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Preface

The principal type of question asked in mathematics is, "Is state-
ment S true?" where the statement S is of the form "Every member
of the class A is a member of the class B: A C B." To demonstrate
that such a statement is true means to formulate a proof of the inclu-
sion A C B. To demonstrate that such a statement is false means to
find a member of A that is not a member of B, in other words a coun-
terexample. To illustrate, if the statement S is "Every continuous
function is somewhere differentiable," then the sets A and B consist
of all continuous functions and all functions that are somewhere dif-
ferentiable, respectively; Weierstrass's celebrated example of a func-
tion f that is continuous but nowhere differentiable (cf. Example 8,
Chapter 3) is a counterexample to the inclusion A c B, since f is a
member of A that is not a member of B. At the risk of oversimplifica-
tion, we might say that (aside from definitions, statements, and hard
work) mathematics consists of two classes-proofs and counter-
examples, and that mathematical discovery is directed toward two
major goals-the formulation of proofs and the construction of coun-
terexamples. Most mathematical books concentrate on the first class,
the body of proofs of true statements. In the present volume we ad-
dress ourselves to the second class of mathematical objects, the coun-
terexamples for false statements.

Generally speaking, examples in mathematics are of two types, il-
lustrative examples and counterexamples, that is, examples to show
why something makes sense and examples to show why something
does not make sense. It might be claimed that any example is a coun-
terexample to something, namely, the statement that such an example
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is impossible. We do not wish to grant such universal interpretation to
the term counterexample, but we do suggest that its meaning be suffi-
ciently broad to include any example whose role is not that of il-
lustrating a true theorem. For instance, a polynomial as an example
of a continuous function is not a counterexample, but a polynomial as
an example of a function that fails to be bounded or of a function that
fails to be periodic is a counterexample. Similarly, the class of all
monotonic functions on a bounded closed interval as a class of in-
tegrable functions is not a counterexample, but this same class as an
example of a function space that is not a vector space is a counter-
example.

The audience for whom this book is intended is broad and varied.
Much of the material is suitable for students who have not yet com-
pleted a first course in calculus, and for teachers who may wish to
make use of examples to show to what extent things may "go wrong"
in calculus. More advanced students of analysis will discover nuances
that are usually by-passed in standard courses. Graduate students
preparing for their degree examinations will be able to add to their
store of important examples delimiting the range of the theorems they
have learned. We hope that even mature experts will find some of the
reading new and worthwhile.

The counterexamples presented herein are limited almost entirely
to the part of analysis known as "real variables," starting at the level
of calculus, although a few examples from metric and topological
spaces, and some using complex numbers, are included. We make no
claim to completeness. Indeed, it is likely that many readers will find
some of their favorite examples missing from this collection, which
we confess is made up of our favorites. Some omissions are deliberate,
either because of space or because of favoritism. Other omissions will
undoubtedly be deeply regretted when they are called to our atten-
tion.

This book is meant primarily for browsing, although it should be a
useful supplement to several types of standard courses. If a reader
finds parts hard going, he should skip around and pick up something
new and stimulating elsewhere in the book. An attempt has been
made to grade the contents according to difficulty or sophistication
within the following general categories: (i) the chapters, (ii) the topics
within chapters, and (iii) the examples within topics. Some knowledge
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of related material is assumed on the part of the reader, and therefore
only a minimum of exposition is provided. Each chapter is begun
with an introduction that fixes notation, terminology, and definitions,
and gives statements of some of the more important relevant theo-
rems. A substantial bibliography is included in the back of the book,
and frequent reference is made to the articles and books listed there.
These references are designed both to guide the reader in finding
further information on various subjects, and to give proper credits
and source citations. If due recognition for the authorship of any
counterexample is lacking, we extend our apology. Any such omission
is unintentional.

Finally, we hope that the readers of this book will find both enjoy-
ment and stimulation from this collection, as we have. It has been our
experience that a mathematical question resolved by a counterex-
ample has the pungency of good drama. Many of the most elegant
and artistic contributions to mathematics belong to this genre.

Irvine, California

B.R.G.

Carbondale, Illinois
J.M.H.O.
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Chapter 1
The Real Number System

Introduction
We begin by presenting some definitions and notations that are

basic to analysis and essential to this first chapter. These will be
given in abbreviated form with a minimum of explanatory discussion.
For a more detailed treatment see [16], [21], [22], and [30] of the
Bibliography.

If A is any set of objects, the statement a is a member of A is
written a E A. The contrary statement that a is not a member of A is
written a A. If A and B are sets, the statement A is a subset of B
is written A c B, and is equivalent to the implication x E A implies
x E B, also written x E A = x E B. The phrase if and only if is
often abbreviated if, and sometimes symbolized The set whose
members are a, b, c, is denoted { a, b, c, } . The notation
{ I . } is used to represent the set whose general member is
written between the first brace { and the vertical bar I , and whose
defining property or properties are written between the vertical bar

and the second brace }. The union and intersection of the two
sets A and B can therefore be defined:

AuB{xIxEA or xEB},
AnB{xIxEA,xEB},

where the comma in the last formula stands for and. For convenience,
members of sets will often be called points. The difference between
the sets A and B is denoted A \ B and defined:

A \ B =

3



I. Functions of a Real Variable

When a general containing set or space or universe of discourse S is
clearly indicated or understood from context, the difference S\ A is
called the complement of A, and denoted A'. In general, the
difference A \ B is called the complement of B relative to A.

If A and B are two nonempty sets (neither A nor B is the empty
set 0), their Cartesian product is the set of all ordered pairs (a, b),
where a E A and b E B, denoted:

AXB={(a,b)IaEA,bEB}.
If (a, b) E A X B, a is the first coordinate or component of
(a, b) and b is the second coordinate or component of (a, b).
Any subset p of A X B is called a relation from A to B. A function
from A to B is a relation f from A to B such that no two distinct
members of f have the same first coordinate. If the phrases there
exists and there exist are symbolized by the existential quantifier 3,
and the words such that by the symbol 3, the domain (of definition)
D = Df and range (of values) R = Rfof a function f can be defined:

D=Df {x3y (x, Y) Ef},

R = Rf = {y 3x (x, y) E f I.

The function f is a function on A into B if f is a function from A to
B with domain equal to A. The function f is a function on A onto
B if f is a function on A into B with range equal to B. A function f
is a one-to-one correspondence between the members of A and
the members of B if f is a function on A onto B such that no two
distinct members of f have the same second coordinate. The values
of a function are the members of its range. The inverse f-1 of a
one-to-one correspondence f is obtained by interchanging the domain
and range off :

P' = {(x,y)I (y,x)Ef}.
A constant function is a function whose range consists of one point.

Various types of relations and functions are indicated in Figure 1.
In each case the sets A and B are taken to be the closed unit interval
[0, 1] consisting of all real numbers x such that 0 5 x 5 1.

Let f be a function on A into B, symbolized in the following two

4



1. The Real Number System

From-to
relation

On-into
relation

On-onto
relation

From-to
function

On-into
function

On-onto One-to-one

function correspondence

Figure 1

ways:

Constant
function

f:A -> B,

A -L B.
If x is an arbitrary member of A, then there is exactly one member
y of B such that (x, y) E f. This member y of B is written:

y = f(x).
Other ways of writing the function just described are:

P y= f(x), x E A, Y E B;

P x E A, Ax) E B;
or,

y=f(x):xEA, yEB,
f(x): x E A,

when it is clear from the context that the notation f (x) represents a
function rather than merely one of its values.

5



I. Functions of a Real Variable

If f is a function with domain D, and if S is a subset of D, then
the restriction of f to S is the function g whose domain is S such that

x E S= g(x) = f(x).

The range of the restriction off to S is denoted f (S) . That is,

f(S)= {y13xES3f(x) =y}.

If g is a restriction of f, then f is called an extension of g.
If f and g are functions such that the range of g is a subset of

the domain of f, then the composite of f and g, denoted f o g,
is the function whose value at the point x of the domain of g is
f(g(x)); in short, the function y = f(g(x)) is called the composite of
the function f (u) and the function u = g(x). (It should be noted that
the composite of f and g is not in general the same as the com-
posite of g and f; counterexample: (x + 1)2 4 x2 + 1.)

If A is a nonempty set, a binary operation from A to A is a
function from A X A to A. A binary operation on A into A is a
function on A X A into A. In classical arithmetic there are two fun-
damental binary operations : addition and multiplication. Many prop-
erties of these operations in arithmetic are shared by operations in
more abstract settings, where the operations bear the same names If
a binary operation F is called addition, and if z = F((x, y)), then z
is also written z = x + y. If a binary operation G is called multi-
plication, and if z = G((x, y)), then z is also written z = xy, or

Definition I. A field is a nonempty set if, together with two binary
operations on if into if, called addition and multiplication, such that:

A. For addition:
(i) The associative law holds:

x, y,z E iF=x+ (y+ z) = (x+ y) +z.
(it) 3 a member 0 of a such that

xE5=x+0=x.
(iii)xEi=3(-x)E5?x+(-x)=0.
(iv) The commutative law holds:

x,yEa x+y=y+x.
6



1. The Real Number System

B. For multiplication :
(i) The associative law holds:

x, y, z E F = x(yz) _ (xy)z.
(ii) 3 a member 1 o f 9 such that 1 0 and x E 5= x 1= x.
(iii)xE 9,x 0=> 3x 1 E a D x x-1 = 1.
(iv) The commutative law holds:

x, y E ZF =* xy = yx.
C. For addition and multiplication:

The distributive law holds (more precisely, multiplication is
distributive over addition):

x, y , z E a= x(y + z) =xy+xz.
The member 0 of 5, of A(ii), is called the zero, or additive iden-

tity, of y. The member (-x) of F, of A(iii), is called the negative,
or additive inverse, of x. The binary operation x - y, defined by
x y x + ( y), is called subtraction. The member I of F,
of B(ii), is called the one, or unity, or multiplicative identity,
of 5:. The member x-1 of F, of B(iii), is called the reciprocal, or
multiplicative inverse, of x. The binary operation x/y, defined by
x/y = xy 1, where y 0 0, is called division. Division is a "from-to"
operation and not an "on into" operation since "division by zero"
is excluded.

A nonempty set together with a binary operation on 9 into
in this case denoted + and called addition - subject to prop

erties A(i), (ii), and (iii) is called a group (in this case, an additive
group). In case the commutative law A(iv) holds, g is called an
Abelian or commutative group. Thus, with respect to addition
any field is an Abelian additive group. With respect to multiplica-
tion the nonzero members of a field form an Abelian multiplicative
group.

Definition II. An ordered field is a field that contains a subset
(P such that

(i) P is closed with respect to addition; that is,

xE(P,yE(P==> x + y E P.

(ii) P is closed with respect to multiplication; that is,

x E (P,yE (Y xy E 6).

7
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(iii) x E 5 exactly one of the three statements is true:

xE61; x=0; -xE(P.
A member x of ff is positive iff x E (P; x is negative if -x E (P.

Inequalities in an ordered field are defined in terms of membership
in (P. For example,

x<y iff y - xE(P;
x ?y if x-yE61 or x=y.

A function f from 5 to y, where is an ordered field, is increasing
(or nondecreasing) on a subset A of its domain if

x, y E A, x < y = f (z) < f(y).

The function f is strictly increasing on A if

x,yE A,x <y= f(x) <f(y).
The terms decreasing (or nonincreasing) and strictly decreasing
are similarly defined. A function is monotonic on a set if it is
either increasing or decreasing there. Strictly monotonic has an
obvious definition.

If ff is an ordered field and if x E F, then I x b called the absolute
value of x, is defined to be x in case x z 0, and to be -x in case
x <0.

The following are a few of the standard properties of absolute value,
where x, Y. e E 5.

(i) IxIzO;Ixl=Oiffx=0.

(iii) Ife>O,IxI <eiff-e <x<e.
(iv) The triangle inequality: I x + y I = I x + I y I
(v) I x I = V/$ ; that is, I x I is the unique member of (P u {0}

whose square = x$.

W IIxI -IlIl I x - yI
If 9 is an ordered field, and if a, b E F, a < b; then the following

sets are called finite or bounded intervals, further described by the
attached initial adjective, and denoted as indicated with parentheses

8



1. The Real Number System

and/or brackets:

open: (a, b) {x I x E if, a < x < b},
closed: [a, b] {xIxEi, a5 x5b},
half-open (or half-closed): [a, b) {x I x E if, a 5 x < b},
half-open (or half-closed): (a, b] {x I x E if, a < x < b}.
Infinite or unbounded intervals are similarly delineated:

open: (a, + co) _ {x I x > a},

open: (-co,a) {xIx<a},
closed: [a, -1- oo) = {x I x ? a}.

closed: (- -, a] _ {x I x < a}.
open and closed : (- oo, + oo) = if.

A neighborhood of a point a of an ordered field a is an open in-
terval of the form (a - e, a + e), where e is a positive member of
if. This neighborhood can also be written in terms of absolute values,
and will be denoted:

N(a,e)= (a - e,a+e)= {xjIx - aI < e}.
A deleted neighborhood of a point a is a neighborhood of a with
the point a deleted; a deleted neighborhood D(a, e) of a, for some
e > 0, is thus defined:

D(a,e)- Ix 10 < Ix - aI < e}.
The binary operations max and min on if to 5: are defined:

x if x ? Y,max (x, y)
y if x < y; min (x, y) y if- x > Y,

x if x < Y.

If a is an ordered field, if u E if, and if x s u for every member x
of a nonempty set A of points of if, then u is called an upper bound
of A. A nonempty set in ff is bounded above in if if there exists a
member of if that is an upper bound of the set. If s is an upper bound
of A and if s is less than every other upper bound of A, then s is
called the least upper bound or supremum of A, written s =

9
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sup (A) = sup A. Similar definitions hold for lower bound, bounded
below, and greatest lower bound or infimum i of a nonempty
set A, written i = inf (A) = inf A.

Definition III. A complete ordered field is an ordered field if
in which a least upper bound exists for every nonempty set in if that
is bounded above in if.

Any two complete ordered fields if and if' are isomorphic in the
sense that there exists a one-to-one correspondence x H x', where
x E if and x' E if', that preserves binary operations and order; that
is:

(x + y)' = x + if, (xy)' = x'y', x < y if x' < Y.
(For a proof and discussion, see [35], pp. 128-131.) As far as structure
is concerned, then, the real number system is uniquely described by
the definition :

Definition IV. The real number system 6t is a complete ordered
field.

A function on A onto B is called real-valued if B C 61; it is called
a function of a real variable if A C (R.

The signum function is the real-valued function of a real variable
defined and denoted : sgn x = 1 if x > 0; sgn x = -1 if x < 0;
sgn0=0.

If S is any nonempty space and if A is any subset of S, then the
characteristic function of A is the real-valued function x , de-
fined : XA (x) =1 if x E A and XA (x) = 0 if x E A' = S \ A.

Definition V. An inductive set in an ordered field if is a set A
having the two properties:

(i) 1 E A.
(it)xEA :x+1EA.
Definition VI. A member n of an ordered field if is a natural

number if n is a member of every inductive set of if. The set of all
natural numbers of if is denoted 91.

From this definition follow the familiar properties (cf. [35] pp.
17-18) of natural numbers, including the theorem:

10
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Fundamental Theorem of Induction. If 8 is an inductive set
of natural numbers, then 8 = 91.

If 91 and 91* are the sets of all natural numbers of two ordered
fields a and J*, then 9L and 9T* are isomorphic (cf. [35], pp. 34-35).

Definition VII. A member x of an ordered field F is an integer if
x E 9z, x = 0, or x E L. A member x of an ordered field is a
rational number if there exist integers m and n, n 0, such that
x = m/n .

The set of all rational numbers of an ordered field F, under the
operations of addition and multiplication of and the ordering of
F, is also an ordered field, denoted Q. (Any two ordered fields of
rational numbers are isomorphic; cf. [35], p. 67.)

Definition VIII. A ring is a nonempty set 63, together with two
binary operations on G. into 63, called addition and multiplication,
such that the following laws of Definition I hold: A(i), (ii), (iii), (iv),
B(i), C, and a second distributive law:

C'. x, y, z E 63 = (x + y)z = xz + yz.

Definition IX. An integral domain is a ring D such that the
following additional laws of Definition I hold: B(ii), (iv) - that is,
all laws of Definition I except for B(iii) and also the following
weakened form of B (iii):

D. 0.

That D is a weakened form (that is, a consequence) of B(iii)
can be seen by assuming the existence of x X 0 and y 0 such that
xy = 0. Then x 1(xy) = (x 1x)y = ly = y 0 0, whereas x-10 = 0.
(Contradiction.) In any ring, law D is equivalent to the law:

D'. Cancellation law. xy = xz, x 0 0 y = z.

(D = D' since xy = xz iff x(y - z) = 0; D' = D since xy = 0 can
be written xy = xO .)

The set of all integers of an ordered field F, with the operations of
addition and multiplication of 9, is an integral domain, denoted 9 .

Any two integral domains of integers are isomorphic (cf. [35], p. 64).
Let f be a function from 5: to 9, where 5: is an ordered field, and

11
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let a E if. Then f is continuous at a iff a belongs to the domain D
of f, and corresponding to an arbitrary positive member a of if 3
a positive member S of if such that I f(x) - f(a) I < e for every x of
D such that I x - a I < S. With the aid of the universal quantifier
V, representing the words for all, for an arbitrary, for every, or for
each, and the language and notation of neighborhoods, this last
portion of the definition of continuity off at a point a of D can be
expressed:

Ve>03S> 0) f(DnN(a,S))cN(f(a),e).
A point p is a limit point of a nonempty set A, in an ordered field

if, if every deleted neighborhood of p contains at least one point of
A:

V e > 0 3 a E D(p,e)nA.

If f is a function from if to if, if a is a limit point of the domain D
of f, and if b E if, then the limit of f (x) as x approaches a is said
to exist and equal b, with the notation

lim f (x) = b,

if
Z-a

Ve>03S>0)f(DnD(a,S))cN(b,e).
One-sided limits are defined similarly, and denoted f (x)
and lime. f (x).

A function f from an ordered field if to if is uniformly continuous
on a subset A of its domain D if

Ve>03S>0)
x,1 X2 E A, I xl - x2 I < S If(xl) - f(x2) I < e.

If f is a function from an ordered field if to if, and if a is a point of
the domain D of f, then the symbol f(a) denotes the member of if
defined

f(a) = limf(x) - f(a) _ Jim f(a + h) - f(a)
'hx - a a.o

12
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provided this limit exists. The function f' defined by f'(x) whenever
f'(x) exists for x in the domain of D is called the derivative of f .

A function f from an ordered field if to if is said to have the inter-
mediate value property on an interval I contained in its domain
iff

Va,bEI,dE9)a<b
and either f (a) < d < f (b) or f (a) > d > f (b),

3c 3 a< c< b, f (c) = d.

A sequence is a function whose domain is the set of natural
numbers JZ. Its value for n is usually denoted by means of a sub-
script, thus: a , and the sequence itself by braces: A sequence
{ a }, where the values or terms a,, are members of an ordered field
if, is said to be convergent and to have the limit b, or to converge
to b, where b E if, if

VeE(P3NE9L) n>N= a - bI < e,
where cP is the set of positive members of . A sequence is divergent
if it fails to be convergent (that is, if a limit b fails to exist). A
sequence where the terms a are members of an ordered field
9, is a Cauchy sequence if

V

Every convergent sequence is a Cauchy sequence, and if a = at
every Cauchy sequence is convergent (cf. [34], p. 57).

A complex number is an ordered pair (x, y) of real numbers
x and y. Addition and multiplication of complex numbers are
defined:

(x, y) + (u, v) = (x + u, y + v),

(x, y)(u, v) = (xu - yv, xv + yu).

The complex numbers form a field a (cf. [34], p. 497), with zero
(0, 0) and unity (1, 0). In the sequel the standard notation x + iy
for the ordered pair (x, y) will be usual.

1. An infinite field that cannot be ordered.
To say that a field if cannot be ordered is to say that it possesses

13



I. Functions of a Real Variable

no subset 6> satisfying the three properties of Definition II of the
Introduction. A preliminary comment is that since every ordered
field is infinite, no finite field can be ordered ([35], p. 38).

An example of an infinite field that cannot be ordered is the field
e of complex numbers. To show that this is the case, assume that
there does exist a subset 6> of e satisfying Definition II. Consider
the number i = (0, 1). Since i 0 (0, 0), there are two alternative
possibilities. The first is i E 61, in which case i2 = (-1, 0) E 6),
whence i4 = (1, 0) E 6). Since i2 and i' are additive inverses of
each other, and since it is impossible for two additive inverses both
to belong to 6> (cf. Definition II, (iii) ), we have obtained a contradic-
tion, as desired. The other option is -i = (0, -1) E 6>, in
which case (-i)2 = (-1, 0) E 6>, whence (-i)4 = (1,
with the same contradiction as before.

0) E 6,

2. A field that is an ordered field in two distinct ways.
The set a of all numbers of the form r + sV2, where r and s are

rational and the operations of addition and multiplication are those
of the real number system CR of which OF is a subset, is an ordered field
in which the subset 6> of Definition II is the set of all members of a
that are positive members of (R, that is, positive real numbers A
second way in which a is an ordered field is provided by the subset
(B defined:

r+sV2E (B,*:* r - s/ E T.
That (B satisfies the three requirements of Definition II is easily
verified.

Each of the fields Q of rational numbers and (R of real numbers is
an ordered field in only one way ([35], p. 146).

3. An ordered field that is not complete.
The ordered field Q of rational numbers is not complete. This can

be seen as follows: The set A of all positive rational numbers whose
squares are less than 2,

A={rIrEQ, r>0, r2<2},
is nonempty (1 E A) and is bounded above by the rational number
2. Let us assume that Q is complete. Then there must be a positive

14
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rational number c that is the supremum of A. Since there is no
rational number whose square is equal to 2 (cf. [35], p. 126), either
c2 < 2 or c2 > 2. Assume first that c2 < 2 and let d be the positive
number

__ 1 /2-c2
d 2minl(c+1)2,1 .

Then c + d is a positive rational number greater than c whose square
is less than 2:

(c+d)2<c2+d(c+1)2 <2.
But this means that c + d E A, whereas c is an upper bound of A .
(Contradiction.) Now assume that c2 > 2 and let d be the positive
number

c2 - 2
d = 2(c +

1)2.

