PHYS 501

HANDOUT 2 - Questions on Vector Operators

2.1 Show that the gradient operator is a vector.
2.2 Calculate the gradient of the function r.
2.3 If $S(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}$, find
(a) $\vec{\nabla} S$ at the point $(1,2,3)$;
(b) $|\vec{\nabla} S|$ at the point $(1,2,3)$;
(c) the direction cosines of ∇S at the point $(1,2,3)$.
2.4 (a) Show that on a surface where a function $\phi(x, y, z)$ maintains a constant value the $\vec{\nabla} \phi$ is perpendicular to $d \mathbf{r}$.
(b) Find a unit vector perpendicular to the surface $x^{2}+y^{2}+z^{2}=3$ at the point (1, 1, 1).
(b) Derive the equation of the plane tangent to the surface $(1,1,1)$.
2.5 If a vector function \mathbf{F} depends on both space coordinates (x, y, z) and time t, show that

$$
d \mathbf{F}=(d \mathbf{r} \cdot \vec{\nabla}) \mathbf{F}+\frac{\partial \mathbf{F}}{\partial t} d t
$$

2.6 Show that $\vec{\nabla}(u v)=v \vec{\nabla} u+u \vec{\nabla} v$, where u and v are differentiable scalar functions of x, y, and z.
2.7 Show that a necessary and sufficient condition that $u(x, y, z)$ and $v(x, y, z)$ are related by some function $f(u, v)=0$ is that $(\nabla u) \times(\nabla v)=0$.
2.8 If $u=u(x, y)$ and $v=v(x, y)$ two differentiable functions, show that the condition $(\nabla u) \times(\nabla v)=0$ leads to the two-dimensional Jacobian

$$
J\left(\frac{u, v}{x, y}\right)=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=0
$$

2.9 Calculate the quantity $\vec{\nabla} \cdot \mathbf{r}$.
2.10 Calculate the quantity $\vec{\nabla} \cdot \mathbf{r} f(r)$.
2.11 Calculate the quantity $\vec{\nabla} \cdot \mathbf{r} r^{n-1}$.
2.12 For a particle moving in a circular orbit $\mathbf{r}=\mathbf{i} r \cos \omega t+\mathbf{j} r \sin \omega t$,
(a) evaluate $\mathbf{r} \times \mathbf{r}$
(b) $\mathbf{r}+\omega^{2} \mathbf{r}=0$
2.13 Show that $\vec{\nabla} \cdot(f \mathbf{V})=(\vec{\nabla} f) \cdot \mathbf{V}+f(\vec{\nabla} \cdot \mathbf{V})$.
2.14 Show by differentiating components, that
(a) $\frac{d}{d t}(\mathbf{A} \cdot \mathbf{B})=\frac{d \mathbf{A}}{d t} \cdot \mathbf{B}+\mathbf{A} \cdot \frac{d \mathbf{B}}{d t}$
(b) $\frac{d}{d t}(\mathbf{A} \times \mathbf{B})=\frac{d \mathbf{A}}{d t} \times \mathbf{B}+\mathbf{A} \times \frac{d \mathbf{B}}{d t}$
2.15 Prove $\vec{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot \vec{\nabla} \times \mathbf{A}-\mathbf{A} \cdot \vec{\nabla} \times \mathbf{B}$
2.16 The electrostatic field of a point charge is $\mathbf{E}=\frac{q}{4 \pi \varepsilon_{0}} \cdot \frac{\mathbf{r}_{0}}{r^{2}}$. Calculate the divergence of \mathbf{E}. What happens at the origin?
2.17 Show, by rotating the coordinates, that the components of the curl of a vector transform as a vector.
2.18 Show that $\mathbf{u} \times \mathbf{v}$ is solenoidal if \mathbf{u} and \mathbf{v} are each irrotational.
2.19 If \mathbf{A} is irrotational, show that $\mathbf{A} \times \mathbf{r}$ is solenoidal.
2.20 A rigid body is rotating with constant angular velocity $\boldsymbol{\omega}$. Show that the linear velocity \mathbf{v} is solenoidal.
2.21 A vector function $\mathbf{f}(x, y, z)$ is not irrotational but the product of \mathbf{f} and a scalar function $g(x, y, z)$ is irrotational. Show that $\mathbf{f} \cdot \nabla \times \mathbf{f}=0$.
2.22 If (a) $\mathbf{V}=\mathbf{i} V_{x}(x, y)+\mathbf{j} V_{y}(x, y)$ and (b) $\nabla \times \mathbf{V} \neq 0$, prove that $\nabla \times \mathbf{V}$ is perpendicular to \mathbf{V}.
2.23 Classically the angular momentum is defined by $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, where \mathbf{p} is the momentum. To go from classical mechanics to quantum mechanics we replace \mathbf{p} with the operator $-i \hbar \vec{\nabla}$. Find the Cartesian components of the angular momentum operator.
2.24 Show the relation $\mathbf{L} \times \mathbf{L}=i \hbar \mathbf{L}$ for the quantum mechanical angular momentum operator \mathbf{L}.
2.25 You are given that: $\vec{\nabla}(\mathbf{A} \cdot \mathbf{B})=(\mathbf{A} \times \vec{\nabla}) \times \mathbf{B}+(\mathbf{B} \times \vec{\nabla}) \times \mathbf{A}+(\mathbf{B} \cdot \vec{\nabla}) \mathbf{A}+(\mathbf{A} \cdot \vec{\nabla}) \mathbf{B}$

Verify the identity $\mathbf{A} \times(\vec{\nabla} \times \mathbf{A})=\frac{1}{2} \vec{\nabla}\left(A^{2}\right)-(\mathbf{A} \cdot \vec{\nabla}) \mathbf{A}$.
2.26 If \mathbf{A} and \mathbf{B} are constant vectors, show that $\vec{\nabla}(\mathbf{A} \cdot \mathbf{B} \times \mathbf{r})=\mathbf{A} \times \mathbf{B}$.
2.27 A distribution of electric currents creates a constant magnetic moment \mathbf{m}. The force on \mathbf{m} in an external magnetic induction \mathbf{B} is given by $\mathbf{F}=\vec{\nabla} \times(\mathbf{B} \times \mathbf{m})$. Show that $\mathbf{F}=\vec{\nabla}(\mathbf{m} \cdot \mathbf{B})$. Note. Assuming no time dependence of the fields, Maxwell's equations yield $\vec{\nabla} \times \mathbf{B}=0$. Also $\vec{\nabla} \cdot \mathbf{B}=0$.
2.28 An electric dipole of moment \mathbf{p} is located at the origin. The dipole creates an electric potential $V(\mathbf{r})=\frac{\mathbf{p} \cdot \mathbf{r}}{4 \pi \varepsilon_{0} r^{3}}$. Find the electric field $\mathbf{E}=-\vec{\nabla} V$ at \mathbf{r}.
2.29 The vector potential A of a magnetic dipole, with dipole moment \mathbf{m}, is given by $\mathbf{A}(\mathbf{r})=\left(\mu_{0} / 4 \pi\right)\left(\mathbf{m} \times \mathbf{r} / r^{3}\right)$. Show that the magnetic induction $\mathbf{B}=\vec{\nabla} \times \mathbf{A}$ is given by

$$
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{3 \mathbf{r}_{0}\left(\mathbf{r}_{0} \cdot \mathbf{m}\right)-\mathbf{m}}{r^{3}}
$$

