbf{m} \cdot \mathbf{B})$. *Note.* Assuming no time dependence of the fields, Maxwell's equations yield $\vec{\nabla} \times \mathbf{B} = 0$. Also $\vec{\nabla} \cdot \mathbf{B} = 0$.

2.28 An electric dipole of moment **p** is located at the origin. The dipole creates an electric potential $V(\mathbf{r}) = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\varepsilon_0 r^3}$. Find the electric field $\mathbf{E} = -\vec{\nabla}V$ at **r**.

2.29 The vector potential **A** of a magnetic dipole, with dipole moment **m**, is given by $\mathbf{A}(\mathbf{r}) = (\mu_0 / 4\pi)(\mathbf{m} \times \mathbf{r} / r^3)$. Show that the magnetic induction $\mathbf{B} = \vec{\nabla} \times \mathbf{A}$ is given by $\mathbf{B} = \frac{\mu_0}{4\pi} \frac{3\mathbf{r}_0(\mathbf{r}_0 \cdot \mathbf{m}) - \mathbf{m}}{r^3}$