Then c - d is a positive rational number less than c whose square is
greater than 2:

(c-d)2>c2-d(c+1)2>2.
Since c - d is therefore an upper bound of A less than the least upper
bound c, a final contradiction is reached.

4. A non-Archimedean ordered field.
An ordered field 9 is Archimedean if the seta of natural numbers

of iF is not bounded above in 5 (equivalently, whenever a, b E 9,
a > 0, b > 0, then there exists a natural number n such that na > b).
Let f be a polynomial function on 6t into 6t:

n

AX) _ E akxk, ak E 61, k = 0, 1, , n ,
kO

and let g be a nonzero polynomial function (that is, g(x) is not iden-
tically zero), and let f/g be the rational function h defined by h(x) =
f(x)/g(x) whose domain consists of all real numbers for whicl g(x) 0 0.
Let 6C consist of all rational functions fig in lowest terms (the only
common polynomial factors of f and g are constants), with addition
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and multiplication defined :

+r_fs+'gr fr_fr
g s gs ' g s gs'

where the right-hand member in each case is reduced to lowest terms.
Then SC is a field ([35], p. 104). If a subset cP of SC is defined to consist
of all nonzero f/g of SC such that the leading coefficients (that is,
the coefficients of the terms of highest degree) of f and g have the
same sign, then cP satisfies the requirements of Definition II, and
SC is an ordered field. But any rational function f/1, where f is a
nonconstant polynomial with positive leading coefficient, is an upper
bound of the set 91 of natural numbers of SC (the natural numbers of
SC are the constant rational functions of the form n/1, where n is the
constant polynomial whose values are all equal to the real natural
number n). For a more detailed discussion, see [35], pp. 99-108.

5. An ordered field that cannot be completed.
To say that an ordered field S: cannot be completed means that

there is no complete ordered field R containing Vin such a way that
the operations of addition and multiplication and the order relation
of F are consistent with those of 6t. The preceding example SC of
rational functions cannot be completed in this sense or, in other
words, cannot be embedded in the real number system (cf. Definition
IV). The reason, in brief, is that if SC could be embedded in 6t, then
the natural numbers of SC would correspond in an obvious fashion
with those of CR. Since Ut is bounded above in SC but not in cit ([35],
p. 122), a contradiction is obtained.

6. An ordered field where the rational numbers are not dense.
The "rational numbers" of the ordered field SC of Example 4 are

not dense in SC. That is, there are two distinct members of SC having
no rational number between them. In fact, any ordered field in
which the rational numbers are dense is Archimedean. To see this,
let a be an arbitrary positive member of F, and let m/n be a rational
number between 0 and 1/a. Adjust notation if necessary in order to
assume (without loss of generality) that m and n are both positive.
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Then

0<n<n<a,
whence n > a. Consequently a is not an upper bound of 9'G, and
since a is arbitrary, 91 is not bounded above. It follows, then, that
since 3C is not Archimedean the rational numbers of 3C cannot be
dense in 3C. Examples of two distinct members of 3C having no ra-
tional number between them are any two distinct nonconstant ply-
nomials with positive leading coefficients.

7. An ordered field that is Cauchy-complete but not complete.
If the ordered field 3C of rational functions, Example 4, is extended

by means of equivalence classes of Cauchy sequences, the resulting
structure is an ordered field in which every Cauchy sequence converges.
However, by Example 5, this Cauchy-completion cannot becomplete in
the sense of the definition given in the Introduction in terms of least
upper bounds. (For a treatment of Cauchycompletion in general,
see [20], pp. 106-107, [21].)

8. An integral domain without unique factorization.
A unit of an integral domain is a member u of 2) having a

multiplicative inverse v in D : uv = 1. (The units of the integral
domain 5 of integers are 1 and -1.) Any member of ) that is the
product of two nonzero members of 3) neither of which is a unit is
called composite. Any nonzero member of 3) that is neither a unit
nor composite is called prime. An integral domain ) is a unique
factorization domain if every nonzero nonunit member of 5)
can be expressed as a product of a finite number of prime members
of 5), and when so expressed is uniquely so expressed except for the
order of the factors or multiplication of the factors by units.

In the real number system 6i. define the set (P of all numbers of
the form a + bV5-, where a, b E J. Then is an integral domain.
The following two facts are not difficult to prove (cf. [35], p. 144):
(i) The units of (P consist of all a + b/ such that I a2 - 5b2 I = 1.
(ii) If a + b/ is a nonzero nonunit, then I a2 - 5b2 1 ? 4. Con-
sequently, if 1 < I a2 - 5b2 < 16, a + b/ is prime. In particular,

17



I. Functions of a Real Variable

2, 1 + , and -1 + are all prime members of (P since for
each, I a2 - 5b2 I = 4. Furthermore, the two factorings of 4,

2.2 = (1 + /)(-l + -V5-),

are distinct in the sense defined above: No factor of either member
is a unit times either factor of the other member. (For details see
[35], p. 145.)

9. Two numbers without a greatest common divisor.
In an integral domain 3), a member m divides a member n, written

m I n, if there exists a member p of 5) such that mp = n. A mem-
ber d of 5) is called a greatest common divisor of two members a
and b of iff:

(i) d i a and d l b;
(ii) cI a,cjb= cI d.

In the integral domain 1 of the preceding example, the numbers 4
and 2(1 + /5) have no greatest common divisor. (For details,
see [35], pp. 145-146.)

10. A fraction that cannot be reduced to lowest terms uniquely.
If fractions are constructed from pairs of members of the integral

domain of Example 8, the fraction 2(1 + /)/4 can be reduced
to lowest terms in the following two ways:

2(1 + x/5) 1 + - 2

4 2 _1+1/5.
The results are distinct in the sense that neither numerator is a
unit times the other, and neither denominator is a unit times the
other.

11. Functions continuous on a closed interval and failing to
have familiar properties in case the number system is not
complete.

We conclude this chapter with a collection of functions defined
on a closed interval [a, b] c Q and having values in Q. These ex-
amples would all be impossible if the rational number system Q,

18



1. The Real Number System

which is not complete (cf. Example 3), were replaced by the real
number system cR, which is complete. The ordered field Q will
be considered to be embedded in 6t in order that symbols such as

can be used. The letter x is assumed to represent a rational
number in every case.

a. A function continuous on a closed interval and not bounded there
(and therefore, since the interval is bounded, not uniformly continuous
there).

AX)0x<<2.
b. A function continuous and bounded on a closed interval but not

uniformly continuous there.

f(x)_J0, 05x</,
1, V2- <x52.

c. A function uniformly continuous (and therefore bounded) on a
dosed interval and not possessing a maximum value there.

f(x)=x-x3, 0<xs1.
d. A function continuous on a closed interval and failing to have the

intermediate value property.
Example b; or f(x) = x2 on [1, 2], which does not assume the

value 2 intermediate between the values 1 and 4.

e. A nonconstant differentiable function whose derivative vanishes
identically over a closed interval.

Example b.

f. A differentiable function for which Rolle's theorem (and therefore
the law of the mean) fails.

Example c.

g. A monotonic uniformly continuous nonconstant function having
the intermediate value property, and whose derivative is identically 0 on
an interval.

This example is more difficult than the preceding ones. It can be
constructed by means of the Cantor set defined and discussed in
Chapter 8. For details, see Example 15, Chapter 8.
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Chapter 2
Functions and Limits

Introduction
In this chapter it will be necessary to extend some of the definitions

of Chapter 1, or to introduce new ones. Unless a specific statement to
the contrary is made, all sets under consideration will be assumed to
be subsets of a, the real number system, and all functions will be
assumed to be real-valued functions of a real variable.

We start by extending unions and intersections to infinite collections
of sets A,, A2,
+cc

U AA=A,uA2u = { x I x E A. for at leastonen = 1,2,
%-I

+.0

xEA.forevery
AEI

A set A is closed iff it contains all its limit points; that is, if there
is no point of A' that is a limit point of A. A set A is open iff every
point of A has a neighborhood lying entirely in A. A point p is a
frontier point of a set A if every neighborhood of p contains at
least one point of A and at least one point of A'. The set of all
frontier points of A is called the frontier of A, and is denoted F(A).
A point p is an interior point of a set A if there exist a neighborhood
of p that lies entirely in A. The set of interior points of A is called
the interior of A, and is denoted I (A). Any closed set A is the
union of its interior and its frontier: A = I(A) u F(A). The closure
of A, denoted A, is the union of the set A and the set of all limit
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2. Functions and Limits

points of A. An open covering of a set A is a family { Ua} of open
sets U. whose union contains A; in this case { Ua} covers A. A set
A is compact if every open covering of A contains a finite subfamily
that covers A. In the space 61 a set is compact if it is closed and
bounded. (This is the Heine-Borel theorem and its converse; of. [34],
p. 202.)

A set A is countable iff A is finite or there exists a one-to-one
correspondence whose domain is i, the set of. natural numbers, and
whose range is A .

An important property of the real number system is that, for any
real number x, there exists a unique integer n such that

n5x<n+l, or x-1<n5x.
Since n is determined uniquely as the greatest integer less than or
equal to x, a function f is thereby defined, known as the greatest
integer function or the bracket function, denoted f (x) = [x], and
equivalently defined as the integer [x] satisfying

[x] S x < [x] + 1, or x - 1 < [x] S x.

Square brackets should be interpreted as indicating the bracket
function only when an explicit statement to that effect is made.

A function f on 61 into 61 is periodic with period p iff f(x + p) _
f (x) for all x E 6i.. A function is periodic if it is periodic with period
p for some nonzero p.

Let a be a limit point of the domain D of a function f, and assume
that f(x) is bounded in some neighborhood of a, for _x E D. The
limit superior and limit inferior off at a, denoted lines f (x) and
lima.,a f(x), respectively, are defined in terms of the functions , and ¢
as follows: For 6 > 0,

0(6) = sup (f(x) I x E D n D(a, 6)},

+'(6) = inf (f(x) I x E D n D(a, 6)},

lira f(x) = lim ¢(6) = inf {O(6) 16 > 0},
2-a 6.0+

4M_ f(x) = lim +'(6) = sup {¢(6) 16 > 0}.ra 6- 0+
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I. Functions of a Real Variable

A function f is upper semicontinuous at a point a E D if limy.a f (X)
<f(a) ; f is lower semicontinuous at a if lim=es f (x) > f (a) ; f is
semicontinuous at a if f is either upper semicontinuous at a or
lower semicontinuous at a.

A function f is locally bounded at a point a that is either a
point or a limit point of the domain off if there exists a neighborhood
of a on which f is bounded; f is locally bounded on a subset A of its
domain if f is locally bounded at every point of A.

Infinite limits f oo, and limits of Ax) as x -+ f oo, are defined as
in the case of lung f(x) = b, except that (deleted) neighborhoods of
infinity are used:

D(+co, N) = (N, +co),
D(-N) (-ao,N).

For example:

lira f(x) = +. if V K 3 S > 0E) f(D n D(a, S)) C D(+-o, K),
z+a

lira f(x) = b if V E > 03 N ) f(D n D(- co, N)) C N(b, E).

Basic definitions of convergence and uniform convergence of in-
finite series, and the Weierstrass M-test for uniform convergence,
will be assumed as known (cf. [341, pp. 381, 444, 445).

1. A nowhere continuous function whose absolute value is
everywhere continuous.

f(z) 1 if x is rational,
-1 if x is irrational.

2. A function continuous at one point only. (Cf. Example 22.)

fx if x is rational,
f (x) - 1 -x if x is irrational

The only point of continuity is 0.

3. For an arbitrary nonconipact set, a continuous and un-
bounded function having the set as domain.
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2. Functions and Limits

(a) If A is an unbounded set of real numbers, let

f(x) =x, xEA.
(b) If A is a bounded set of real numbers that is not closed, let c

be a limit point of A but not a member of A, and let

f(x) = 1x-c' xEA.

If f is continuous on a compact set A , then f is bounded there
(cf. [36], p. 80).

4. For an arbitrary noncompact set, an unbounded and locally
bounded function having the set as domain.

Example 3.
If f is locally bounded on a compact set A , then f is bounded there.

5. A function that is everywhere finite and everywhere locally
unbounded.

If x is a rational number equal to m/n, where m and n are integers
such that the fraction m/n is in lowest terms and n > 0, then m
and n are uniquely determined (cf. [35], p. 53). Therefore the following
function is well defined:

f(X) n if x is rational, x = m/n in lowest terms, n > 0;
=

0 if x is irrational.

If f were bounded in N(a, e), then for all m/n in N(a, e) the de-
nominators n would be bounded, and hence the numerators m would
be too. But this would permit only finitely many rational numbers
in the interval N(a, c). (Contradiction.) (Cf. Example 27, Chapter 8,
for a function incorporating these and more violent pathologies. Also
of. Example 29, Chapter 8.)

6. For an arbitrary noncompact set, a continuous and bounded
function having the set as domain and assuming no extreme
values.

(a) If A is an unbounded set of real numbers, let
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I. Functions of a Real Variable

f(x) xEA.

Then f(x) has no maximum value on A. If f(x) is defined
2

AX) = (-1)n=n x2 + 1 ' xE A,

where [I x 11 is the greatest integer less than or equal to I x 1, then
f (x) has neither a maximum value nor a minimum value on A.

(b) If A is a bounded set of real numbers that is not closed, let c
be a limit point of A but not a member of A, and let

f(x)=-jx-cl, xEA.
Then f (x) has no maximum value on A. If f (x) is defined

f(x) = I x - c 11,

where brackets are once again used to represent the "bracket func-
tion," and L is the length of some interval containing A, then f(x)
has neither a maximum nor a minimum value on A .

7. A bounded function
pact domain.

Let the compact
x E [0, 1], define

(-1)"n
f(x) = n + 1

having no relative extreme on a com-

domain be the closed interval [0, 11, and for

if x is rational, x = m/n in lowest terms, n > 0.

0 if x is irrational.

Then in every neighborhood of every point of [0, 1] the values of f
come arbitrarily close to the numbers 1 and -1 while always lying
between them. (Cf. [14], p. 127.)

8. A bounded function that is nowhere semicontinuous.
The function of Example 7 is nowhere upper semicontinuous since

lim , f (x) is everywhere equal to 1 and therefore nowhere < f (a).
Similarly, this function is nowhere lower semicontinuous. (Notice
that the function of Example 1 is upper semicontinuous at a if a is
rational and lower semicontinuous at a if a is irrational.)
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2. Functions and Limits

9. A nonconstant periodic function without a smallest posi-
tive period.

The periods of the function of Example 1 are the rational numbers.
The periods of any real-valued function with domain CR form aR

additive group (that is, the set of periods is closed with respect to
subtraction). This group is either dense (as in the present example)
or discrete, consisting of all integral multiples of a least positive
member. This latter case always obtains for a nonconstant periodic
function with domain CR that has at least one point of continuity.
(Cf. [36], p. 549.)

10. An irrational function.
The function Vx is not a rational function (cf. Example 4, Chapter

1) since it is undefined for x < 0.
The function [x] is not a rational function since it has discontinuities

at certain points where it is defined.
The function I x I is not a rational function since it fails to have a

derivative at a point at which it is defined.
The function 1/x2 + 1 is not a rational function. This can be

seen as follows: If 1/xz _+1 = f(x)/g(x) for all x, then 1/yY + 1/x =
f(x)/xg(x) for all x 5,4 0, and hence lim.-+, f(x)/xg(x) = 1. This
means that f(x) and xg(x) are polynomials of the same degree, and
therefore limz_ f(x)/xg(x) = 1, whereaslimt-.-, ./x2 + 1/x = -1.
(Contradiction.)

11. A transcendental function.
A function f is algebraic if 3 a polynomial p(u) = EZ-o ak(x)uk,

whose coefficients ao(x) , al(x) , , are real polynomials (that
is, their coefficients are all real) not all of which are identically zero
and such that the composite function p(f(x)) vanishes identically on
the domain of f. A function is transcendental if it is not algebraic.

An example of a transcendental function is ex, for if it is assumed
that

ao(x) + al(x)ez + ... + a,,(x)e,
where ao(x) is not the zero polynomial, vanishes identically, a contra-
diction is got by taking the limit as x -> - co and using l'Hospital's
rule on indeterminate forms to infer the impossible conclusion

lim ao(x) = 0.
X-M
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I. Functions of a Real Variable

Another example is sin x, since if

bo(x) + bi(x) sin x + + b (x) sine x,

where bo(x) is not the zero polynomial, vanishes identically, then
bo(kir) = 0 for all integral h (Contradiction.)

Other examples (for similar reasons) are In x (the inverse of ex) and
the remaining trigonometric functions.

The following functions listed under Example 10 as irrational are
algebraic: -\/x , I x I (I x I = -\/x2) , and -\/x2 -+l .

12. Functions y = f(u), u E 6t, and u = g(x), x E 6t, whose
composite function y =.f(g(x)) is everywhere continuous, and
such that

lim f(u) = c, lim g(x) = b, inn f(g(x)) -X c.
u+b x.a

If

10 if u 3-6 0, uE6t,
f(u)

1 if u = 0,

then lim..o f(u) = 0. If g(x) = 0 for all x E 61, then, f(g(x)) = 1
for all x, and hence lir -o f(g(x)) = 1.

This counterexample becomes impossible in case the following
condition is added: x 0 a = g(x) 0 b.

13. Two uniformly continuous functions whose product is not
uniformly continuous.

The functions x and sin x are uniformly continuous on 6t since
their derivatives are bounded, but their product x sin x is not uni-
formly continuous on 6t.

In case both functions f and g are bounded on a common domain
D and uniformly continuous on D, their product fg is also uniformly
continuous on D. Since any function uniformly continuous on a
bounded set is bounded there, it follows that the present counter-
example is possible only when the common domain under consider-
ation is unbounded and at least one of the functions is unbounded.
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14. A function continuous and one-to-one on an interval and
whose inverse is not continuous.

For this example it is necessary that the interval not be a closed
bounded interval (cf. [341, p. 192), and that the function not be
strictly real-valued (cf. [34], p. 50, p. 52, Ex. 25). Our example in
this case is a complex-valued function z = f(x) of the real variable
x, with continuity defined exactly as in the case of a real-valued
function of a real variable, where the absolute value of the complex
number z = (a, b) is defined

I z I = I(a, b)I = (a2 + b2)1/2,
Let the function z = f(x) be defined:

z = f (x) = (cos x, sin x), 0 <= x < 21r.

Then f maps the half-open interval [0, 27r) onto the unit circle I z 1

continuously and in a one-to-one manner. Since the unit circle is
compact the inverse mapping cannot be continuous (cf. [341, p. 192),
and fails to be continuous at the point (1, 0).

15. A function continuous at every irrational point and dis-
continuous at every rational point.

If x is a rational number equal to m/n, where m and n are integers
such that the fraction m/n is in lowest terms and n > 0, let f(x) be
defined to be equal to 1/n. Otherwise, if x is irrational, let f (x) = 0.
(Cf. [341, p. 124.)

It will be shown in Example 10, Chapter 8, that there does not
exist a function continuous at every rational point and discontinuous
at every irrational point.

16. A semicontinuous function with a dense set of points of
discontinuity.

The function of Example 15 is upper semicontinuous at every
point a, since

lim f(x) = 0 _<_ f(a)
z-.a

17. A function with a dense set of points of discontinuity
every one of which is removable.
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I. Functions of a Real Variable

If a is a rational number and if the function of Example 15 is
redefined at a to have the value zero, then, since

lim f (x) = 0 = f (a),
x+a

as redefined, f becomes continuous at a.

18. A monotonic function whose points of discontinuity form
an arbitrary countable (possibly dense) set.

If A is an arbitrary nonempty countable set of real numbers, a,,
a2 , as , , let Ep,, be a finite or convergent infinite series of positive
numbers with sum p (the series being finite if A is finite, and having
as many terms as A has members). If A is bounded below and x <
every point of A, let f(x) = 0 . Otherwise, define f(x) to be the sum
of all terms p, of E p,, such that a,n 5 x. Then f is increasing on at,
continuous at every point not in A, and discontinuous with a jump
equal to p,, at each point a,, (that is, limx + f (x) - limz,,,- f (x) =

It should be noted that for monotonic functions this example
illustrates the most that can be attained by way of discontinuities :
for any monotonic function the set of points of discontinuities is
countable (cf. [36], p. 59, Ex. 29). Example 1 shows that without
monotonicity the set of points of discontinuity may be the entire
domain.

19. A function with a dense set of points of continuity, and a
dense set of points of discontinuity no one of which is re-
movable.

In Example 18, let the set A be the set Q of all rational numbers.

20. A one-to-one correspondence between two intervals that
is nowhere monotonic.

Let Ax) be defined for 0 <- x 5 1:

f(x) °

x if x is rational,

1 - x if x is irrational.

Then there is no subinterval of [0, 1] on which f is monotonia The
range off is again the interval [0, 1] , and f is one-to-one.

A function having these properties and mapping the interval [a, b]
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onto the interval [c, dJ is

+ (d- c)x -a ifx -aisrational,
b - a b - a

d-F(c-d)b -a
x -a

i6 - a s irrational

21. A continuous function that is nowhere monotonic.
Let f. (x) I x I for I x 1 < 1, and let f, (z) be defined for other

values of x by periodic continuation with period 1, i.e., fi(x + n) _
fl(x) for every real number x and integer n. For n > 1 define fn(x)
4-n+'fl(4n-'x), so that for every positive integer n, fn is a periodic
function of period 4-n+', and maximum value 4.4-n+l, Finally, define

f with domain R:

f(x) (x) _fn=
,,_

4n_1

Since I fn(x) 5 4.4-n+', by the Weierstrass M-test this series con-
verges uniformly on (R, and f is everywhere continuous For any
point a of the form a = k . 4-', where k is an integer and m is a
positive integer, fn (a) = 0 for n > m, and hence f(a) = fl(a) +
+ fm(a). For any positive integer m, let hm be the positive number
4-2m-'. Then fn (a + h.) = 0 for n > 2m + 1, and hence

f(a + hm) - f(a) = [fi(a + hm) - fo(a)l + .. .
+[fm(a+hm) -fm(a)]

+ fm-Ei(a + hm) + "' + f2m+1(a + hm)

z -mhm + (m + 1)hm = hm > 0.

Similarly,

f(a - hm) - f(a) >_ -nthm + (m + 1)hm = h, > 0.

Since members of the form a = are dense, it follows that in
no open interval is f monotonic.

The above typifies constructions involving the condensation of
singularities.

fl(4n-lx)
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22. A function whose points of discontinuity form an arbitrary
given closed set.

If A is a closed set, define the set B :

xEBiff
(x E F(A) or

Ix E I(A) n Q,

and define the function f:

1 if xEB,f (x)

0 if x EE B.

If c E A, f is discontinuous at c: if c E F(A) then f(c) = 1 while
x is a limit point of the set 61 \ A, on which f is identically 0; if
c E I(A) n Q then f(x) = 1 while c is a limit point of the set I(A) \ Q,
on which f is identically 0; if c E I(A) \ Q, then f(c) = 0 while c is
a limit point of the set I(A) n Q, on which f is identically 1. The
function f is continuous on the set a \ A, since this set is open and
f is a constant there.

23. A function whose points of discontinuity form an arbitrary
given F. set. (Cf. Example 8, Chapter 4, and Examples 8, 10, and
22, Chapter 8.)

A set A is said to be an F, set iff it is a countable union of closed
sets (cf. Example 8, Chapter 8). For a given F. set A = A, u A2 u ,

where A,, A2, are closed and A. C for n = 1, 2, ,

let A o denote the empty set fb, and define the disjoint sets B,,,
n=

(x E (A \ I(A \ or
xEB,,iff

x E I(A, \ An-1) n Q.

Let the function f be defined:

12-n if x E B,,,
f(x)

0 if x B,uB2u .

If c E A, f is discontinuous at c: if c E (An \ A._,) \ I(An \ An_,)
then f (c) = 2-n while c is a limit point of a set on which f has values
differing from 2-n by at least 2-n-1; if c E I (An \A,,) n Q then
f (c) = 2-n while c is a limit point of the set I (A. \ An_,) \ Q on
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which f is identically 0; if c E I(A \ AA_1) \ Q, then f(c) = 0
while c is a limit point of the set I(A, \ n Q on which f is
identically 2-". If c A, f is continuous at c: if e > 0 is given,
choose N such that 2-' < e; then choose a neighborhood of c
that excludes A1, A, , - , A, and inside which, therefore, f (x) <
2-N < e.

It should be noted that for any function f on 6t into 6t the set of
points of discontinuity is an F, set (cf. [36], p. 84, Exs. 30-33, p. 332,
Ex. 41).

24. A function that is not the limit of any sequence of con-
tinuous functions. (Cf. Example 10, Chapter 4.)

The function f in Example 1 has the property that there is no
sequence {f} of continuous functions such that limn-+. f. (x) = f(x)
for all real x, but the proof is not elementary. For a discussion and
references, see [10], pp. 99-102. The idea is that f is everywhere
discontinuous, while any function that is the limit of a sequence of
continuous functions must have a dense set of points of continuity.

The characteristic function of the set Q of rational numbers is
the limit of a sequence {g.} of functions each of which is the limit of
a sequence {hn} of continuous functions, as follows: If {rn} is a
sequence that is a one-to-one correspondence with domain t and
range Q, define

(x)
1 if x = rl, rz, , or r,,,

g,1
t0 otherwise.

Each function gn is the limit of a sequence of continuous functions
each of which is equal to 1 where gn(x) = 1, equal to 0 on closed
subintervals interior to the intervals between consecutive points
where gn(x) = 1 , and linear between consecutive points that
are either endpoints of such closed subintervals or points where
gn(x) = 1. Notice that for each x, {gn(x)} is increasing, while the
sequence that converges to g, (x) can be chosen to - be decreasing.

25. A function with domain [0, 1] whose range for every non-
degenerate subinterval of [0, 1] is [0, 1]. (Cf. Example 27, Chap-
ter 8.)

A function having this property was constructed by H. Lebesgue
(cf. [28], p. 90) and is described in [10], p. 71. (Also cf. [14], p. 228.)
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If x is an arbitrary number in [0, 1], let its decimal expansion be

x = 0. ala2a3 - -

where, in case x can be expressed ambiguously by either a terminat-
ing decimal or one with indefinitely repeated 9's, it is immaterial
which expansion is chosen. For definiteness suppose the terminating
expansion is consistently chosen. The value f(x) depends on whether
or not the decimal 0. ala3a5 is repeating or not -that is, on
whether the number 0. alaaa5 ... is rational or not (cf. [35], p. 178) :

0 if O.ala3a5 - - - is irrational,
.f(x)

0. a2na2n+2a2n+4 . if O. alaaa5 ... is rational with its
first repeating segment beginning
with

Let I be an arbitrary subinterval of [0, 1], and choose the digits
al , a2 , - - - , a2n-2 so that both 0. ala2 - - - and 0. ala2 a2n-21
belong to I and such that a2n-3 is different from both 0 and 1. If
y = 0. blb2ba - - - is an arbitrary point in [0, 1], we have only to
define a2,,.--l = a2n+l = ' - - = a9.-5 = 0 and a4,,._3 = 1, with sub-
sequent a's with odd subscripts defined by cyclic repetition in groups
of n, to obtain a number

x = 0.ala2a3 a2n-lbla2n+lb2a2n+3 -

belonging to the interval I and such that the expansion

0. ala3a5 - - a2n-3a2n-la2n+l

is a periodic decimal whose first period starts with a2n_l, and con-
sequently such that

f(x) - O.b1b2b3 ... .

The graph of f is dense in the unit square [0, 1] X [0, 1], although
each vertical segment {x) X [0, 1] meets the graph in exactly one
point.

A function whose range on every nonempty open interval is 6t and
that is equal to zero almost everywhere (and hence is measurable) is
given in Example 27, Chapter 8. (Also cf. Example 26, below.)

Since the unit interval [0, 1] contains infinitely many disjoint
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2. Functions and Limits

open intervals (no two have a point in common - for example,
1

(n + 1 ' n ' n = 1, 2, ) - the function f of the present example

takes on every one of its values infinitely many times. Another ex-
ample of a function that assumes every value infinitely many times
is given in Example 9, Chapter 10.

26. A discontinuous linear function.
A function f on 61 into 6t is said to be linear iff f(x + y) = f(x) +

f(y) for all x, y E (. A function that is linear and not continuous
must be very discontinuous indeed. In fact, its graph must be dense
in the plane 6t X R For a discussion of this phenomenon, and
further references, see [10], pp. 108-113. In case f is continuous it
must have the form f(x) = ex , as can be shown by considering in
succession the following classes of numbers: )t, g, Q, R.

Construction of a discontinuous linear function can be achieved
by use of a Hamel basis for the linear space of the real numbers (R
over the rational numbers Q (cf. references 29, 30, and 32 of (l0]).
The idea is that this process provides a set S = {ra} of real numbers
ra such that every real number x is a unique linear combination of
a finite number of members of S with rational coefficients pa:x =
palral + + pakrakr. The function f can now be defined:

J (x) = pal + ... + Pak,

since the representation of x as a linear combination is unique. The
linearity of f follows directly from the definition, and the fact that f
is not continuous follows from the fact that its values are all rational
but not all equal (f fails to have the intermediate value property).

27. For each n E 01, n(2n + 1) functions ¢jj(xj), j = 1, 2,
, n, i = 1, 2, , 2n + 1, satisfying:
(a) All ¢jj(x j) are continuous on [0, 11.
(b) For any function f(xl, x2, , x,l) continuous for

0 5 x1, x2, , X. S 1, there are 2n + 1 functions ¢j,
i = 1, 2, , 2n + 1, each continuous on 6t, such that

2n+1

f(xl,x2, ... ,xn) 'j
n

cbij(xj))
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I. Functions of a Real Variable

This theorem is due to A. N. Kolmogorov [261 and resolves a
famous problem posed by D. Hilbert. Stated as a solution of Hil-
bert's (thirteenth) problem, the above result reads: Every continuous
function f (xl, x2j . , of n real variables, 0 5 xl, x2, ,

x 5 1, ma be expressed as a sum the sum .
Zn+iy ( E above) of the com-

posites of continuous functions of single variables and sums of continuous
functions of single variables (the sums above).

The proof is highly ingenious, although it is accessible to any reader
with the patience to trace through a rather straightforward mul-
tiple induction.

We note only that the functions O;j are universal in that they do
not depend on f. The functions ¢;, while not independent of f, are not
uniquely determined by f (even after the functions 4,j have been con-
structed). Details will be found in the cited reference.
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Chapter 3
Differentiation

Introduction
In some of the examples of this chapter the word derivative is

permitted to be applied to the infinite limits

limf(x+h)-f(x)= +co,lim
f(x + h) - f(x) _ -00.

1-.o h h-.o h

However, the term differentiable function is used only in the strict
sense of a function having a finite derivative at each point of its
domain. A function is said to be infinitely differentiable iff it has
(finite) derivatives of all orders at every point of its domain.

The exponential function with base e is alternatively denoted
e and exp (x).

As in Chapter 2, all sets, including domains and ranges, will be
assumed to be subsets of R unless explicit statement to the contrary
is made. This assumption will remain valid through Part I of this
book, that is, through Chapter 8.

1. A function that is not a derivative.
The signum function (cf. the Introduction, Chapter 1) or, indeed,

any function with jump discontinuities, has no primitive - that is,
fails to be the derivative of any function - since it fails to have the
intermediate value property enjoyed by continuous functions and
derivatives alike (cf. [34], p. 84, Ex. 40). An example of a discon-
tinuous derivative is given next.
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1. Functions of a Real Variable

2. A. differentiable function with a discontinuous derivative.
The function

x: sm. 1

f(x) =
x ifxF6 0,

0 ifx=0,
has as its derivative the function

2xsin1-cos1 ifx 0,x) = x x

0 ifx=0,
which is discontinuous at the origin.

3. A discontinuous function having everywhere a derivative
(not necessarily finite).

For such an example to exist the definition of derivative must be
extended to include the limits f -. If this is done, the discontinuous
signum function (Example 1) has the derivative

if x54- 0,

if x=0.

4. A differentiable function having an extreme value at a
point where the derivative does not make a simple change in
sign.

The function

f(x)
(2 + sin 1) if x 0,fr x

t0 ifx = 0
has an absolute minimum value at x = 0 . Its derivative is

},() x2 [4x
/
(2 + sin z) - cos

x]

if x 0 0,
x \

0 ifx=0,
which has both positive and negative values in every neighborhood
of the origin. In no interval of the form (a, 0) or (0, b) is f monotonic.
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S. Differentiation

5. A differentiable function whose derivative is positive at a
point but which is not monotonic in any neighborhood of the
point.

The function

x + 22 sin 1 if x 5d 0,
f(z) = x

0 ifx= 0
has the derivative

J1+4xsin_2cos! ifx 0,f'(x) = x x

1 ifx=0.
In every neighborhood of 0 the function f (x) has both positive and
negative values.

6. A function whose derivative is finite but unbounded on a
closed interval.

The function

X,sin ifx Fd 0,
xaf (X)

ifx=0
has the derivative

1
2x sin

_2
cos I if x 0 0,

z)=
10 ifx=0,

which is unbounded on [-1, 1] .

7. A function whose derivative exists and is bounded but pos-
sesses no (absolute) extreme values on a closed interval.

The function

x`e-;ZS sin 8 if x 0 0,
f(z)

ifx=0
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I. Functions of a Real Variable

has the derivative

Ie.1z2
((4x3 - zx5) sin 8 - 24 cos 81 if x 6 0,

f (x)

In every neighborhood of the origin this derivative has values ar-
bitrarily near both 24 and - 24. On the other hand, for 0 < h
I x I -< 1 (cf. [34], p. 83, Ex. 29),

1
h2e'"2 < 1 - 16h2,0

<ei2 < 1 -
4

and

1 4x3 - 2 X 24 cos g I <_ 24 + 2 h3

Therefore 0 \< h < 1 implies

If (x) I < \I
6h2) (24+ 2h3) < 24 - 9h2(1 - h) < 24.

Therefore, on the closed interval [-//1, 1] the range of the function
f has supremum equal to 24 and infimum equal to -24, and neither
of these numbers is assumed as a value of f.

8. A function that is everywhere continuous and nowhere
differentiable.

The function I x I is everywhere continuous but it is not dif-
ferentiable at x = 0 . By means of translates of this function it is
possible to define everywhere continuous functions that fail to be
differentiable at each point of an arbitrarily given finite set. In the
following paragraph we shall discuss an example using an infinite
set of translates of the function I x 1.

The function of Example 21, Chapter 2, is nowhere differentiable.
To see this let a be an arbitrary real number, and for any positive
integer n , choose h to be either 4-°-1 or -4-"-' so that I fn (a + hn) -
fn(a) I = I h 1. Then I fm(a + fm(a) I has this same value
I h I for all m < n, and vanishes for m > n. Hence the difference
quotient (f(a + f(a))/h is an integer that is even if n is even
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S. Differentiation

and odd if n is odd. It follows that

lim f(a + h.) - f(a)
-.+.0 hn

cannot exist, and therefore that f(a) cannot exist as a finite limit.
The first example of a continuous nondifferentiable function was

given by K. W. T. Weierstrass (German, 1815-1897) :
+00

f(x) _ b" cos (an7rx),
n=0

where b is an odd integer and a is such that 0 < a < 1 and ab >
1 + 49r . The example presented above is a modification of one given
in 1930 by B. L. Van der Waerden (cf. [48], p. 353). There are now
known to be examples of continuous functions that have nowhere a
one-sided finite or infinite derivative. For further discussion of these
examples, and references, see [48], pp. 350-354, [10], pp. 61-62, 115,
126, and [21], vol. II, pp. 401-412.

The present example, as described in Example 21, Chapter 2,
was shown to be nowhere monotonic. For an example of a function
that is everywhere differentiable and nowhere monotonic, see [21],
vol. II, pp. 412-421. Indeed, this last example gives a very elaborate
construction of a function that is everywhere differentiable and has
a dense set of relative maxima and a dense set of relative minima.*

9. A differentiable function for which the law of the mean
fails.

Again, we must go beyond the real number system for the range of
such a function. The complex-valued function of a real variable x,

f(x) = cos x + i sin x,

is everywhere continuous and differentiable (cf. [34], pp. 509-513),
but there exist no a, b, and such that a < < b and
(cos b + i sin b) - (cos a + i sin a) = (-sin E +i cos E) (b - a).
Assuming that the preceding equation is possible, we equate the
squares of the moduli (absolute values) of the two members:

* See also A. Denjoy, Bull. Soc. Math. France, 43 (1915), pp. 161-248 (228ff.).
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I. Fundions of a Real Variable

(cos b - cos a): + (sin b - sin a)' _ (b - a)2
or, with the aid of elementary identities:

sinb2ab
2 a/2

Since there is no positive number h such that sin h = h (of. [34],
p. 78), a contradiction has been obtained.

10. An infinitely differentiable function of x that is positive
for positive x and vanishes for negative x.

The function

f(x){0 if x50
is infinitely differentiable, all of its derivatives at x = 0 being equal
to 0 (cf. [34], p. 108, Ex. 52).

11. An infinitely differentiable function that is positive
the unit interval and vanishes outside.

f (X) Cj/.2(1,)2 if 0<x<1= 0 otherwise.

.

in

12. An infinitely differentiable "bridging function," equal to 1
on [1, + co ), equal to 0 on (- , 01, and strictly monotonic on
[0, 1].

x exp (- (1 1x)2 if 0 < x < 1,

f(x) = if x50,
if x z 1.

13. An infinitely differentiable monotonic function f such that

lim f(x) = OF, Jim f'(x) 0 0.
w-4-0 X-+40

If the word monotonic is deleted the are trivial examples, for
instance (sin For a monotonic example, let f(x) be defined to
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S. Differentiation

be equal to 1 for x S 1, equal to 1/n on the closed interval [2n - 1, 2n],
for n = 1, 2, , and on the intervening intervals (2n, 2n + 1)
define f (x) by translations of the bridging function of Example 12,
with appropriate negative factors for changes in the vertical scale.
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Chapter 4
Riemann Integration

Introduction
The definition of Riemann-integrability and the Riemann (or def-

inite) integral of a function f defined on a closed interval [a, b] ,

together with the principal elementary properties of this integral,
will be assumed known. The same is the case for the standard im-
proper integrals and, in Example 14, for the Riemann-Stieltjes
integral

In some of the examples of this chapter the concept of measure zero
is impornt. A set A C 6t is said to be of measure zero if for any
e > 0 there is an open covering of A consisting of a countable collec-
tion of open intervals whose lengths form a convergent infinite series
with sum less than e. The interior of every set of measure zero is
empty. A point-property is said to hold almost everywhere if
the set where the property fails is of measure zero. A function f whose
domain is a closed interval [a, b] is Riemann-integrable there if it
is bounded and continuous almost everywhere (cf. [36], p. 153, Ex.
54).

1. A function defined and bounded on a closed interval but not
Riemann-integrable there.

The characteristic function of the set Q of rational numbers,
restricted to the closed interval [0, 1], is not Riemann-integrable
there (cf. [34], p. 112).

2. A Riemann-integrable function without a primitive.
The signum function (Example 1, Chapter 3) restricted to the

interval [-1, 1] is integrable there, but has no primitive there.
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4. Riemann Integration

3. A Riemann-integrable function without a primitive on any
interval.

Example 18, Chapter 2, with A = Q n [0, 1], is integrable on
[0, 1] since it is monotonic there, but has no primitive on any sub-
interval of [0, 1] since its points of jump discontinuity are dense
there.

4. A function possessing a primitive on a closed interval but
failing to be Riemann-integrable there. (Cf. Example 35, Chap-
ter 8.)

The function f of Example 6, Chapter 3, is an example of a func-
tion having a (finite) derivative g(x) at each point x of a closed in-
terval I. The function g, therefore, has a primitive but since g is
unbounded it is not Riemann-integrable on I.

The two preceding examples (Examples 3 and 4) are of interest
in connection with the Fundamental Theorem of Calculus. One form
of this theorem states that if a function f (x) (i) is integrable on the
interval [a, b] and (ii) has a primitive F(x) there (F'(x) = f(x) for
a < x < b), then the Riemann integral of f (x) can be evaluated by
the formula f a f(x) dx = F(b) - F(a). A second form of this theorem
states that if a function f (x) is continuous on the interval [a, b],
then both (i) and (ii) of the preceding form are true, with G(x)
f a f (t) dt being a specific primitive, and for any primitive F(x),
f a f(x) dx = F(b) F(a). A third form of the theorem reads the
same as the first form stated above, except that the function F(x)
is assumed merely to be continuous on [a, b] and to possess a deriva-
tive F'(x) equal to f(x) at all but a finite number of points of [a, b].

5. A Riemann-integrable function with a dense set of points
of discontinuity.

Example 3 provides a monotonic function having the specified
properties.

Example 15, Chapter 2, provides a nowhere monotonic function
having the specified properties. In this latter case fa f (X) dx = 0
for all a and b.

6. A function f such that g(x) = f of(t) dt is everywhere dif-
ferentiable with a derivative different from f(x) on a dense set.

If f is the function of Example 15, Chapter 2 (cf. the preceding

43



I. Functions of a Real Variable

Example 5), g(x) = f o f(t) dt is identically zero, and therefore g'(x) = 0
for all x. Therefore g'(x) = f(x) iff x is irrational.

7. Two distinct semicontinuous functions at a zero "dis-
tance."

In this case the distance d between two functions f and g in-
tegrable on [a, b] is defined to be the integral of the absolute value of
their difference:

d=jJf(x)-g(x)Idx.

a

If f is the semioontinuous function of the preceding example (cf.
Example 16, Chapter 2) and if g is identically zero, then f(x) and
g(x) are unequal for all rational values of x (and thus f and g are
decidedly distinct functions), while the distance d defined above is
equal to zero.

8. A Riemann-integrable function with an arbitrary F, set of
measure zero as its set of points of discontinuity. (Cf. Example
22, Chapter 8.)

Somewhat as in Example 23, Chapter 2, let A be a given F. set of
measure zero, A = Al u A2 u - , where A1, A2, - are closed
subsets of an interval [a, b] and A. C A,,+1 for n = 1, 2, . Let
Ao denote the empty set ¢, and define the function f:

f (X) ° f 2-n if x E A. \
0 if

If c E A, f is discontinuous at c : if c E A. \ then since
A. \ An_1 is a set of measure zero it contains no interior points and
c is a limit point of a set on which f has values differing from 2-n by
at least 2-n-1. If c f A, f is continuous at c : if e > 0 is given, choose
N such that 2-N < e ; then choose a neighborhood of c that excludes
A1, A2, . , A. and inside which, therefore, f(x) < 2-N < e.

9. A Riemann-integrable function of a Riemann-integrable
function that is not Riemann-integrable. (Cf. Example 34,
Chapter 8.)

If f(x) = 1 if 0 < x < 1 and f(0) = 0 , and if g is the function f
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of Example 15, Chapter 2, restricted to the closed interval [0, 1],
then f(g(z)) is the characteristic function of the set Q of rational
numbers, restricted to [0, 1], equal to 1 if x is rational and equal to
0 if x is irrational. (Cf. Example 1 of this chapter.)

10. A bounded monotonic limit of Riemann-integrable func-
tions that is not Riemann-integrable. (Cf. Example 33, Chapter
8.)

The sequence defined in Example 24, Chapter 2, when re-
stricted to the closed interval [0, 1] , is an increasing sequence of
Riemann-integrable functions; that is, for each x E [0, 1], S
gn+i(x) for n = 1, 2, . If g(x) = lim g.(x) for x E [0, 1] , then

g is the characteristic function of the set Q of rational numbers, re-
stricted to the closed interval [0, 1] , and thus (cf. Example 1) g is not
Riemann-integrable there.

11. A divergent improper integral that possesses a finite Cauchy
principal value.

The improper integral f, x dx is divergent, but its Cauchy prin-
cipal value (cf. [34], p. 145, Ex. 30) is

a

lim Ixdx= limo=0.

12. A convergent improper integral on [1, + cc) whose in-
tegrand is positive, continuous, and does not approach zero
at infinity.

For each integer n > 1 let (gn) = 1, and on the closed intervals
[n - n-2, n] and [n, n + n-2] define g to be linear and equal to 0 at
the nonintegral endpoints. Finally, define g(x) to be 0 for x z 1 where
g(x) is not already defined. Then the function

f(x) - g(x) +

is positive and continuous for x z 1, the statement lim f (x) = 0 is

false, and the improper integral

r f(x) dx

converges.
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If the requirement of positivity is omitted, a simple example
satisfying the remaining requirements (cf. [34], p. 146, Ex. 43) is
fI coo x2 dx.

13. A convergent improper integral on [0, + oo) whose in-
tegrand is unbounded in every interval of the form [a, + oo ),
where a > 0.

The improper integral f o °° x cos x' dx satisfies these conditions
(cf. [34], p. 146, Ex. 43).

An example where the integrand is everywhere positive and con-
tinuous can be constructed in a manner similar to that of the preced-
ing Example 12 by letting g(n) = n and considering the closed
intervals [n - n-$, n] and [n , n + n-$].

14. Functions f and g such that f is Riemann-Stieltjes in-
tegrable with respect to g on both [a, b] and [b, c] , but not
on [a, c].

Let

0 if 05x<1,f(x)=
1 if 15x52,
0 if 0<=x551,

g(x)
1 if 1 < x < 2,

and let a = 0, b = 1, and c = 2. Then

I f(x) dg(x) = 0, f f(x) dg(x) = 1,Z

but since f and g have a common point of discontinuity at x = 1,

f'f(x) dg(x)
.

does not exist (cf. [34], p. 151, Ex. 10).
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Chapter 5
Sequences

Introduction
The concepts of sequence, Cauchy sequence, convergence, and di-

vergence are defined in the Introduction to Chapter 1. Limits superior
and inferior at a (finite) point for functions are defined in the In-
troduction to Chapter 2 The corresponding formulations for se-
quences of real numbers will be assumed as known. The first six
examples of the present chapter are concerned only with sequences
of real numbers. For such sequences it should be emphasized that
although the word limit is sometimes used in conjunction with the
word infinite, the word convergent always implies a finite limit. It will
be assumed (in Example 7) that the reader is familiar with the de-
finition and elementary properties of uniform convergence of func-
tions. Convergence and divergence for sequences of sets are defined
with Example 8 for use with Examples 8 and 9. Throughout this
book the single word sequence will be used to mean infinite sequence
unless it is otherwise specifically modified.

1. Bounded divergent sequences.
The simplest example of a bounded divergent sequence is possibly

0.1,0, 1, ,
or { a.1, where a" = 0 if n is odd and a" = 1 is n is even. Equivalently,
a" = I(1 + (-1)").

A more extreme example is the sequence {r"} of rational numbers
in [0, 1J -that is, {r"{ is a one-to-one correspondence with domain
0Z and range Q n [0, 1].

47



I. Functions of a Real Variable

2. For an arbitrary closed set, a sequence whose set of limit
points is that set.

Any point that is the limit of a subsequence of a sequence {an} is
called a limit point or subsequential limit of the sequence. Any
limit point of the range of a sequence is a limit point of the sequence,
but the converse statement is not generally true. Counterexample:
the alternating sequence 0, 1, 0, 1, has two limit points, 0 and
1, but its range has none.

Since the set of all limit points of a sequence {an} is the closure of
the range of {an}, this set is always closed. The following example
shows that every closed set A can be got in this way; in fact, that A
is the set of limit points of a sequence {an} of distinct points. It will
follow that A is not only the set of limit points of the sequence {an},
but the set of limit points of its range as well.

If A is the empty set, let an = n for n = 1, 2, . Now let A
be an arbitrary nonempty closed set (of real numbers), and let
Jr.) be an arrangement into a sequence of distinct terms of the set
Q of all rational numbers ({rn} is a one-to-one correspondence with
range Q). The sequence {an} whose set of limit points is A will be a
subsequence of {rn) defined recursively as follows: We start by
partitioning at into the four disjoint intervals (- Go, -1), [-1, 0),
[0, 1) and [1, + co). If A n (- -, -1) ; 0, let a, be the first term
of the sequence { rn } belonging to (- co, -1); if A n (- ao, -1) = Q
and A n [-1, 0) 0 0, let a, be the - first term E [-1, 0); if
A n (- Go, 0) = Q, and A n [0, 1) 0 0, let a, be the first term E
[0, 1); finally, if A n (- co, 1) = Q, let a, be the first term E [1, + co).
After a, is selected, a2 distinct from a, is determined in like fashion by
considering the intervals [-1, 0) , [0, 1), and [1, + co) in turn - un-
less An [-1, + co) = Q, in which case only a, is determined at this
stage. In any case, at least one term a, and at most four terms a,, a2,
as, a4 of the sequence {an} are thus defined. The second stage pro-
ceeds similarly, in terms of the partition of 6t into the 2.22 + 2 = 10
intervals (- -, , [-1, 2), [2, +co). At each step,
after a,, a2, , an are chosen, the term an+, is chosen from an
interval I in case A n I 0 Q, an+i being the first term of r distinct
from those already selected and belonging to I . The kth set of k - 21; + 2
intervals consists of (- Go, -k), [- k,-k+ 2-1+'), ... , [k - 2-L*1, k),
[k, + Go ). It is not difficult to show that the sequence { a, } , thus
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5. Sequences

defined recursively, has the properties elaimed. Notice that if A = at,
then { an} is a one-to-one correspondence with range Q - presumably
distinct from {rn}.

3. A divergent sequence {an} for which lim (an+i, - an) = 0
n-'+ao

for every positive integer p.
at an be the nth partial sum of the harmonic series:

an= +;+ +1n

Then {an} is divergent, but for p > 0,

an+n - a. = 1 + ....+ 1 p
n+1 n+p-n+10.

It is important to note that the zero limit lim (a,, - an) = 0
n-.+eo

is not uniform in p. In fact, for the stated properties to hold, this
zero limit cannot be uniform in p since the statement that it is uniform
in p is equivalent to the Cauchy criterion for convergence of a se-
quence (cf. [34], p. 447, Ex. 43).

One form of expressing the principal idea of the preceding paragraph
is the following: If {an} diverges, then there exists a strictly increasing
sequence {pn} of positive integers such that (an+, - an) 0. For
the particular sequence of the partial sums of the harmonic series the
sequence {pn} can be chosen to be {n}, since in this case

an+r.-an = 1 +...+ 1 z n
=n+1 n+n n+n 2'

The following example is related to another aspect of this question
(with.0 (n) = n + pn).

4. For an arbitrary strictly increasing sequence {On} = {-O(n)}
of positive integers, a divergent sequence {an} such that
lim (a*(n) - an) = 0 .
n-.+.o

By induction, 0(n) z n for all n = 1, 2, , and more gen-
erally, .0 (n + k) > n + ¢(k) for all n and k = 1, 2, . Therefore
lim 0(n) = + oo. There are two cases to consider.
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If 0(n) - n is bounded, say ¢(n) - n < K for all n = 1, 2, ,

then the sequence {an} can be chosen to be the sequence of partial
sums of the harmonic series, since

1ao(.)-an=+ 1
+ ...+ 1 5 K 0.n

fi(n) n + 1

If 0(n) - n is unbounded, let k be the smallest positive integer
such that ¢(k) > k, and define a,, to be equal to 1 if n = k, 0(k),
0(0(k)), , and equal to 0 otherwise. Since {4(n)} is strictly in-
creasing there exists a subsequence of {an} identically equal to 1,
and since 0 (n) - n is unbounded there exists a subsequence of {an}
identically equal to 0. Therefore {an} diverges. On the other hand,
a,o(n) = aA for every n = 1, 2, , and therefore ao(n) - an 0.

This example can be generalized in various ways. For example, it is
sufficient to assume merely that 0(n) -* + ao as n -> + -, and it is
possible at the same time to require that {an} be unbounded. Space
does not permit inclusion of the details.

5. Sequences {an} and {bn} such that lim an + lim bn <
lim (an + bn) < lira an + lim bn < lim (an + bn) < fl-m- a. +
lira b

Let {an} and {bn} be the sequences repeating in cycles of 4:

{an}:0,1,2, 1, 0, 1,2, 1,0,1,2,1,0, 1,2,1,
{bn} : 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0,

Then the inequality statement specified above becomes

0 < 1 < 2 < 3 < 4.

6. Sequences {a,.), {as.,}, such that

lim (aln + as,, + ) > lim at,, + lim a2,, +
n_+ao n++ao n.+00

Such an example is given by an = 1 if m = n and ann = 0 if
m 0 n, m, n = 1, 2, , where all infinite series involved converge.
The inequality stated above becomes 1 > 0 .

It should be noted that the inequality exhibited in this example
is impossible if there are only finitely many sequences. For example,
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lira (an + bn) < lira an + lira bn.
n++oo n++oo n++oo

(Cf. [34], p. 59, Ex. 19.)

7. Two uniformly convergent sequences of functions the se-
quence of whose products does not converge uniformly.

On any common domain D let f be any unbounded function and let
the sequences {f n } and { gn } be defined :

fn (x) = f(x), gn(x) = 1/n.

Then fn ---> f and gn -+ 0 uniformly on D , but f,egn -+ 0 nonuniformly
on D. A specific example is D = 61, f (x) = x.

It should be noted that if both sequences are bounded and con-
verge uniformly on D, then the product sequence also converges
-uniformly on D.

8. A divergent sequence of sets.
The limit superior and limit inferior of a sequence {An} of

sets are defined and denoted :
+oo +oo +oo +a,

lim A. = n [ U A,n], lim A. = U [ n Am],
n+oo n-1 m_n n.+oo n_1 ,n_n

respectively. A sequence {An} is convergent if limn...+,, An = limn-.+
An and, in this case, converges to this common value. A sequence of
sets is divergent if it fails to be convergent. Since limn-+ A. =
{x x E infinitely many An} and lim.-+ An = {x I xE all but a finite
number of An}, the oscillating sequence A, B, A, B, A, B, has
limit superior equal to the union A u B and limit inferior equal to
the intersection A n B. Such a sequence therefore converges if
A = B.

The close analogy between this example and the alternating se-
quence { a, b, a, b, } of numbers (cf. Example 1, above) should not
escape notice.

9. A sequence {An} of sets that converges to the empty set but
whose cardinal numbers -). + oo.

Let A. be defined to be the set of n positive integers greater than
or equal to n and less than 2n:
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An= fm ImE i.n5m<2n},
Then, since no positive integer belongs to infinitely many of the
sets of {An}, the limit superior and limit inferior are both empty.

The preceding example can be visualized in terms of placing pairs
of billiard balls, which bear numbers 0, 1, 2, , into a bag while
repeatedly withdrawing one. For example, at one minute before
noon balls numbered 0 and 1 are placed in the bag and ball number
0 is removed. At J minute before noon balls numbered 2 and 3 are
added, and ball number 1 is removed. At 3 minute before noon balls
4 and 5 are added and ball number 2 is taken out. This process is
continued, and the question is asked: "How many balls are in the
bag at noon?" Answer: "None."

Since the natural numbers can be put into a one-to-one correspond-
ence with their reciprocals, and since as subsets of 6t all finite sets are
compact (closed and bounded), all of the sets A. of this example are
compact, and can even be assumed to be u n i f o r m l y bounded (con-
tained in the same bounded interval). If the sequence {An} is as-
sumed to be decreasing (An+1 C A. for n = 1, 2, - - ), then the limit

+00

limn,+a, A. is the same as the intersection fl An, and may be
n l

empty even though the cardinal number of every An is infinite and

even though every A. is bounded (example: S n n + 1 , } f or

closed (example: in, n + 1, }) butt not both. (Cf. [34], p. 201.)
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Chapter 6
Infinite Series

Introduction
Unless explicit statement to the contrary is made, all series con-

sidered in this chapter will be assumed to be real, that is, consisting
of terms that are real numbers. If {sn} is the sequence of partial sums
of an infinite series Ea. = ai + a2 + - - - + an + - - - , that is,
sn = a, + - - - + an for n = 1, 2, - - , the series Ean is said to con-
verge if limn-...F. sn exists and is finite. This limit s is called the sum
of the series >.an, with the alternative notations:

,an= Ean=s.n-l
The series [man is said to diverge if it fails to' converge, that is,
if limn-+.an is infinite or fails to exist. The statement Ean = + o0
means that limn»+,.sn = + °o. A sequence {an} or a series Ean is
nonnegative or positive if an ? 0 for every nor an > 0 for every n,
respectively. Foranonnegativeseries Ean, the statement ) an < + oo
means that the series converges, and the statement Ean = + oo
means that the series diverges.

For certain purposes series may start with a term ao, in which case
Ea should be interpreted to mean E oan, or the sum of this series.
For a power series E+,soanxn, the term aox° should be understood to
mean ao even when x = 0; that is, for present purposes 00 = L For
a Maclaurin series

A-0 n!

the term for n = 0 is f(0); in other words, f(°'(x) = f(x).
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I. Functions of a Real Variable

1. A divergent series whose general term approaches zero.
The harmonic series F1/n.

2. A convergent series Ean and a divergent series Ebn such
that an bn, n = 1, 2, .

Letan 0andb,, = -1/n,n = 1,2,

3. A convergent series F,a,, and a divergent series Ebn such
that bn1,n=

Let Ean be the conditionally convergent alternating harmonic
series E(-1)n+'/n, and let Ebn be the divergent harmonic series
El/n.

4. For an arbitrary given positive series, either a dominated
divergent series or a dominating convergent series.

A nonnegative series Ean is said to dominate a series Ebn if
an >_ I b,, I for n = 1, 2, . . If the given positive series is Ebn,
let an = bn for n = 1, 2, . Then if Ebn diverges it dominates the
divergent series Ea,,, and if Ebn converges it is dominated by the
convergent. series Ean. The domination inequalities can all be made
strict by means of factors I and 2.

This simple result can be framed as follows: There exists no positive
series that can serve simultaneously as a comparison test series for
convergence and as a comparison test series for divergence. (Cf. Example
19, below.)

5. A convergent series with a divergent rearrangement.
With any conditionally convergent series Ean, such as the alter-

nating harmonic series E(-1)"+'/n, the terms can be rearranged
in such a way that the new series is convergent to any given sum,
or is divergent. Divergent rearrangements can be found so that the
sequence {sn) of partial sums has the limit + -, the limit - co, or
no limit at all. In fact, the sequence {sn) can be determined in such
a way that its set of limits points is an arbitrary given closed interval,
bounded or not (cf. Example 2, Chapter 5). The underlying reason
that this is possible is that the series of positive terms of Ean and
the series of negative terms of Ean are both divergent.
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6. Infinite Series

To be specific we shall indicate a rearrangement of the series
E (-1)n+'/n such that the sequence is.) of partial sums has the
closed interval [a, b] as its set of limit points We start with the single
term 1, and then attach negative terms:

1- 1- 1 1 1 1

2 4 6 8 2j
until the sum first is less than a . Then we add on unused positive
terms :

1-2-4- ...-2j+3+5+... +2k+1

1

until the sum first is greater than b . Continuing with this idea we
adjoin negative terms until the sum first is less than a ; then positive
terms until the sum first exceeds b; then negative terms, etc., ad
infinitum. Since the absolute value 1/n of the general term (-1)n+'/n
approaches zero, it follows that every number of the closed interval
[a, b] is approached arbitrarily closely by partial sums sn of the re-
arranged series, for arbitrarily large n. Furthermore, for no number
outside the interval [a, b] is this true.

In the procedure just described, if the partial sums are permitted
to go just above 1, then just below -2, then just above 3, then just
below -4, etc., the sequence of partial sums of the rearranged series
has the entire real number system as its set of limit points.

W. Sierpinski (cf. [43]) has shown that if Ean is a conditionally
convergent series with sum s, and if s' < s, then for some rearrange-
ment involving the positive terms only (leaving the negative terms
in their original positions) the rearranged series has sum s'. A similar
remark applies to numbers s" > s and rearrangements involving only
negative terms. This is clearly an extension of the celebrated "Rie-
mann derangement theorem" (cf. [36], p. 232, Theorem III), illus-
trated in all its essentials by the discussion in Example 5.

In a different direction, there is an extension that reads: If Ean is
a conditionally convergent series of complex numbers then the sums
obtainable by all possible rearrangements that are either convergent
or divergent to oo constitute a set that is either a single line in the
complex plane (including the point at infinity) or the complex plane
in toto (including the point at infinity). Furthermore, if Evn is a
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conditionally convergent series of vectors in a finite-dimensional space,
then the sums obtainable by all possible rearrangements constitute
a set that is some linear variety in the space (cf. [47D.

6. For an arbitrary conditionally convergent series Ean and
an arbitrary real number x, a sequence where I s I = 1
for n = 1, 2, , such that ZEn a, = x.

The procedure here is similar to that employed in Example 5.
Since E I an I = + ao , we may attach factors en of absolute value 1
in such a fashion that el a,+ . +4a. = jail + + I an I > x.
Let n, be the least value of n that ensures this inequality. We then
provide factors en , of absolute value 1, for the next terms in order to
obtain (for the least possible nz):

ela,+... +e,,,an, = Iail+ ... +1an,I
- Ian.+,I - Ia,,I <x.

If this process is repeated, with partial sums alternately greater than
x and less than x, a series Een an is obtained which, since an -> 0
as n -* + oD, must converge to x.

7. Divergent series satisfying any two of the three conditions
of the standard alternating series theorem.

The alternating series theorem referred to states that the series
Ee cn, where I en l = 1 and cn > 0, n = 1, 2, , converges
provided

(i) E. = (-1)"+1, n = 1, 2, ... ,
1<e,,, n=l,2,...,

(iii) limn-+ c = 0.
No two of these three conditions by themselves imply convergence;
that is, no one can be omitted. The following three examples demon-
strate this fact:

(i): Let en = 1, Cn = 1/n, n = 1, 2, . Alternatively, for an
example that is, after a fashion, an "alternating series!' let {en} be
the sequence repeating in triplets: 1, 1, -1, 1, 1, -1, .

(ii) : Let cn = 1/n if n is odd, and let c = 1/na if n is even.
(iii) : Let c,, = (n + 1)/n (or, more simply, let c = 1), n = 1,

2, . .
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6. Infinite Series

8. A divergent series whose general term approaches zero and
which, with a suitable introduction of parentheses, becomes
convergent to an arbitrary sum.

Introduction of parentheses in an infinite series means grouping of
consecutive finite sequences of terms (each such finite sequence con-
sisting of at least one term) to produce a new series, whose sequence
of partial sums is therefore a subsequence of the sequence of partial
sums of the original series. For example, one way of introducing
parentheses in the alternating harmonic series gives the series

1.2)+13-4)+...
1= 12+3.4 +...-{-

Any series derived from a convergent series by means of introduction
of parentheses is convergent, and has a sum equal to that of the given
series.

The final rearranged series described under Example 5 has the
stated property since, for an arbitrary real number, a suitable intro-
duction of parentheses gives a convergent series whose sum is the
given number.

9. For a given positive sequence { bn} with limit inferior zero,
a positive divergent series Ean whose general term approaches
zero and such that limn-+. an. /bn. = 0.

Choose a subsequence bnl, bn27 bnk, of nonconsecutive
terms of {bn} such that limk.+, bnk = 0, and let ank = bnk for k =
1, 2, . For every other value of n :n = mI, m2, m3, , m;,
let a. = 1/j. Then an - 0 as n - + oo, Ean diverges, and ank/bnk =
bnk---> 0 ask->+c.

This example shows (in particular) that no matter how rapidly a
positive sequence {bn} may converge to zero, there is a positive
sequence {an} that converges to zero slowly enough to ensure di-
vergence of the series Ean, and yet has a subsequence converging to
zero more rapidly than the corresponding subsequence of { bn } .

10. For a given positive sequence { bn} with limit inferior zero,
a positive convergent series Ean such that limn. an/bn = + oo.

1
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Choose a subsequence b,,,, bn27 - , b, , of {bn} such that for
each positive integer k, bnk < k-3, and let ank - k for k = 1, 2, .

For every other value of n let an = n-2. Then Ean < + ao, while
ank/b,Ik = k - + 0O

This example shows (in particular) that no matter how slowly a
positive sequence {bn} may converge to zero, there is a sequence
{an} of positive numbers that converges to zero rapidly enough to
ensure convergence of the series Ean, and yet has a subsequence
converging to zero more slowly than the corresponding subsequence
of {bn}.

11. For a positive sequence { c, with limit inferior zero, a
positive convergent series Ean and a positive divergent series
>2b,. such that an/bn = cn , n = 1, 2, . .

Choose a subsequencecn c,,2, , cnk, of {cn} such that for
each positive integer k, c,, < k-2, and let a,, = cnk, bnk = 1 for
k = 1, 2, . For every other value of n let a,, = n-2, bn = (n2cn)-I.

Then Ean converges, diverges since bn -+-* 0 as n -> + 00 , and
an/bn = cn for n = 1, 2,

This example shows (in particular) that no matter how slowly a
positive sequence {cn} may converge to zero, there exist positive
series of which one is convergent and the other is divergent, the
quotient of whose nth terms is c,,.

12. A function positive and continuous for x >_ 1 and such
that f i °f(x)dx converges and F,Aslf (n) diverges.

Example 12, Chapter 4.

13. A function positive and continuous for x z 1 and such
that f i °°f(x)dx diverges and EA-'i f (n) converges.

For each n > 1 let g(n) = 0, and on the closed intervals
[n - n71, n] and [n, n + n-1] define g to be linear and equal to 1 at
the nonintegral endpoints. Finally, define g(x) to be 1 for x > 1
where g(x) is not already defined. Then the function

f(x) = g(x) +
x2

is positive and continuous for x >_ 1, f+1' f(x)dx = + oo, and
f (n) = E.+-1 n-' < + -.
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6. Infinite Series

14. Series for which the ratio test fails.
For a positive series Ean the ratio test states (cf. [34], p. 390)

that if the limit
an-1-1lira - = p

n_++00 an

exists in the finite or infinite sense (0 5 p 5 + ao ), then
(i) if 0 5 p < 1, Fan converges;
(ii) if 1 < p < + -, [man diverges.

The statement that if p = 1 the test fails is more than an empty
statement. It means that there exist both convergent and divergent
positive series for each of which p = 1. Examples are

+.0 1 +`° 1

F and F, -n-' n2 n-1 n'

respectively.
The ratio test may also fail by virtue of the nonexistence of the

limit p. Examples of convergent and divergent positive series are
respectively

+oo
1 1 1 1 1 1c-"4-R =n-12 I+21+24+2$+26+26+...

where

and

where

lien a=+' = 2 and Jim --±1- = 1
n-+ao an n ++oo an

8,

+co

22 +2' +24 +2a+26 +26 + ... ,
R='

lim an+' = 8 and Jim
a+' =

R -.+a0 an n F1o an

A refined form of the ratio test states that if

(iii) lim an+' < 1, Zan converges;
n-+.o an

(iv) Jim a-+1 > 1, > an diverges.
lc--+- an

1

2
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This form of the ratio test may fail as a result of the inequalities

lim an+1 5 1 S lim an+i .

n-:+oo an n-.+co a

Examples for which both equalities and strict inequalities occur are
given above.

15. Series for which the root test fails.
For a nonnegative series > an the simplest form of the root test

states (cf. [34], p. 392) that if

n -+co

exists in the finite or infinite sense (0 <= a 5 + ao ), then
(i) if 0 < Q < 1, [man converges;

(it) if 1 < a S + oo, Ean diverges.
The ratio test and the root test are related by the fact that if
lima-+. exists in the finite or infinite sense, then limn-+a, Van
exists and is equal to it (cf. [34], p. 394, Ex. 31). Consequently, if the
ratio test in the form (a) or (ii), Example 14, is successful, the root
test is also. Furthermore, the first two examples illustrating failure
of the ratio test (Example 14) also serve to exemplify failure of the
root test for the same reason. The last two examples of the failure of
the ratio test illustrate the possibility of success for the root test (cf.
Example 16).

The root test, as stated above, fails for the convergent series

+°° 5(-1)nl-n 1 1 1 1 1+ 2 2+ 132+29+34+25+ 36+ ...
1 (e

since limn-.+ Van = and limn-+. _ }. It also fails for the
divergent series

(5 +

n'1 2

since limn .. = 3 and limn-+ 'Jan = 2.
A refined form of the root test states that if
(iii) lim,. Van < 1, > an converges;
(iv) limn..+a, Va. > 1, Ean diverges.

lim -an = a
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This form of the root test is at least as strong as (actually stronger
than - cf. Example 16) the refined form of the ratio test (Example
14), since (cf. [34], p. 394, Ex. 31)

lim
an+1 < lim lim lim

an+1

n oo an - nFco n.+co n-.+- an

The refined form of the root test establishes convergence and di-
vergence for the preceding two examples, since limn.{ ao -s/an is equal
to J and 3, respectively, for these two series.

The refined form of the root test can fail only by virtue of the
equation -Van = 1. Examples of this type of failure have
already been given.

16. Series for which the root test succeeds and the ratio test
fails. \

The convergent series ) +'c-1)*-n2 for which the ratio test fails
(Example 14) is one for which the root test succeeds. Indeed,

(-1) +- n
= 2 n --> 2-1 = < 1.

Similarly, for the divergent series +- n-(-1)*y, n-o 2 , of Example 14,
A-(-1)*

a- -*21=2>1.

17. Two convergent series whose Cauchy product series di-
verges.

The Cauchy product series of the two series an and F,n=obn
is defined to be the series E+,-o cn, where

cn = Eak b.-,t = ao bn + al bn-1 + + an bo.
k-o

The theorem of Mertens (cf. [36], p. 239, Ex. 20) states that if Lean
converges to A, if D. converges to B, and if one at least of these
convergences is absolute, then the product series a converges to
AB.

Let [man and [fin be the identical series

an = bn = (-1)n(n + 1)-1/2, n = 0, 1, 2,
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Then > an and F_bn converge by the alternating series test (Example
7), while Ecn diverges since

1 1

ICI =
_

N/1 /n + 1 + 1/2 N/3-
+ ...

z 2 _+ 2+ 2_+...+ 2
n+2 n+2 n+2 n+2
2(n + 1) n= 0,1,2, ,

4- 1

1/n+11/1

the first inequality holding since 1/(1 + x)(n + 1 - x) on the closed
interval [0, n] is maximized when x = in.

18. Two divergent series whose Cauchy product series con-
verges absolutely.

The Cauchy product series of the two series

2+2+22+26 +...+2n+..., n= 1,2,...E
-1+1+1 +1 +...+ln+ , n=1,2,...,

is

-2+0+0 +0
More generally, if a, = an for n z 1 and if bn = b" for n z 1, and
if a P& b,-the term c of the product series of ) an and Ebn, for
n z 1, is

c, = ao b" + bo an + a"-' b + an-' b2 + a"-3 b3 + ... abn-i

=sobs+boa"-an-b"+ (an+' -bn+l)/(a-b)
= {an[a + (bo - 1)(a - b)] - bn[b + (1 - ao)(a - b)]}/(a - b),

and therefore cn = 0 in case a = (1 - bo)(a - b) and b =
(ao - 1) (a - b). If a and b are chosen so that a - b = 1 , then as
and bo are given by ao = b + 1 = a, bo = 1 - a = -b.

19 For a given sequence { n = 1, 2, . , of positive
convergent series, a positive convergent series +n=ion, that
does not compare favorably with any series of { 1a,,,}.

1
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The statement that the series E.=,am compares favorably with
the series Em lam., for a fixed positive integer n, means:

3ME Jt?m>M=* am<a.,,,
and therefore the statement that such comparison does not obtain
means:

VMEZ13m>M3am>am..
For all positive integers M and n, define the positive numbers

Sn, Sm., and Run:
+ u +ao

S. = a,nn, SMn = amn, Run = amn,
m'1 mil m-u+1

and for each n E Di choose M(n) so that 1 <_ M(l) < M(2) < -

and

Rkr(i).l < 21,

max (RM(2).l , Ru(2).2) < 2-2,

max (Ru(n).l , , ' ' , Ru(n)..) < 2-n.

For any positive integer m, define am as follows:

12am, if 1 s in 5 M(2),

am = (k + 1)max (aml, amt, - - - , ak)
if M(k)<m5M(k+1)for k>1.

In order to prove that >.am converges, we first establish an in-
equality for the (finite) sum of the terms of this series for M(k) <
m 5 M(k + 1), where k > 1:

Y(k}1) Y(k+l)
Ir [k'am S E L(k + 1) t amn

m-u(k)+1 ,-u(k)+1 nil
k rrmu(k+1) k(k+1)L E am.(k+1)ER,)..nil u(k)+l nil

S (k + 1) E 2-k < (k + 1)22-k.
n@1
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We therefore have
+00 M(2)[ L

M(3)

E am ...[Z am am +
m=I mil m-M(2)+l

M(2) +00 M(k+1)

< 2 aml + am
m=1 k-2 m=M(k)+1

+00

< 2SM(2).1+E (k + 1)22-r` < +oo.
k=2

On the other hand, for any fixed n, whenever k >= n and m > M(k),
am/amn >= k + 1, whence lim,n...0 a./an = + co. Therefore the
series =1 am does not compare favorably with the series E °1 amn.
In fact, the series E iam does not compare favorably with the series
m=1 a,nn even when such favorable comparison is defined:

3MandKE 9 )m>M=> am5Kamn,
or equivalently, when failure to have favorable comparison means:

VMandK E 913m > M D am > Kamn.

A sequence of positive convergent series is called a universal com-
parison sequence if and only if it has the property that a given
positive series converges if and only if it compares favorably with at
least one series of the universal comparison sequence. That is, a
sequence of positive convergent series is a universal comparison
sequence if and only if the convergence or divergence of every positive
series can be established by comparison with some member series of
the sequence. Example 19 shows that no such universal comparison
sequence exists.

20. A Toeplitz matrix T and a divergent sequence that is
transformed by T into a convergent sequence.

An infinite matrix is a real-valued or complex-valued function on
)t X )t denoted T = (t,i), where i and j E 91. In case the infinite

series i; i tiiai, where fail is a given sequence of numbers, con-
verges for every i E i, the sequence {bi}, defined by

+00

b; = tii af,
i.-l

is called the transform of jai} by T. An infinite matrix T = (ti,)
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6. Infinite Series

is called a Toeplitz matrix t iff for every convergent sequence fail
the sequence {bi} is well defined, and the limit limi-+.bi exists and is
equal to the limit lim;.+ a;. An important basic fact in the theory
of Toeplitz matrices is that the following three properties form a
necessary and sufficient set of conditions for an infinite matrix
T = (ti;) to be a Toeplitz matrix (for a proof see [49]):

+oo

(1) 3ME6t ViE9l, EItiiM,
i-1

(2)

(3)

+
lim E ti; = 1,
t-+ao j-1

V jEE, lim tii=0.

Let T be the Toeplitz matrix (tii), where ti; = 1/i if 1 -<- j < i
and tii=0if i <j:

Ii 0 0 0
0 0

T= 3 0
4

4
1 1

The sequence fail = 1, -1, 1, -1, .. , (-1)^+1, , does not
converge, but its transform by T,

1 + (-1)i+1{bi} = 1, 0,I,0,j,...,

2i
...

converges to 0.
More generally, if is any divergent sequence each of whose

terms is either 1 or -1, there exists a Toeplitz matrix T that trans-
forms into a convergent sequence. In fact, T can be defined so
that {a.} is transformed into the sequence every term of which is 0.
Such a matrix T = (ti,) can be defined as follows: Let [nil be a
strictly increasing sequence of positive integers such that a., and
an,+, have opposite signs for i = 1, 2, , and let

1 j if j = ni or j = ni -I- 1,
tii

0 otherwise.

Then T is a Toeplitz matrix that transforms { a } into 0, 0 ,

t Named after the German mathematician Otto Toeplitz (1881-1940).
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21. For a given Toeplitz matrix T = (t;;), a sequence {a,J
where for each j, a; = f1, such that the transform {b;} of
{ail by T diverges.

By reference to conditions (1)-(3) of Example 20, we choose two
sequences i1 < i2 < i3 < , j1 < j2 < j3 < as follows. Let i1
be such that, in accordance with (2), if i >_ i1,

t;;=1+ e1;, le1iI<0.05.,-1

Then let j1 be such that according to (1) and (2),
i l +W

L t;,; = 1 + d, and E I t,,; I < 0.05,
i_t i-i,+1

where I d, I < 0.1.
Next choose i2 > i1 so that for i > i2, according to (2) and (3),

it +00

t;;I <(0.05)andEt;;=1+e2:,Ie2;I <(0.05)2,
;_1

and then choose j2 > j1 so that according to (1) and (2),
12 +0c

t;,; = 1 + d2 and E I t;s; I < (0.05)2,
;_; 2+1

where I d21 < 2(0.05)2.
Having chosen i1 < i2 < < ik and j1 <j2 < < jk, choose

ik+1 > ik so that according to (2) and (3), for i > ik+1,
1k 4+00

tt; I < (0.05)' and E t:; = 1 + ek+1, , I ek+1,1 I < (0.05)k+1,

and then choose jk+1 > jk so that according to (1) and (2),

ik 1f tip+1i = 1 + dk+1, and
1-1

+00

E tik+li I <
j°ie+1+1

where I dk+1 I < 2(0.05)'+1.
Define the sequence {a;} by the prescription:

ai
J 1 for 1 5 j 5 i1j j2 < j S j3,

-1forj1 <j <j2,ja <j 5 j4j
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6. Infinite Series

If k is odd and k > 1, then

bik = !- tikj - F- taw + Z ttkJ - - - -
j-1 j-j1+1 j=j2+1

1kk

+
0000

/ tikj + L, tikj aj

71 72 7 \
Q

j2 `\
tikj - tik7 tikj / ± tikj - tikj J

j"1 1 j=1 / 1 ja1 //

jk- "F4-...
+ ( 7kE tik7 - tikj + E tikl aj-j-1 j-1 j°1"+1

All quantities >;.1 tik j, except E.. 1 t, = 1 + dk, are less than
(0.05)1 in absolute value Thus, since

+00

tibj aj
7°7k+1

tikj I < (0.05)k,
7-7k+1

we see that

bik > 1 - 2(0.05) ' - 2(k - 1)(0-05)k-' - (0.05)k

= 1 - [2(k - 1) + 2.05] (0.05)'1.

Methods of calculus show that the function of k defined on the last
line above is an increasing function for k > 1, and therefore takes on
its least value if k z 3 at the point where k = 3. Therefore, if k is
an odd integer greater than 1:

b,k> 1 -[4+2.05](0.05)2>0.9.

Similarly, for k even, it can be shown that bik < -0.7. Therefore
the sequence f bi} diverges.

Examples 20 and 21 show that although some Toeplitz matrices
transform some sequences whose terms are all =1=1 into convergent
sequences, no Toeplitz matrix transforms all such sequences into
convergent sequences.

A refinement of the preceding technique permits the following
conclusion: If is a sequence of Toeplitz matrices, there is a se-
quence {an} such that I an I = 1 for n = 1, 2, . . . and such that for
each m the transform of {an} by T. is divergent. Indeed, in the context
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I. Functions of a Real Variable

preceding, let {ik} and {jk} be strictly increasing sequences of positive
integers chosen so that the related properties hold as follows: We
choose i, and j' so that the related properties hold for Ti; then
i2 and j2 so that the related properties hold for both Tl and T2; etc.
Let the sequence {an} be defined as in Example 21. For any fixed m
the sequence {an} is transformed into a sequence {bmn} and, since the
numbers ik and jk for k > m constitute sequences valid for the counter-
example technique applied to Tm, it follows that bmn does
not exist for any m.

22. A power series convergent at only one point. (Cf. Example
24.)

The series En =o n! x" converges for x = 0 and diverges for x 0 0.

23. A function whose Maclaurin series converges everywhere
but represents the function at only one point.

The f unction

f(x)
1euX' if x76 0,
0 if x=U

is infinitely differentiable, all of its derivatives at x = 0 being equal
to 0 (cf. Example 10, Chapter 3). Therefore its Maclaurin series

+00 f(n) (O) +.o

x" _ E 0
n_o n! n-0

converges for all x to the function that is identically zero, and hence
represents (converges to) the given function f only at the single point
x=0.

24. A function whose Maclaurin series converges at only one
point.

A function with this property is described in [10], pL 153. The
function

AX) _ en cos n2x,
n-0

because of the factors e -n present in all of the series obtained by
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6. Infinite Series

successive term-by-term differentiation (which therefore all con-
verge uniformly), is an infinitely differentiable function. Its Maclaurin
series has only terms of even degree, and the absolute value of the
term of degree 2k is

x2*e- n4h n2x
2k

(2k) ! > (2k)
for every n = 0, 1, 2, , and in particular for n = 2k. For this
value of n and, in terms of any given nonzero x, with k any integer
greater than e/2x, we have

2k (2ex) > 1.

This means that for any nonzero x the Maclaurin series for f diverges.
The series E +n'.0 n! xn was shown in Example 22 to be convergent

at only one point, x = 0. It is natural to ask whether this series is
the Maclaurin series for some function f (x), since an affirmative
answer would provide another example of a function of the type
described in the present instance. We shall now show that it is in-
deed possible to produce an infinitely differentiable function f(x)
having the series given above as its Maclaurin series. To do this, let
¢no(x) be defined as follows: For n = 1, 2, , let

((n - 1)!)2 if 0 5 z I S 2-n/(n!)2

0 if I z Z 2-n+1/(n!)2

where, by means of the type of "bridging functions" constructed for
Example 12, Chapter 3, Ono(x) is made infinitely differentiable every-
where. Let fi(x) _ 41o(x), and for n = 2, 3, , let

0. (x) = L4flo(t)d..t
Z

4n2(X) = J On1(t) dt,

fn(x) = On.n-1(x) = J x 4)n,n-2(t) dt.
0
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I. Functions of a Real Variable

Thus fn(x) = On.n-2(x), fnn(x) = 0n.n-5(x), ... .0no(x),
fn(n)(x) _ O.o'(x). For any x and 0 s- k n - 2, I fn(k)(x) I

(2-n+i/n2) I X I "-k-2/ (n - k - 2) ! since

onl(x) I < 2-"_'"'/n2,

I < [2-"+1/n2] . I X I,

I I < x I"-?/(n - 2)!.

The series =i fn(k)(x), for each k = 0, 1, 2, , converges
uniformly in every closed finite interval. Indeed, if I x 15 K,

+W too K"-k-2
(k) x <Ifn ( ) I - n=k+272.2"-1 (n - k - 2) 1'

and uniform convergence follows from the Weierstrass AI-test (cf.
[34], p. 445). Hence we see that

+Go

f(x) = E fn(x)n-i

is an infinitely differentiable function such that for k = 0, 1, 2,
+00

t(k)(x) _ Efn(k)(x).n-1

Fork z n 1j n(")(0) _
-Ono(k-n+1)(0) = 0. Forn > 1 and k = n - 1,

fn(k)(0) = Ono(0) = ((n - 1)!)2. For 0 < k < n - 1, fn(k)(0) = 0.
Thus the Maclaurin series for f(x) is 1:'n'-o n! xn.

25. A convergent trigonometric series that is not a Fourier
series.

We shall present two examples, one in case the integration involved
is that of Riemann, and one in case the integration is that of Lebesgue.

+0 .

The series stn nx, where 0 < a < 1, converges for every real
n_1 n

number x, as can be seen (cf. [34], p. 533) by an application of a
convergence test due to N. H. Abel (Norwegian, 1802-1829). How-
ever, this series cannot be the Fourier series of any Riemann-in-
tegrable function f(x) since, by Bessel's inequality (cf. [34], p. 532),
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6. Infinite Series

for n = 1, 2,
fx

12-
+ + ... n 5 J [f (x)]Q dx.

Since f(x) is Riemann-integrable so is (f(x)]2, and the right-hand side
of the preceding inequality is finite, whereas if a 5 j the left-hand
side is unbounded as n -> + oo. (Contradiction.)

+00

The series sm nx also converges for every real number x. Let
n-2 In n

+' sin nxf(x) _ 2 In n

If f(x) is Lebesgue-integrable, then the function

F(x) =
foz

f (t) dt
0

is both periodic and absolutely continuous. Since f(x) is an odd func-
tion (f(x) = -f(-x)), we see that F(x) is an even function (F(x)
F(-x)) and thus the Fourier series for F(x) is of the form

an cos nx,
n-0

where ao = 1 r F(x) dx, and forn >_ 2,

2
an = F(x) cos nx dx

Ir o

-2F(x)sinnx _2 f'F'(x)sinnxdz
it n Ir o n

1_ _2 i f(x) sin n2

n
x dx = -n

Inn.
(F'(x) exists and is equal to f(x) almost everywhere.) Since F(x)
is of bounded variation, its Fourier series converges at every point,
and in particular at x = 0, from which we infer that E'-2 an con-
verges. But since an = -1/(n In n), and ER_2 (-1/(n in n) di-
verges, we have a contradiction to the assumption that f(x) is
Lebesgue-integrable.
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I. Functions of a Real Variable

+`° sin nx
Finally, to show that the trigonometric series Z is not the

n=2 In n
Fourier series of any Lebesgue-integrable function we need the follow-
ing theorem (for a proof see [52] and [53]): If a trigonometric series is
the Fourier series of a Lebesgue-integrable function g, and if it con-
verges almost everywhere to a function f, then f(x) = g(x) almost every-
where and therefore f is Lebesgue-integrable and the given trigonometric
series is the Fourier series of f.

26. An infinitely differentiable function f(x) such that

lime-1.+J(x) = 0

and that is not the Fourier transform of any Lebesgue-in-
tegrable function.

Let {cn}, n = 0, f 1, f2, , be a doubly infinite sequence such
that

+o

E c ein=

n--b

converges for all x but does not represent a function Lebesgue-
integrable on [-i, ir] (cf. Example 25). We shall show that if h(x)
is any infinitely differentiable function that vanishes outside [-i, ],
if h(0) = 2,r, and if

f(x) cnh(x - n),
n-co

then f(x) is a function of the required kind.
Since h(x) vanishes outside [-1, 1], the series that defines f (x)

has only finitely many nonzero terms for any fixed x. Hence, the
series converges for all x and represents some function f(x). By the
same argument, the series converges uniformly in every finite in-
terval as does the series arising by termwise differentiation any finite
number of times, and furthermore

+oo

f(k)(x) = E cnh« >(x - n),
U.-0
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6. Infinite Series

If F(t) is Lebesgue-integrable and satisfies

P(t)e 7'g- dt = f(x),

let
+.0

g(t) _ E F(t + 2irm).

Since F(t) is Lebesgue integrable, g(t) is defined for almost every
t, g(t + tar) = g(t), and

f Ig(t)Idts fF(t+2arm)Idt= f+oD IF(t)I
dt <-1-

x m=-w r J .0

(For references on the preceding facts and the following equality,
see [29], pp. 130-132, pp. 152-153.) We compute:

tar f g(t)e
:++o dt = F(t + 2im )e :nt &

tar m.--c x

+c x

f F(t + 2arm)e "'(t+2,m) dt
2arm r

r+
F(t)e--:n' dt = 1 f(n)tar L 2ar

+°°

= 2i E ckh(n -- k) c=
tar

h(0) _ e,.
L .0

In other words, the c are Fourier coefficients of the Lebesgue-
integrable function g(t). This contradiction establishes the fact that
F(x) is not the Fourier transform of a Lebesgue-integrable function.

27. For an arbitrary countable set E C [-a, a], a continuous
function whose Fourier series diverges at each point of E and
converges at each point of [-a, a] \ E.

The idea behind this example goes back to Fejer and Lebesgue.
An exposition of the details is given in [52], pp. 167-173, where
references to the original papers are also to be found.

28. A (Lebesgue-) integrable function on [-a, a] whose Fourier
series diverges everywhere.
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I. Functions of a Real Variable

This example is due to A. Kolmogorov. Details are given in [52],
pp. 175-179, together with references.

29. A sequence of rational numbers such that for every
function f continuous on [0, 1] and vanishing at 0 (f (0) = 0)
there exists a strictly increasing sequence { n,} of positive in-
tegers such that, with no = 0:

f(x) (
n

xA/v=0 n=n,.±1

the convergence being uniform on [0, 1].
We make a preliminary observation:
For any positive integer m, the set of all polynomials with rational

coefficients and involving only powers x" such that n > m is dense
in the space Co([O, 1]) of all functions continuous on [0, 1] and vanish-
ing at 0, in the "uniform topology" given by the distance and norm
formula:

P(f,9)={If-9llmax{If(x)-9(x)10<=x<_1}.
This follows from the Stone-Weierstrass theorem (cf. [42], p. 288,
and [29], pp. 9-10).

Now let {f"} be an enumeration of a countable dense set of func-
tions in Co([O, 1]). For example, {f"} might be a sequence consisting
of all polynomials with rational coefficients and zero constant term.
Let P1 be such a polynomial for which p(fl, P1) = II f1 - P, II < 1.
Let P2 be such a polynomial for which, among the terms with non-
zero coefficients, the least exponent exceeds the degree of P1, and
for which P(f2 - P1, P2) = 11f2 - (P1 + P2) 11 < . Having de-
fined polynomials P1, P2, , P. in Co([0, 1]) such that their
coefficients are rational and such that:

(a) the "least exponent of Pk+1" > deg Pk, k = 1, 2, , n - 1,

(b) fkP;
i-1

< ,k=1,2,...n,
choose a polynomial in Co([0, 1]) with rational coefficients and
such that

(a') the "least exponent of deg P,,,

74



6. Infinite Series

n+1

(b,)
Ilfn+1 - P; < n+ 1.

Let m, = "least exponent of P;," and let M; = deg P; for every
j E ). Then m; < M, < m,+,, for j E T. The sequence [ an } is
now defined as follows: a1 = a2 = - - = am,_, = 0, a,n, ° coefficient
of xm' in P,, am,+1 = coefficient of xm,+1 in P1, , a.,,, = coefficient
of xM' in P1. In general for 112; < n < m;+l let an = 0; for m;+l
n S M;+,, let an = coefficient of x" in P,. If f E Co([0, 1]), let
0 < k1 < k2 < be such that 11 f - fk 11 < 1/A for every u E )G.
Then

kf-2P, 11f-A,II+
k

fk> t Pi
=1

Hence if no = 0 and n, = Mk, for P E 91 , then

<1+1 <2.
K k µ

nr+l

f(x) _ anxn),
>>0 (n=nL>`-F

where the (grouped) series on the right converges uniformly in
[0, 1].

This startling result is due to W. Sierpinski. Its close similarity to
Example 5, last paragraph, should be noted. In this latter case, a
single series of numbers is obtained, as the result of a rearrangement,
having the property that corresponding to an arbitrary real number x
there exists a subsequence of partial sums - and hence a method for
introducing parentheses in the series - that gives convergence to x.
In the present case there is a single power series having the property
that corresponding to an arbitrary member of Co([0, 1]) there exists a
subsequence of partial sums - and hence a method of introducing
parentheses in the series - that gives uniform convergence to f.
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Chapter 7
Uniform Convergence

Introduction
The examples of this chapter deal with uniform convergence - and

convergence that is not uniform - of sequences of functions on certain
sets. The basic definitions and theorems will be assumed to be known
(cf. [34], pp. 441-462, [36], pp. 270-292).

1. A sequence of everywhere discontinuous functions con-
verging uniformly to an everywhere continuous function.

_ f 1/n if x is rational,
fn(x) - kO if x is irrational.

Clearly, lim,,..+, f,,(x) = 0 uniformly for - oo < x < +
This simple example serves to illustrate the following general

principle: Uniform convergence preserves good behavior, not bad be-
havior. This same principle will be illustrated repeatedly in future
examples.

2. A sequence of infinitely differentiable functions converging
uniformly to zero, the sequence of whose derivatives diverges
everywhere.

If f. (x) = (sin =)/V, then since I f (x) I < 1// this sequence
converges uniformly to 0. To see that the sequence [ ff'(x) } converges
nowhere, let x be fixed and consider

cosnx.
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7. Unifwm Convergence

If x = 0, b = Vn- -p + oo as n -+ + -. We shall show that for any
x P& 0 the sequence {bn] is unbounded, and hence diverges, by showing
that there are arbitrarily large values of n such that I cos nx I z 4.
Indeed, for any positive integer m such that I cos mx I <

Icos2mxI=I200s'mx-11=1-2cos$mx>4,
so that there exists an n > m such that I cos nx I > 4.

3. A nonuniform limit of bounded functions that is not
bounded.

Each function

Jmin(n) if 0 < x S 1,
f*(x) = x

I

is bounded on the closed interval [0, 1], but the limit function f(x),
equal to 11x if 0 < x 5 1 and equal to 0 if x = 0, is unbounded
there.

Let it be noted that for this example to exist, the limit cannot be
uniform.

4. A nonuniform limit of continuous functions that is not
continuous.

A trivial example is given by

A(x) _ Jmin (1, nx) if x z 0,
max (-1, nx) if x < 0,

whose limit is the signum function (Example 3, Chapter 3), which is
discontinuous at x = 0.

A more interesting example is given by use of the function f (cf.
Example 15, Chapter 2) defined :

1
.. p in lowest terms, where p and q are integersx =

q
f(x) and q > 0.

0 if x is irrational.
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I. Fundions of a Real Variable

For an arbitrary positive integer n, define f. (x) as follows: According

to each point p
,

1
, where 1 5 q < n, 0 < p < q, in each interval

(q 4

of the form (p - 2n2 , q ) define

(( x )

q

=min -}-n, 2n x - ,
4 q

in each interval of the form (q , q + 2n2) define

1
fn (x) = Max (n , q - 2n2 (x

and at every point x of [0, 1] at which fn(x) has not already been
defined, let fn(x) = 1/n. Outside [0, 1] fn(x) is defined so as to be
periodic with period one. The graph of f, (x), then, consists of an
infinite polygonal are made up of segments that either lie along the
horizontal line y = 1/n or rise with slope f 2n2 to the isolated points
of the graph of f. (Cf. Fig. 2.) As n increases, these "spikes" sharpen,
and the base approaches the x axis. As a consequence, for each
xE6tandn=1,2,---,

and
f=(x) > fr+1(x),

lim fn(x) = f(x),
n -+90

as defined above. Each function fn is everywhere continuous, but
the limit function f is discontinuous on the dense set Q of rational
numbers. (Cf. Example 24, Chapter 2.)

5. A nonuniform limit of Riemann-integrable functions that
is not Riemann-integrable. (Cf. Example 33, Chapter 8.)

Each function gn, defined for Example 24, Chapter 2, when re-
stricted to the closed interval [0, 1] is Riemann-integrable there,
since it is bounded there and has only a finite number of points of
discontinuity. The sequence [ gn } is an increasing sequence (gn (x) _5
gn+l(x) for each x and n = 1, 2, ) converging to the function f
of Example 1, Chapter 4, that is equal to 1 on Q n [0, 1] and equal
to 0 on [0, 11 \ Q.
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7. Uniform Convergence

I

1

1

2

0 i 1 1 z s 1 s a a
4 3 2 3 4 4 3 2

f,, (x) for n-6

Figure 2

6. A sequence of functions for which the limit of the integrals
is not equal to the integral of the limit.
Let

2n2x if 0 < x S ,

fn(x) n-2n°lx-2n1 if Sx<_n,

0 if 1<x<1.n=
Then

but

lin-i- In(x)dv = li+.2 = 2,
n 4w
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I. Functions of a Real Variable

Another example is the sequence {f (x)} where fa(x)
0 S X S 1.

A more extreme case is given by

if 0<x< 2n'

1 5 x <_ n,f*(x) = a - 2n (x - -J if

in which case, for any b E (0, 1]

while

b

Alien Mx) dx = lim
2

= + co,

b

lira Mx) dx = f 0 dx = 0.
%+* _ 0

IM-16z'

7. A sequence of functions for which the limit of the deriva-
tives is not equal to the derivative of the limit.

If f (x) = x/(1 + n2x2) for -1 5 x 5 1 and n = 1, 2, , then
f (x) = lim,1, f (x) exists and is equal to 0 for all x E [-1, 1] (and
this convergence is uniform since the maximum and minimum values
of ff(x) on [-1, 1] are f 1/2n). The derivative of the limit is identi-
cally equal to 0. However, the limit of the derivatives is

lien f*' (x) = lien
1 - n?x2 1 if x = 0,

o (1 + n2x2)2 0 i f 0 < J X J < 1.

& Convergence that is uniform on every closed subinterval
but not uniform on the total interval.

Let f (x) ° x* on the open interval (0, 1).

9. A sequence If.) converging uniformly to zero on [0, + co) but
such that f o°° dx -4-' 0.

Let fa(x) - 1/n if 0 5 x 5 n,
0 if x>n.
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7. Uniform Convergence

Then f converges uniformly to 0 on [0, + oo ), but

0

A more extreme case is given by

_ 1/n if 05xsn2,
MX) 0 if x > n2.

Then n->+-.
10. A series that converges nonuniformly and whose general
term approaches zero uniformly.

The series EA_1 x"/n on the half-open interval [0, 1) has these
properties. Since the general term is dominated by 1/n on [0, 1) its
uniform convergence to zero there follows immediately. The con-
vergence of the series follows from its domination by the series
E xn, which converges on [0, 1). The nonuniformity of this con-
vergence is a consequence of the fact that the partial sums are not
uniformly bounded (the harmonic series diverges; cf. [34], p. 447,
Exs. 31, 32).

11. A sequence converging nonuniformly and possessing a
uniformly convergent subsequence.

On the real number system (R, let

f* (x) M

X

n

1

n
if n is even.

if n is odd.

The convergence to zero is nonuniform, but the convergence of the
subsequence {&(x)} = {1/2n} is uniform.

12. Nonuniformly convergent sequences satisfying any three
of the four conditions of Dini's theorem.

Dini's theorem states that if J is a sequence of functions defined
on a set A and converging on A to a function f, and if

(i) f,1 is continuous on A, n = 1, 2, . ,
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(ii) f is continuous on A,
(iii) the convergence is monotonic,
(iv) A is compact,

then the convergence is uniform.
No three of these conditions imply uniform convergence. In other

words, no one of the four hypotheses can be omitted. The following
four examples demonstrate this fact.

(i) :.fn(x)
1 if 0<x<n.

Then {f(x)1 is a decreasing sequence for each x , converging non-
uniformly to the continuous function 0 on the compact set [0, 1].

(ii): The sequence {xn} converges decreasingly and nonuniformly
to the discontinuous function

f(x)
(0 if 0 5 x < 1,

1 if x=1
on the compact set [0, 1].

(iii) : Example 6.
(iv): The sequence {x-} on [0, 1).

(0 if x= 0 or 1 5 x 5 1,
n
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Chapter 8
Sets and Measure on the Real Axis

Introduction
Unless a specific statement to the contrary is made, all sets con

sidered in this chapter should be assumed to be subsets of 6t, the
real number system. A v ring, or sigma-ring, is a nonempty class A
of sets that is closed under the operations of countable unions and set
differences (A1, A2, E A = Un:1 A E A and Al \ A2 E A). If
A is any nonempty class of sets, the c-ring generated by A is the
intersection of all v-rings containing A (there is always at least one
v ring containing A, the class of all subsets of (R., so that the generated
v-ring always exists). It is natural to think of the v-ring generated by
A as the smallest v-ring containing A. The v-ring generated by the
class C of all compact subsets of CR is called the class B of Borel sets
(that is, a set is a Borel set if it is a member of the v-ring generated
by Q.

If A is any subset of (R and x any real number, the translate of A
by x is defined and denoted :

x+A= {yI y=x+a,aEA) = {x+aIaEA}.
A class A of sets is closed under translations if

AEA,xECR x + A E A.

If S is a v-ring of subsets of a space X, a set function p with domain
S is nonnegative extended-real-valued if its values, for sets
S E S, satisfy the inequalities 0 <_ p(S) < + -. A nonnegative
extended-real-valued set-function p on a v-ring S is a measure on S
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I. Functions of a Real Variable

if p(p) = 0 and p is countably additive on S:

S1,SE,- E S,S.nSn=0form 76 n
+00 ++*

p ( U Sn / = E "(S.)-n-1 / n-1

If p is a measure on a o-ring S of subsets of a space X, and if X E S,
then the ordered pair (X, S) is called a measure space and p is called
a measure on the measure space (X, S). If the class of sets S is
understood from context, the single letter X may also be used to
indicate a measure space. If p and o are two measures on the same
measure space (X, S), p is absolutely continuous with respect to
o (written p << o) iff

AES,o(A)=0=* p(A)=0.
For any measure p on a measure space (X, S), a null-set for p is
any subset of a member A of S of measure zero: p(A) = 0. A measure
p on (X, S) is complete if every null-set for p is a member of S.

Borel measure is the uniquely determined measure µ on the
measure space (6t, B) that assigns to every bounded closed interval
its length :

µ([a, b]) = b - a if a 5 b.

The class Jff of Lebesgue-measurable sets is the o-ring generated by
the union of B and the class of all null-sets of Borel measure on. B.
Lebesgue measure is the uniquely determined complete measure on
$ whose contraction to B is Borel measure; that is, Lebesgue measure
is the completion, or complete extension, to $ of Borel measure on B.

Since the length of a compact interval [a, b] is invariant under
translations, the o-rings B and fi are closed under translations, and
both Borel and Lebesgue measure are translation-invariant:

AEB,xEft= x+AEB,µ(x+A) =ju(A),
A Ef,xE ax+A E 0,#(x+A) = #(A)

For any set E C at, Lebesgue inner and outer measure are defined
and denoted:

inner measure of E = p*(E) sup {µ(A) I A C E, A E B},

outer measure of E = µ*(E) inf {µ(A) I A :) E, A E }.
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These are also equal to

pc*(E) = sup {µ(A) S A C E, A E B}

= sup{µ(A) I A C E, A compact},

µ*(E) =inf(µ(A)I A :) E, A E B}

= inf {1.(A) [ A E, A open}.

For proofs of the preceding facts, and for further discussion, see
[16], [18], [30], and [32].

We shall occasionally refer to the axiom of choice, or such variants
as the well-ordering theorem or Zorn's lemma. These are sometimes
classed under the title of The Maximality Principle. The reader is
referred to [16], [30], and [46].

It will be assumed that the reader is already familiar with the con-
cept of equivalence relations and equivalence classes. These topics are
treated in references [16] and [22].

1. A perfect nowhere dense set.
A perfect set is a closed set every point of which is a limit point

of the set. A fundamental fact concerning perfect sets is that every
nonempty perfect set A of real numbers - or, more generally, any
nonempty perfect set in a complete separable metric space - is un-
countable; in fact, A has the cardinality t of cR (there exists a one-
to-one correspondence with domain (R and range A). (For a proof
and discussion, see [20], pp. 129-138.)

A nowhere dense set is a set A whose closure A has no interior
points: I(A) = 0 Clearly, a set is nowhere dense if its closure is
nowhere dense, and any subset of a nowhere dense set is nowhere
dense. A less obvious fact is that the union of any finite collection of
nowhere dense sets is nowhere dense. Proof by induction follows from
the special case: If A and B are closed and nowhere dense, then A u B is
nowhere dense. (If U is a nonempty open subset of A u B , then
U \ B is a nonempty open subset of A.)

A celebrated example of a perfect nowhere dense set was given by
G. Cantor (German, 1845-1918), and is known as the Cantor set.
This set C is obtained from the closed unit interval [0, 1] by a se-
quence of deletions of open intervals known as "middle thirds,"
as follows: First delete all points x between 3 and 1. Then remove the
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middle thirds of the two closed intervals [0, }] and [ , 1J remaining:
(, $) and Then remove the middle thirds of the four closed
intervals [0, and [$, 1] remaining:

and (> 4). This process is permitted to continue indefi-
nitely, with the result that the total set of points removed from [0, 1]
is the union of a sequence of open intervals and hence is an open set.
The set C is defined to be the closed set remaining. Since every point
of C is approached arbitrarily closely by endpoints of intervals re-
moved (these endpoints all belong to C), C is perfect. Since there is
no open interval within [0, 1] that has no points in common with at
least one of the open intervals whose points are deleted at some stage,
the (closed) set C is nowhere dense.

The Cantor set C can be defined in terms of the ternary (base
three) system of numeration. A point x E C iff x can be represented
by means of a ternary expansion using only the digits 0 and 2. For
example, 0.022222... and 0.200000... are the endpoints of the first
interval removed, or $ and ;t, respectively, in decimal notation. For
a discussion of this description of C, cf. [18] and [32]; also cf. Example
2, below.

2. An uncountable set of measure zero.
The Cantor set C of Example 1 is uncountable since it is a non-

empty perfect set, and it has measure zero since the set of points
deleted from the closed interval [0, 1] has measure

33.33.3.3.+ .+ .+... =
1

=1.

The ternary expansions of the points of the Cantor set can be
used to show that C has the cardinality t of the real number system
6t. (This method is independent of the one cited above that is based
on the properties of perfect sets.) In the first place, the points of C
are in one-to-one correspondence with the ternary expansions using
only the digits 0 and 2, and therefore (divide by 2) with the binary
expansions using the digits 0 and 1. On the other hand, the non-
terminating binary expansions are in one-to-one correspondence with
the points of the half-open interval (0, 11, and hence with the real
numbers. This much shows that the set of all binary expansions - and
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therefore C - is uncountable, with cardinality at least C. To see that
the cardinality is actually equal to t we need only observe that the
set of terminating binary expansions is countable (or, even more
simply, that C C 6t). For further discussion of the mapping just
described, see Example 14, below.

3. A set of measure zero whose difference set contains a
neighborhood of the origin.

If A is any nonempty set, its difference set, D(A) is the set of all
differences between members of A :

D(A)= {x-yIxEA,y'EA}.
A fact of some importance in measure theory is that whenever A is
a measurable set of positive measure, the origin is an interior point
of the difference set A (cf. [18], p. 68). The Cantor set C of Example 1
is an example of a set of measure zero that has this same property.
In fact, the difference set of C is the entire closed interval [-1, 1]:

D(C) = [-1, 1].

The simplest way to see this is to consider the product set C X C,
and to show that for any number a such that -1 5 a 5 1, the line
y = x + a meets the set C X C in at least one point. (Cf. [10], p. 110,
where references are given.) Since C is obtained by a sequence of
removals of "middle thirds," the set C X C can be thought of as
the intersection of a countable family of closed sets C1, C2, ,

each of the sets C. being a union of "corner squares" as follows
(cf. Fig. 3): The set C1 consists of four 3 by } closed squares located
in the corners of the total square [0, 1] X [0, 1] : [0, 3] X [0, 3],
[0, 81 X [3, 11, [3, 1]X [0, 3], and [3, 1] X [3, 11; the set C2 consists of
sixteen 3 by 3 closed squares located by fours in the corners of the
four squares of Cl; the set C3 consists of sixty-four r by y squares
located by fours in the corners of the sixteen squares of C2; etc.
For any given a E [-1, 1], the line y = x + a meets at least one of
the four squares of Cl; choose such a square and denote it S1. This
line must also meet at least one of the four squares of C2 that lie
within Sl; choose such a square and denote it S2. If this process is
continued, a sequence of closed squares {SA} is obtained such that
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N H

Figure 3

H H
S,+1 C S. for n = 1, 2, . Since the side of S is 3-", there is
exactly one point (x, y) that belongs to every square of the sequence
{S"} (cf. [34], p, 201, Ex. 30). The point (x, y) must therefore belong
to C X C, and since this point must also lie on the line y = x + a,
we have the desired members x and y of C whose difference is the
prescribed number a.

4. Perfect nowhere dense sets of positive measure.
The process used to obtain the Cantor set C of Example 1 can be

modified to construct a useful family of perfect nowhere dense sets.
Each of these sets, to be called a Cantor set, is the set of points
remaining in [0, 1] after a sequence of deletions has taken place as
follows: If a is an arbitrary positive number less than 1, first delete
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from [0, 1] all points of the open interval (2 - 4a, 2 + ice), of length
Za and midpoint 2. From the two remaining closed intervals [0,

2
4a] and [2 + 4a, 1], each of length 2(1 - Za), remove the

middle open intervals each of length 8a. Then from the four closed
intervals remaining, each of length ¢(1 - ice - 4a), remove the
middle open intervals each of length a/32. From the eight closed
intervals remaining, each of length 1(1 (1 - Za - 4a - 'a), remove
middle open intervals each of length a/128. After n stages the measure
of the union of the open intervals removed is a (2 + 4 + + 2-n),
and therefore the measure of the union of the open intervals removed
in the entire sequence of removal operations is a. The measure of
the remaining Cantor set is 1 - a. For this reason, Cantor sets
defined in this fashion are often called Cantor sets of positive
measure. They are all perfect nowhere dense sets. It will be shown
in Example 23, below, that all Cantor sets, of positive or zero measure,
are homeomorphic (cf. Introduction, Chapter 12). It will follow,
then, from the second paragraph of Example 2, above, that every
Cantor set has cardinality t equal to that of 1t.

A third construction of a Cantor set is the following: Let 0 < (3 < 1
and let {fn} be a sequence of positive numbers such that ZnZZ 2nQn
= a. Delete from [0, 11 the open interval Io, centered at 2 and of
length /30. Then from [0, 1] \ lo, delete two open intervals I,', I12,
each centered in one of the two disjoint closed intervals whose union
is [0, 1] \ Io and each of length #1. Continue deletions as in the pre-
ceding constructions: At the nth stage of deletion, 2n open intervals,
In', In2, , In2", properly centered in the closed intervals consti-
tuting the residue at the (n - 1)st stage and each of length (3n, are
deleted, n = 1, 2, .

5. A perfect nowhere dense set of irrational numbers.
A final example of a perfect nowhere dense set can be constructed

by making use of a sequence {rn} whose terms constitute the set of
all rational numbers of (0, 1). Start as in the definition of the Cantor
set C, but extend the open interval so that the center remains at 2,
so that its endpoints are irrational, and so that the enlarged open
interval contains the point rl. At the second stage remove from each
of the two remaining closed intervals an enlarged open middle "third"
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in such a way that the midpoints remain midpoints, the endpoints
are irrational, and the second rational number r2 is removed. If this
process is repeated according to the indicated pattern, a perfect
nowhere dense set D remains, and since all rational numbers between
0 and 1 have been removed, this "Cantor" set D consists entirely of
irrational numbers, except for the two points 0 and 1. If the endpoints
of the original interval are chosen to be irrational numbers, a perfect
nowhere dense set can be constructed in this fashion so that it consists
entirely of irrational numbers.

6. A dense open set whose complement is not of measure zero.
Let A be a Cantor set of positive measure in [0, 1], and let B =-

A' = a\ A. Then B is a dense open set whose complement A has
positive measure.

7. A set of the second category.
A set is said to be of the first category if it is a countable union

of nowhere dense sets. Any subset of a set of the first category is a
set of the first category, and any countable union of sets of the first
category is a set of the first category. The set Q of rational numbers
is of the first category. A set is said to be of the second category
if it is not of the first category. An example of a set of the second
category is the set 61 of all real numbers. More generally, any complete
metric space is of the second category (cf. [36], p. 338, Ex. 33). This
general result is due to R. Baire (cf. [1], p. 108, [20], pp. 138-145,
and [27], p. 204). It follows from this that the set 61 \ Q of irrational
numbers is of the second category. We outline now a proof - inde-
pendent of the general theorem just cited - that any set A of real
numbers with nonempty interior I(A) is of the second category.
Assume the contrary, and let C be a nonempty closed interval [a, b] ,

interior to A, and let C = F, u F2 u , where the sets F are closed
and nowhere dense, n = 1, 2, .. . Let C, be a closed interval [a,, b,]
C (a, b) \ F,; let C2 be a closed interval [a2, b2] c (a,, b,) \ F2; in
general, for n > 1, let C. = [a., b,.] C (a.-,, F,,. Then there
exists a point p belonging to every C,,, n = 1, 2, (cf. [34], p. 201,
Ex. 30), whence p E C. But this is impossible since p belongs to
no F , n = 1, 2, . (Contradiction.)
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& A set that is not an F, set.
Recall (Example 23, Chapter 2) that an F, set Is a set that is a

countable union of closed sets. Examples of F. sets abound: finite
sets, closed intervals, open intervals (for example, (0, 1) is the union
of the sets [1/n, (n - 1)/n]), half-open intervals, Q (if the rational
numbers are arranged in a sequence ri, r2, , then Q is the union
of the one-point closed sets {r1}, {r2}, , {rn}, ). An example
of a set that is not an F. set is the set 6t \ Q of irrational numbers. To
prove this, assume the contrary, and let 6t \ Q = C1 U C2 u ,

where C. is closed, n = 1, 2, . . Since no subset of the set 6t \ Q
of irrational numbers has an interior point, every closed subset of
6t \ Q is nowhere dense, and this implies that 6t \ Q is of the first
category. (Contradiction; cf. Example 7.)

9. A set that is not a Ga set.
A set A is said to be a Ga set if it is a countable intersection of

open sets. It follows from the de Morgan laws for set-complemen-
tation:

+W )JI +oo
I

U A. n An,
n=1 n=1

nAn = UAn')n-1 n-1

+' +m

(

that a set A is a Ga set if its complementary set A' = 6t \ A is an
F. set. Therefore, since the set 6t \ Q of irrational numbers is not an
F. set, the set Q of rational numbers is not a Ga set.

If countable unions of Ga sets and countable intersections of F, sets
are formed, two new classes of sets are obtained, called Ga, sets and
F,a sets, respectively. In fact, two infinite sequences of such classes
exist: labeled F F,a, F,a and Ga, Ga G0,a, . . For a treatment
of these sets, cf. [20].

10. A set A for which there exists no function having A as its
set of points of discontinuity.

Let A be the set 6t \ Q of irrational numbers. Then since A is not
an F, set there is no real-valued function of a real variable whose set
of points of discontinuity is A (cf. the final remark of Example 23,
Chapter 2). In other words, there is no function from 6t to 61 that is
continuous at every rational point and discontinuous at every ir-
rational point. (Cf. Example 15, Chapter 2.)
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11. A nonmeasurable set.
The axiom of choice provides a means of constructing a set that is

not Lebesgue-measurable. In fact, the set thus produced cannot be
measurable with respect to any nontrivial countably additive trans-
lation-invariant measure. More specifically, if µ is a measure function
defined for all sets A of real numbers, finite-valued for bounded sets,
and such that

µ(x + A) = µ(A)

for every x E 6t and A C 6t, then µ(A) = 0 for every A C 6t. We
shall now prove this fact.

We start with an equivalence relation defined on (0, 1] X (0, 1]
as follows: x - y iff x - y E Q. By means of N the half-open interval
(0, 1] is partitioned into disjoint equivalence classes C. The axiom of
choice, applied to this family of equivalence classes, produces a set
A having the two properties: (1) no two distinct points of A belong
to the same equivalence class C; (2) every equivalence class C
contains a point of A. In terms of the equivalence relation r., these two
properties take the form: (1) no two distinct members of A are
equivalent to each other; (2) every point x of (0, 1] is equivalent to
some member of A. We now define, for each r E (0, 1], an operation
on the set A, called translation modulo 1, as follows:

(r +A) (mod 1)[(r+A)u ((r - 1)+A)]n(0,1]
_ {(r+A)n(0,1J}u{((r- 1)+A)n(0,1]).

The two properties of the set A stated above imply, for translation
modulo 1: (1) any two sets (r + A)(mod 1) and (s + A)(mod 1)
for distinct rational numbers r and s of (0, 1] are disjoint; (2) every
real number x of (0, 1] is a member of a set (r + A)(mod 1) for
some rational number r of (0, 1]. In other words, the half-open
interval (0, 1] is the union of the pair-wise disjoint countable col-
lection J (r + A) (mod 1)), where r E Q n (0, 1]. An important
property of the sets obtained from A by translation modulo 1 (on the
basis of the assumptions made concerning µ) is that they all have the
same measure as A:
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µ((r + A)(mod 1))

=ts((r+A)n(0,1])+u(((r-1)+A)n(0,1])
= µ((r + A) n (0, 1]) + µ((r + A) n (1, 2])

=1,,((r+A)n(0,2)) =vi(r+A) =t,(A)
On the assumption that A has positive measure we infer from the
countable additivity of ;&:

i((0, 1]) = reQE A)(mod 1)) =

which is impossible since (0, 1] is bounded. Consequently µ(A) = 0,
and

tL((0, 1]) -((r + A)(mod 1)) = E µ(A) = 0,r.Qnco.

whence
+00 +00

u((n, n + 1]) _ "L).((O, 1]) = 0.

As a consequence of this, ;& is the trivial measure function for which
every set has measure zero.

Finally, since Lebesgue measure is a nontrivial translation-invariant
measure for which bounded intervals have positive finite measure,
the detailed steps just presented show that the set A is not Lebesgue-
measurable.

Since all F, sets and all Ga sets are Borel sets, and therefore measur-
able, the preceding nonmeasurable set is an example of a set that is
neither an F, set nor a Go set.

The construction just described can be looked at in terms of sets
on a circle, as follows: In the complex plane e, let the unit circle
5 _ {z I z E (a, 1 z I = 1) be regarded as a group under multiplication.
For each z E i there is a unique 0, 0 5 0 < 1, such that z = e2riO.
Let io E. (z I z = etre, B E Q, 0 < 0 < 1). Then Jo is a normal
subgroup; and the quotient group 9 = 5/5o exists. If 9 is a one-to-one
preimage of 8 in 5 (a complete set of representatives in 3), obtained
by the use of the axiom of choice, and if Lebesgue measure µ on [0, 1)
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is carried over to a measure µ on a by the rule:

E e 3 is measurable if F={ 8 1 e2"e E E, , 0 8< 1}

is Lebesgue-measurable and ,.(E) _- 2irµ(F),

then S is not measurable. Indeed, U e,Qn t oa) e2r08 is a countable disjoint
union of sets, each of which is measurable, all with the same measure,
if 3 is. Furthermore, this union is 3 since 9 is a complete set of repre-
sentatives, whence 3 is a countable disjoint union of measurable sets,
all of the same measure, if 9 if measurable. Since µ(3) = 21r, we see
u(3) cannot be positive. But if µ(8) = 0, then µ(3) = 0.

The procedures outlined above can be extended to more general
topological groups, for example to compact groups having countably
infinite normal subgroups. (For definitions and discussions of group,
normal subgroup, etc., cf. [22]. Similarly, for topological groups cf.
[29].)

12. A set D such that for every measurable setA,(D n A) = 0
and p*(D n A) = µ(A).

A set D having this property may be thought of, informally, as
being the ultimate in nonmeasurability - D is as nonmeasurable as
a set can be! The set D, as is the case with the nonmeasurable set A
of Example 11, is again constructed with the aid of the axiom of
choice, but the details are somewhat more complicated. For a com-
plete discussion, see [18], p. 70. This example shows that every
measurable set A contains a subset whose inner measure is equal to
zero and whose outer measure is equal to the measure of A. It also
shows that every set of positive measure contains a nonmeasurable subset.

F. Galvin has given a construction of a family {Et}, 0 5 t 5 1,
o f pairwise disjoint subsets of [0, 1] such that each has outer measure 1.

13. A set A of measure zero such that every real number is a
point of condensation of A.

A point p is a point of condensation of a set A if and only if
every neighborhood of p contains an uncountable set of points of A .
Let C be the Cantor set of Example 1, and for any closed interval
[a, 01, where a < 9, define the set C (a, $) :

C(a, 0) m {a + ($ - a)x I x E C}.
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Then C(a, $) is a perfect nowhere dense set of measure zero. Let B
be the set that is the union of all sets C(a, $) for rational a and 0,
where a < ft. Since B is the union of a countable family of sets of
measure zero it is also a set of measure zero. On the other hand, since
every open interval I must contain a set C(a, f), and since every
C(a, i) is uncountable, every real number must be a point of conden-
sation of B. (Cf. [14], p. 287.)

14. A nowhere dense set A of real numbers and a continuous
mapping of A onto the closed unit interval [0, 11.

The set A can be any Cantor set (Examples 1 and 4), since all
Cantor sets are homeomorphic (Example 23). We shall describe a
specific mapping ¢ for the Cantor set of Example 1. The mapping is
that described in the second paragraph of Example 2: For any x E C,
let O.clc2c3 . . . be its ternary expansion, where c = 0 or 2, n = 1, 2,

,and let

clow 0
Ci ca

2 2 2 '

where the expansion on the right is now interpreted as a binary
expansion in terms of the digits 0 and 1. It is clear that the image of
C, under.0, is a subset of [0, 11. To see that [0, 1] C ¢(C), we choose
an arbitrary y E [0, 1] and a binary expansion of y:

y = O.b1b2b3 .. - .

Then

x = 0.(2b1)(2b2)(2b3)...

(evaluated in the ternary system) is a point of C such that 0(x) = y.
Continuity of jp is not difficult to establish, but it is more conveniently
seen in geometric terns as discussed in the following example, where
the mapping 0 is extended to a continuous mapping on the entire
unit interval [0, 1].

It should be noted that .0 is not one-to-one. Indeed, this would be
impossible since C and [0, 1] are not homeomorphic, and any one-to-
one continuous mapping of one compact set onto another is a homeo-
morphism (cf. [34], p. 192). (The set C is totally disconnected, having
only one-point subsets that are connected, whereas its entire image
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[0, 1] is connected.) An example of two points of C that have the
same image is the pair 0.022000000... and 0.020222222 , since
their images are 0.011000000 and 0.010111111- - = 0.011000000. In
fact, two points x1 and x2 of C have the same image, under ¢ , if and
only if they have the form:

X1 = 0.c1c2 and x2 = 0.c1c2 . cn0222 . - .

In other words, 0(xl) = ¢(x2) if x1 and x2 are endpoints of one of the
open intervals deleted from [0, 1] in the construction of C. Therefore
0 is an increasing function on C, and strictly increasing except for
such pairs of endpoints. (Cf. Example 30.)

The following general theorem is an extension of the preceding
"existence theorem," indicating what is possible in metric spaces for
both continuous and homeomorphic (topological) images of the Cantor
set (actually, of any Cantor set, by Example 23) and its subsets (for
definitions, cf. the Introduction to Chapter 12) : Every separable
metric space is a continuous image of a subset of the Cantor set. Every
compact metric space is a continuous image of the Cantor set. Every
compact totally disconnected metric space is a homeomorphic image of a
closed subset of the Cantor set. Every compact totally disconnected perfect
metric space is a homeomorphic image of the Cantor set. (Cf. [1], pp.
119-122.)

15. A continuous monotonic function with a vanishing de-
rivative almost everywhere.

The function defined in Example 14 can be extended so that its
domain is the entire unit interval [0, 1], as follows: If X E [0, 11 \ C,
then x is a member of one of the open intervals (a, b) removed from
[0, 1] in the construction of C, and therefore 4(a) = 0(b); define
c(x) _ 0(a) = ¢(b). In other words 0 is defined to be constant on
the closure of each interval removed in forming C. On the interval
[3, 3],

q5(x) = 2. On the intervals [97 9] and [$, 9], the values of 4>
are 4 and I, respectivelyOn the intervals -f, ], [8;, fl fl,
and [;, 4], the values of are 8, -, $, and W, respectively. If this
process is repeated indefinitely, we see that the function q5 with
domain [0, 1] is increasing there, and (locally) constant in some
neighborhood of every point of [0, 1] \ C. (Cf. Fig. 4.) Since -0 is
increasing on [0, 1] and since the range of 0 is the entire interval
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Figure 4

[0, 1], 0 has no jump discontinuities. Since a monotonic function can
have no discontinuities other than jump discontinuities (cf. [34], p.
52, Ex. 24), 0 is continuous. Since 0 is locally constant on the open
subset [0, 1] \ C, which has measure 1, ¢'(x) = 0 almost everywhere
in [0, 1]. The function 0 just defined is called the Cantor function.

In much the same way as the Cantor function is defined in terms
of the Cantor set, other "Cantor functions" can be defined in terms
of other Cantor sets (of positive measure). Perhaps the simplest way,
in terms of a given Cantor set A on [0, 1], to define the corresponding
Cantor function g is to define g first on the closures of the successively
removed intervals: on the central interval, g(x) = J; on the next two
the values of g are J and -, on the next four the values are g, #, g-, 1,
etc. On the dense subset [0, 1] \ A, g is increasing and its range is
dense in [0, 1]. Therefore the domain of g can be extended to [0, 1]
so that g is increasing and continuous on [0, 1], with range [0, 1].

By mating use of Example 5-a "Cantor set" of irrational
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numbers - it is possible to construct a function h that is increasing
and continuous on [0, 1], .with range [0, 1], and such that h'(x) = 0
for every rational number x E [0, 1]. In fact, the range of h(x) for
rational x E [0, 1) can be made equal to the entire set Q n [0, 1] of
rational points of [0, 1], instead of simply those of the form m/2" as
in the preceding cases. In this way we obtain a function satisfying
the requirements of Example 11g, Chapter 1.

For a strictly monotonic example, see Example 30.

16. A topological mapping of a closed interval that destroys
both measurability and measure zero.

If 0 is the Cantor function of Example 15, define a function ¢ by:

$(x)x+O(x), 0<x<_ 1,
with range [0, 2]. Since 0 is increasing on [0, 1], and continuous there,
4, is strictly increasing and topological there (continuous and one-to-
one with a continuous inverse on the range of 4,). Since each open
interval removed from [0, 1] in the construction of the Cantor set C
is mapped by 4, onto an interval of [0, 2] of equal length, µ(4,(I \ C)) =
µ(I \ C) = 1, whence µ(,,(C)) = 1. Since C is a set of measure zero,
4, is an example of a topological mapping that maps a set of measure
zero onto a set of positive measure. Now let D be a nonmeasurable
subset of ,,(C) (cf. Example 12). Then V1(D) is a subset of the set C
of measure zero, and is therefore also a (measurable) set of measure
zero. Thus ¢ is an example of a topological mapping that maps a
measurable set onto a nonmeasurable set. (See also Example 23.)

17. A measurable non-Borel set.
The set ¢-1(D) of Example 16 is a measurable set, but since it is

the image under a topological mapping of a non-Borel set D, V1(D)
is not a Borel set. (Cf. [20], p. 195.)

18. Two continuous functions that do not differ by a constant
but that have everywhere identical derivatives (in the finite
or infinite sense).

This example was given by Rey Pastor [38] (also cf. [10], p. 133).*

* The example given by Pastor is in error. For a correct example see S. Sake,
Theory of the integral, Warsaw (1937), pp. 205-206.
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Let 0 be the Cantor function of Example 15. On the unit interval
[0, 1] define the function h(x) to be equal to zero on the Cantor set
C, and on each open interval (a, b) removed in the construction of
C define h(x) so that its graph consists of two congruent semicircles
with diameter on the x axis, one semicircle lying above the x axis on
the left-hand half of (a, b) and the other semicircle lying below the
x axis on the right-hand half of (a, b):

I r(b - a+ - (x - 3a + b)2J12
if a < x a 'L` 4 ) 2 '

-C\b
4

a/2 - \\(x - a + 3b)2]'/2
if a

2
b x< b.

/Then h is everywhere continuous on the interval [0, 1]. Finally, let
f(x) = 20(x) + h(x) and g(x) = i(x) + h(x). Then f'(x) = g'(x)
for 0 5 x 5 1: for every x of the Cantor set C, f'(x) = g'(x) _ + 00 ;
for every x that is the midpoint of an interval removed in the forma-
tion of C, f' (x) = g'(x) = - 00 ; for every other x E [0, 1] \ C,
f'(x) = g'(x) = h'(x). On the other hand, f(x) - g(x) = 0(x), and
¢(x) is not a constant function.

19. A set in [0,. 11 of measure 1 and category I.
First example: Let A. be a Cantor set in [0, 1] of measure (n - 1)/n,

n = 1, 2, , and let A = A, u A2 u . Then, since A. is nowhere
dense, for n = 1, 2, , A is of the first category. On the other hand,
since

µ(A) 1

n

forn = 1.

Second example: A second such set is given by the complement
(relative to the unit interval) of the set of the second example
under Example 20, below.

20. A set in [0, 1] of measure zero and category II.
First example : If A is the set of the first example under Example 19,

above, then its complement A' = [0, 1] \ A is of the second category
(if it were of the first category, the interval [0, 1) would be a union
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of two sets of the first category and hence also of the first category),
and of measure zero (µ([0, 1] \ A) + u(A) = 1).

Second example: Let Q n [0, 1] be the range of a sequence {rn] ,

and for each pair of positive integers k and n, let Ikn be an open

interval containing r and of length < 2-1,-n. If Ak = U Ikn, and
n=1

Bk = [0, 1] \ Ak, then Ak is an open set containing Q n [0, 1] and
having measure µ(Ak) < 2-71, and hence Bk is a compact nowhere
dense set of measure u(Bk) > 1 - 2 k. (The measure of Ak is less
than or equal to the sum of the lengths of the intervals Ikn, n = 1, 2,

and Bk can have no interior points since it consists of irrational

points only.) Therefore the set B = U Bk is a subset of [0, 1] of
k=1 +

measure 1 and of the first category; the set A= n Ak = [0, 1] \ B
k=1

is a subset of [0, 1] of measure zero and of the second category.

21. A set of measure zero that is not an F, set.
First example: The first example under Example 20 cannot be a

countable union of closed sets F1, F2j , since if it were, each F.
would be a closed set of measure zero and therefore nowhere dense.
But this would mean that the set under consideration would be of
the first category. (Contradiction.)

Second example: The second example under Example 20, for the
same reasons as those just given, has the stated properties.

Third example: The non-Borel set of Example 17 is of measure
zero, but cannot be an F. set since every Fo set is a Borel set.

22. A set of measure zero such that there is no function
Riemann -integrable or not - having the set as its set of points
of discontinuity.

Each set under Example 21 is such a set, since for any function on
(R into (R the set of points of discontinuity is an Fo set (cf. Example 23,
Chapter 2; also cf. Example 8, Chapter 4).

The present example is of interest in connection with the theorem:
A necessary and sufficient condition for a real-valued function defined
and bounded on a compact interval to be Riemann-integrable there, is
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8. Sets and Measure on the Real Axis

that the set of its points of discontinuity be of measure zero (cf. [36],
p. 153, Ex. 54). A careless reading of this theorem might lead one to
believe that every set of measure zero is involved, since the condition
of the theorem is both necessary and sufficient.

23. Two perfect nowhere dense sets in [0, 1] that are homeo-
morphic, but exactly one of which has measure zero.

We shall prove even more: If C is the Cantor set on [0, 1] of measure
zero and if A is any Cantor set on [0, 1] of positive measure, then
there exists a homeomorphism f of [0, 1] onto [0, 1] such thatf(C) = A .

An immediate consequence of this will be the corollary that all Cantor
sets are homeomorphic.

The idea of the mapping is similar to that of the original Cantor
function (Example 15) : Arrange the intervals II, 12, and the
intervals J1, J2, - deleted from [0, 1] in the formation of C and A,
respectively, in the same "order sense." That is, let I, and J, be the
middle intervals first removed; then let 12 and J2 be the "left middles"
and Is and Js be the "right middles" next removed, etc. Then map
the closure of I. onto the closure of J. linearly and increasingly, for
n = 1, 2, . Then f is defined and strictly increasing on a dense
subset of [0, 1], and since its range is also dense on [0, 1], the con-
tinuous extension of f to [0, 11 is immediate, as described in the second
paragraph under Example 15. (Cf. Fig. 5.) The present function f is
a second example of the type called for in Example 16.

24. Two disjoint nonempty nowhere dense sets of real num-
bers such that every point of each set is a limit point of the
other.

Let A be any Cantor set in [0, 1], and let B be the subset of A
consisting of all endpoints of the open intervals that were deleted
from [0, 1] in the construction of A, and let E - A \ B. Then B
and E satisfy the requirements.

If the containing space is not restricted to being 6t , examples are
easily constructed. For instance, in the Euclidean plane two sets
satisfying the stated conditions are the set of rational numbers on
the x axis and the set of irrational numbers on the x axis.
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A

C

Figure 5

25. Two homeomorphic sets of real numbers that are of
different category.

We start by defining an increasing continuous function on [0, 1]
that is similar to a Cantor function as defined in the second paragraph
under Example 15. In the present instance let be the sequence
of open sets removed from [0, 1] in the construction of a Cantor set
A, as described in Example 23, and let {sn] be a one-to-one mapping
of OZ onto Q n (0, 1) . Define the sequence Jr.) as follows: let rl = sl;
let r2 = s where n is the least positive integer such that s,, < ri;
let r3 - sn where n is the least positive integer such that sn > r1.
Then let r4 = sn where n is the least positive integer such that sn < r2;
let rs - sn where n is the least positive integer such that r2 < sn < rl;
let rg = sn where n is the least positive integer such that rl < sn < r3;
let r, = sn where n is the least positive integer such that sn > r3.
If this procedure is continued, the rational numbers between 0 and 1
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8 9 10 11 12 13 14 15

0 r4 r2 r6 rl r6 r$ r7 1

J4 J2 J6 Jl

0

Figure 6

J6 J3 JI

are arranged in a sequence in such a way that their order relation
corresponds to that of the sequence of intervals J., as indicated in
Figure 6. In other words, rm < rA if and only if J. lies to the left of J.
We now define the function f so that f (x) = r if x belongs to the
closure J. of J., n = 1, 2, . As in Example 15, f is defined and
increasing on a dense subset of [0, 1], with range dense in [0, 1], and
can be extended to a continuous increasing function mapping [0, 1]
onto [0, 1]. If B and E are defined as in Example 24, then f maps B
onto the set Q n (0, 1), and E onto the set (0, 1) \ Q of all irrational
numbers between 0 and 1. In this latter case, the mapping between
E and (0, 1) \ Q is strictly increasing and bicontinuous. (The continuity
of the inverse mapping follows from the order-relationship among the
points of E and the correspondence to that order-relationship among
the points of- (0, 1) \ Q.) Therefore E and (0, 1) \ Q are homeomorphic.
That is, any Cantor set shorn of its "endpoints" is homeomorphic to the
set of irrational numbers between 0 and 1. But E is nowhere dense and
hence of the first category, whereas (0, 1) \ Q is of the second category
(cf. Example 7).

It should be noted that, in contrast to the sets of Example 23, the
homeomorphism of the present Example cannot be induced from a
homeomorphism between containing intervals. (If two spaces are
homeomorphic and if two sets correspond under this homeomorphism,
then if one is nowhere dense so is the other; If one is of the first
category, then so is the other.)

26. Two homeomorphic sets of real numbers such that one is
dense and the other is nowhere dense.

If, in Example 25, the rational numbers are not restricted to
the interval (0, 1) but are permitted to encompass the entire set Q,
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then a homeomorphism between E and the set Q' = 61 \ Q of all
irrational numbers is obtained. The set E is nowhere dense, and the
set Q' is dense. (Cf. the final paragraph under Example 25.)

27. A function defined on 6t , equal to zero almost everywhere
and whose range on every nonempty open interval is 6t.

We shall arrive at the construction of a function f having the stated
properties in stages. Our first goal is to define a function g on the
open interval (0, 1) that maps the set C n (0, 1), where C is the Cantor
set of measure zero, onto 6t. If 0 is the Cantor function (Example
15), then g can be defined :

g(x) = tan [,r(¢(x) - )], 0 < x < 1.
The second step is to define, for an arbitrary open interval I -

(a, b), a subset Zr of measure zero and a function gr with domain Z,
and range 6t This can be done as follows:

Zr= {a+ (b- a)xlx E Cn(0,1)},
x -a xEZr.( _ a) '

We start defining the desired function f by letting it be equal to
zero on the set g of integers. We now define a sequence { U. } of open
sets as follows: Let Ul = 61 \ g, which is the union of all open in-
tervals of the form (n, n + 1), where n is an integer. In each of these
intervals I let Zr be the set of measure zero defined above, and on the
set Zr define f to be equal to gr. The subset U2 of U1 where f has not
yet been defined is an open set, and therefore a union of disjoint
open intervals. In each of these intervals I let Zr be the set of measure
zero defined above, and on the set Zr define f to be equal to gr.
The subset U3 of U2 where f has not yet been defined is again an open
set, and therefore a union of disjoint open intervals. If the sets Zr
are again defined as above, the domain of the function f can once more
be extended, to include these sets of measure zero. Let this process
continue, by means of a sequence { of open sets each of which has
a complement of measure zero. The function f thereby becomes de-
fined on a set of measure zero - the complement of the intersection
of U1, U2, , or equivalently, the union of their complements
Ui', U21, - in such a way that every nonempty open interval
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8. Sets and Measure on the Real Axis

must contain one of the open intervals I of one of the open sets U,,,
and therefore a set Zr on which the range off is R. Finally, we define
f to be identically zero where it has not already been defined.

28. A function on bt whose graph is dense in the plane.
The function of Example 27 has this property.

29. A function f such that 0 <_ f (x) <
±

oo everywhere but
f ; f(x) dx = + oo for every nonempty open' *interval (a, b).

A function having these properties can be constructed by repeating
the procedures of Example 27, with the following two changes: (i)
let the set C be replaced by a Cantor set of measure j on [0, 1] and
(ii) define the function gr:

gr(x) = I
IaI$

x(Zr),

where I I I denotes the length of the interval I and x(A) Is the charac-
teristic function of the set A (cf. the Introduction, Chapter 1). Each
set Zr has measure

z
I 11, and therefore the integral of g,, over I is

equal to 1/(21
11).

Since every nonempty interval of the form (c, d)
contains subintervals I of arbitrarily small length, the integral
f I f (x) dx is arbitrarily large and hence, being a constant, is equal to
+ 00.

30. A continuous strictly monotonic function with a vanishing
derivative almost everywhere. (See page 195 for elaboration.)

A function f with these properties is given by A. C. Zaanen and
W. A. J. Luxemburg [3], as follows: If 0 is the Cantor function of
Example 15, let4,(x) = -O(x) if x E [0, 1] and 4,(x) = 0 if x E 6t \ [0, 11,
let {[a., be the sequence of closed intervals [0, 11, [0, J], [j, 1],
[0, J] [0, *], .. , and define

f(x) = 2-,P Q
for

A_i an
0<_x<_1.

31. A bounded semicontinuous function that is not Riemann-
integrable, nor equivalent to a Riemann-integrable function.

The characteristic function f of a Cantor set A of positive measure
on [0, 1] is bounded and everywhere upper semicontinuous. Since its
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set of points of discontinuity is A, which has positive measure, f is
not Riemann-integrable on [0, 1]. Two functions are equivalent if
they are equal almost everywhere. If the values off are changed on a
set of measure zero, the resulting function also has a set of positive
measure as its set of points of discontinuity.

32. A bounded measurable function not equivalent to a Rie-
mann-integrable function.

The function of Example 31 has this property.

33. A bounded monotonic limit of continuous functions that
is not Riemann-integrable, nor equivalent to a Riemann-
integrable function. (Cf. Example 10, Chapter 4.)

The function f of Example 31 can be obtained as the limit of a
decreasing sequence {fn} of continuous functions as follows: For any
open interval I = (a, b), where 0 _< a < b =< 1, and for any positive
integer n, define the function gn,r:

1 if 0<_x_<_a,

1 if b:_5x51,

ba basx<71 -0 if a+ 2n2*9.,r(x)

blinear if a 5x S a+ 2na,

linear if b - b a < x < b.
2^

_

If {J.) is the sequence of open intervals removed from [0, 11 in the
formation of the Cantor set A of positive measure (cf. Example 23),
define the sequence I f.1 :

./1 = 91J1)

A 95.7,'92.;27

f n = 9n.Ji gn Jg . .... gn .T..-

3 4. A Riemann-integrable function f, and a continuous func-
tion g, both defined on [0, 1] and such that the composite
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function f(g(x)) is not Riemann-integrable on [0, 11, nor
equivalent to a Riemann-integrable function there. (Cf. Ex-
ample 9, Chapter 4.)

The function of Example 31 is of the required form f(g(x)) if f(x)
is defined to be 0 for 0 5 x < 1 and 1 for x = 1, and if g(x) is defined
to be 1 if x E A, and 1 - J(b - a) + I x - }(a + b) I if x belongs to
an interval I = (a, b) removed from [0, 1] in the formation of A.
The function g(x) is continuous since for all xl and x2 of [0, 1],
I g(xi) - g(x2) ( 5 1 xi - x2 I-

Note that by appropriate use of "bridging functions" (cf. Example
12, Chapter 3) the functions g. j of Example 33 and the portions
defining the function g of Example 34 - and therefore the functions
fn of Example 33 and the complete function g of Example 34 - may
be replaced by infinitely differentiable functions.

Finally, it should be noted that in the reverse order this example is
impossible. In other words, every continuous function (with a com-
pact interval as domain) of a Riemann-integrable function is Riemann-
integrable. (Cf. [36], p 153, Ex. 55.)

35. A bounded function possessing a primitive on a closed in-
terval but failing to be Riemann-integrable there.

Let the function g be defined for positive x (cf. Example 2, Chapter
3) by the formula g(x) = x2 sin(1/x), and for any positive number
c, let x. be the greatest positive x less than or equal to c such that
g' (x) = 0 . For any positive c define the function g, for 0 < x 5 c:

9a(x) =
{g((xz) if 0 < z;5 X"

) if X. s X c.

If A is any Cantor set of positive measure on [0, 1], define the func-
tion f as follows: If x E A let f(x) = 0, and if x belongs to an interval
I = (a, b) removed from [0, 1] in the formation of A, let

f(x)
Jg.(x - a) if a < x _< J(a + b),
lge(-x+b) if I(a+b) 5 x < b,

where c = J(b - a).
If x is any point of A and if y is any other point of [0, 1], then either

f(y) = 0 or y is a point of some removed interval I = (a, b). In the
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former case, I (f(y) - f(x))/(y - x) I = 0 < I y - x I. In the latter
case, let d be defined to be the endpoint of (a, b) nearer y. Then, with
c = J(b - a),

f(y) - f(x) f(y) f(y)

?! - x I

_
- I ly-x = y-d

= g.(Iy- di)I SIIy-dI2I

=
Iy- dI s Iy-xI.y - d y- d

Therefore, in either case, I (f (y) - f (x) (y - x) I s I y - x I, and
consequently f'(x) = 0 for every x E A.

On the other hand, if x belongs to any removed interval (a, b),

I f'(x) I s 12z sin (1/z) - cos (1/z) I < 3,

for some z between 0 and 1, so that f is everywhere differentiable on
[a, b] , and its derivative f' is bounded there.

Finally since limy-o+ g'(y) = 1 (cf. Introduction, Chapter 2), it
follows that for any point x of A, limy f'(y) = 1. Therefore the
function f is discontinuous at every point of A, and hence on a set of
of positive measure. The function f therefore satisfies all conditions
specified in the statement above.

A construction similar to the above was (presumably first) given
by the Italian mathematician V.. Volterra (1860-1940) in Giorn, di
Battaglini 19(1881), pp. 353-372.

36. A function whose improper (Riemann) integral exists but
whose Lebesgue integral does not.

If f (x) = sin x/x if x 0 0 and f (O) = 1, then the improper integral
f o f (x) dx converges conditionally (cf. [34] p. 465). That is, the
integral converges, but f o+' I f (x) I dx = + o o. This means that the
function I f(x) I is not Lebesgue-integrable on [0, + oo ), and therefore
neither is f(x) .

37. A function that is Lebesgue-measurable but not Borel-
measurable.

The characteristic function of the Lebesgue-measurable non-Borel
set in Example 17 satisfies these conditions.
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38. A measurable function f (x) and a continuous function
g(x) such that the composite function f(g(x)) is not meas-
urable.

In the notation of Example 16, let E = V'(D). Then the charac-
teristic function f = X. of the set E is measurable and g = ¢-' is
continuous, but the composite function f(&)) is the nonmeasurable
characteristic function of the nonmeasurable set D.

It should be noted that in the reverse order this example is impos-
sible. In other words, every continuous function of a measurable
function is measurable.

39. A continuous monotonic function g(x) and a continuous
function f(x) such that

I f(x) dg(x) , f lf(x)9(x) dx.

Let f(x) = 1 on [0, 1] , and let g be the Cantor function 0 of Ex-
ample 15. Then the Riemann-Stieltjes (cf. [36], p. 179) or Lebesgue-
Stieltjes integral (cf. [18], [30], and [32]) on the left above is
equal to 4,(1) - 0(0) = 1, while the Lebesgue integral on the
right is equal to 0 since the integrand is almost everywhere equal
to 0.

40. Sequences of functions converging in different senses.
If f, fl, f2, are Lebesgue-integrable functions on either the

unit interval [0, 1] (more generally, on a measurable set of finite
measure) or the real number system 6t (more generally, on a measur-
able set of infinite measure), then there are many senses in which
the statement

lim f = f
ft-+W

may be interpreted. We shall consider here four specific meanings,
indicate the implications among them, and give counterexamples
when such implications are absent. We shall indicate by the single
letter S either [0, 1] or (R as the domain for the functions concerned.
The four interpretations for the limit statement given above that
we shall consider are:
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(i) Convergence almost everywhere*:
lim f,,(x) = f (x) for almost every x E S.

R+i VO

(ii) Convergence in measure:

Ve>0, lim u{xJI.IR(x) -f(x)I > e} =0.
R++-a

(iii) Mean convergencej':

1iM fIfn(X)_f(X)Jdx=O.

(iv) Dominated convergence:
Convergence almost everywhere holds, and there exists a
Lebesgue-integrable function g such that I f.(x) I _< I g(x) I
for n = 1, 2, and almost all x E S.

We start with two statements concerning the implications that
hold among (i)-(iv). If S is of finite measure, then

(iv) {(iii)} (is).

If S is of infinite measure, then

UO {(iii) (ii).
(Cf. [18], [30], and [32].)

Examples now follow to show that all of the implications missing
above may fail. For all but the last one, each of the examples serves
for spaces of either finite or infinite measure, since all of the func-
tions involved are zero for x E 61 \ [0, 1].

* A closely related type of convergence is convergence everywhere, which has
a rather trivial relationship to (i).

t This is the same as convergence in the Banach space L' of all integrable
functions, reduced modulo functions almost everywhere equal to zero. This
can be generalized by means of an exponent p > 1 to convergence in the Banach
space LP of measurable functions the pth powers of whose absolute values are
integrable, reduced modulo functions almost everywhere equal to zero. For
further discussion, see [161, [181, [291, and 1321.

: The type of dominated convergence needed, in case (iii) is replaced by
convergence in LP, is that given by I I <_ I g(z)I, where g E L".
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(i) (iii) : Let f (x) = 0 for all x E (R,
_ if 0<x<1/n,

f"(x)-
,n

if x E Gt \ (0, 1/n),
for n 1, 2, .

(i) (iv): Same as (i) ** (iii) since (iv) = (iii).
(iii) #a (i): Let f(x) = 0 for all x E (R. For each n E )t, write

n=2k+m, where
uniquely determined by n. Let

fn(x)
f, if 2k<xm2

otherwise for x E R.

Then f. I f (x) - f (x) I dx = 2-k -> 0 as n -> + oo , but limn+ fn (x)
exists for no x E [0, 1].

(iii) (iv): Same as (iii) (a) since (iv) (i).
(ii) (i): Same as (iii) (i), since for the function fn of that

example, and any positive e,
µ{x I I f. (x) -- f(x) I > e} 5 2-k -i 0 as n -4 +oo.

(ii) " (iii) : Let f (x) = 0 for all x E (R, and for any n E )t let k
and m be determined as in the example for (iii) #s (i). Let

m2' if : x <
2k2k() = -fi

0 otherwise for x E 61.

Then for any positive number e,

µ{x I If. (x) - f(x) I > e} 5 2-k -* 0 as n -> + ao,

but f Iff(x)-f(x)Idx= 1-0 as n,+w.
(it) (iv) : Same as (ii) (i) or (ii) *> (iii), since (iv) (i) and

(iv) (iii).
Finally, we give an example where the space S is the space 61

of infinite measure:
(x) ** (ii): Let f(x) = 0 for all x E 61,

(1 if n:x<n+1,
f,.(x) _ I

(0 otherwise for x E at.
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41. Two measures p and v on a measure space (X, S) such that
p is absolutely continuous with respect to v and for which no
function f exists such that p(E) = f E f(x) dv(x) for all E E S.

Let X - cR and let S be the class of all subsets of X. For any set
E E S define

_ +oo0 if E is countable,
p(E) _ if E is uncountable,

v(E) - f n if E consists of n points, n >= 0,
l+ ao if E is infinite.

Then v(E) = 0 E = 0 and hence p(E) = 0, so p is absolutely
continuous with respect to P. On the other hand, if f is a function
such that

p(E) = f$ f(x) dp(x)

for all sets E, then this equation holds in particular when E is an
arbitrary one-point set, E _ {y}, in which case

p(E) = 0 = fgf(x) dv(x) = f(y).

But this means that the function f is identically 0, and consequently
that p(E) = 0 for every E E S. (Contradiction.)

If we interpret f 0.0 as 0, the following statement is true: If f is
a nonnegative extended-real-valued function measurable with respect to
a measure function v on a measure space (X, S) and if

p(E) = fg f(x) dv(x)

for all measurable sets E, then p is a measure function on (X, S) that
is absolutely continuous with respect .to P. The preceding counterex-
ample shows that the unrestricted converse of this statement is false.
The Radon-Nikodym theorem (of. [18]) is a restricted form of the
converse.
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Chapter 9
Functions of Two Variables

Introduction
In this chapter a basic familiarity with the concepts of continuity

and differentiability of functions of two variables -and for the last
two examples, line integrals, simple-connectedness, and vector analy-
sis - will be assumed. If f(x, y) is a differentiable function of the two
variables x and y, its partial derivatives will be alternatively denoted :

ax = f=(x, y) = fi(x, y), of = f (x, y) = f2(x, y),

a'f = f::(x, y) = fin(x, y), agf = f. (X, y) = f12(x, y), .. .
axe axay

A region is a nonempty open set 'R any two of whose points can be
connected by a broken line segment lying completely in R.

1. A discontinuous function of two variables that is con-
tinuous in each variable separately.

Let the function f (x, y) with domain at X a be defined :

(

+ y2
if x2 + y2 0 0,

f(x, y)
0 if x=y=0.

Then f is discontinuous at the origin since arbitrarily near (0, 0)
there exist points of the form (a, a) at which f has the value 1. On
the other hand, for any fixed value of y (whether zero or nonzero),
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II. Higher Dimensions

the function g(x) = f (x, y) is everywhere a continuous function of x.
For a similar reason f(x, y) is a continuous function of y for every
fixed value of x.

2. A function of two variables possessing no limit at the origin
but for which any straight line approach gives the limit
zero.

Let the function f (x, y) with domain 6t X 6t be defined:
2xy if x2+ y" `0,

f(x,y)= -F"y2

0 if x=y=0,
and let L be an arbitrary straight line through the origin. If L is
either coordinate axis, then on L, f (x, y) is identically zero, and hence
has the limit 0 as (x, y) -4 (0, 0) along L. If L is the line y = mx,
then on L, f (x, y) has the value

M2 mx
f ( x , M'X) =

mx
X 4 xz+mz

for x 96 0. Therefore limx.o f(x, mx) = 0. In spite of this fact, f (x, y)
is discontinuous at (0, 0) since, arbitrarily near (0, 0), there are
points of the form (a, a2) at which f has the value 1.

3. A refinement of the preceding example.
Let the function f(x, y) with domain 6t X 6t be defined:

e i/x'y

e-2/Z2 if x 0,
AX, y) =

e + e
0 if x=0,

and let C be an arbitrary curve through the origin and of the form
x = (y/c)" or y = c i' /", where m and n are relatively prime posi-
tive integers and c is a nonzero constant (x >_ 0 in case n is even). Then
if the point (x, y) is permitted to approach (0, 0) along C, we have:

lim f (X, m/-)
1/x2 x-m/n

e-2/a2x-2m/n + - 0.
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9. Functions of Two Variables

(Cf. Example 10, Chapter 3.) In spite of the fact that the limit of
f (x, y) as (x, y) approaches the origin along an arbitrary algebraic
curve of the type y = cx'a1n is zero, the function f (x, y) is discon-
tinuous at (0, 0) since there are points of the form (a, a-1/a2) ar-
bitrarily near (0, 0) at which f has the value 2.

4. A discontinuous (and hence nondifferentiable) function of
two variables possessing first partial derivatives everywhere.

Each function of the three preceding examples has these properties.

5. Functions f for which exactly two of the following exist
and are equal:

lim f (X, y), lira lira f (x, y), . lira lim f (x, y).
(.,v)-(a,b) x->a v- b y->b x-a

Let the three limits written above be designated (i), (ii), and (iii),
respectively. The following functions are such that the indicated
limit does not exist but the other two do and are equal:

(i) : Example 1, with (a, b) = (0, 0).

(ii) :.f (x, y) =
{y

_ ifx yn
(O y) if y 34 0,

with (a, b) = (0, 0).

(iii) : AX, y) e r0
ify

sin (11x) if x 0,

l ,

with (a, b) = (0, 0).
In both examples (ii) and (iii),

If(x,y)I <Ix+IY 2(x2+1,2)112,

and hence lim(x,,)_(o,o) f (x, y) = 0. Each iterated limit, (ii) or (iii)
that exists is equal to 0.

It should be noted that if both limits (i) and (ii) exist they must
be equal, and that if both limits (i) and (iii) exist they must be equal
(cf. [34], p. 184).

6. Functions f for which exactly one of the following exists:

lim f (X9 y), lim lim f (X, y), lim line f (x, y).
(x,L)-'(a,b) x-a y-b y-b x-a
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II. Higher Dimensions

As in Example 4 designate the three limits above by (i), (ii), and
(iii), respectively. The following functions are such that the indicated
limit exists but the other two do not:

(i): AX, y)
lx

sin (1/y) + y sin (1/x) if xy 0,
0 if xy = 0,

with (a, b) = (0, 0) .

2--ysin. 1 if x54 0,(ii):f(x,y)= x
0 if x=0,

with (a, b) = (0, 0).

xy + x sin 1 if y 0,
(iii): f(x, y) = lx2 + y2 y

0 if y=0,
with (a, b) = (0, 0).

7. A function f for which limn lim,,..b f(x, y) and
lim,.b li f(x, y) exist and are unequal.

W - _Y if x2 + y2 76 0,
if AX, y)

x2 + ya

to if x=y=0,
then

lim lim f(x, y) = lips (x2/x2) = 1,
x- O Zyo

lim lim f(x, y) = lim (-y2/y2) _ -1.
V-0 S-0 V-0

8. A function f(x, y) for which lim,,.of(x, y) = g(x) exists
uniformly in x, limz.o f (x, y) = h(y) exists uniformly in y,
limz.o g(x) = lim,F,o h(y), but lim(,,,).(o,o) f (x, y) does not exist.

Let

Then

AX, y) '°
1 if xy 5 0,
0 if xy = 0.

10

1 if x 0 0,
g(x) lw AX, y) =

if x = 0.
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9. Functions of Two Variables

1 if
h(y) = 1=m f(x, y) = {p if y

F6

0,

and both of these limits are uniform over the entire real number sys-
tem. However, since there are points arbitrarily near (0, 0) at which
f is equal to 0 , and points arbitrarily near (0, 0) at which f is equal to
1 , the limit of f (x, y) as (x, y) -+ (0, 0) cannot exist.

It should be noted that by the Moore-Osgood theorem (cf. [36],
p. 313), the present counterexample is impossible if all points of the
form (0, y) and all points of the form (x, 0) are excluded from the
domain of f.

9. A differentiable function of two variables that is not con-
tinuously differentiable.

If

f(x, y) 36

x2 sin (1/x) + y2 sin (1/y) if xy Z` 0,
x2 sin (1/x) if x 0 0 and y = 0,
y2 sin (1/y) if x =0 and yd0,

io if x=y=0,
then both functions

.f=(x, y) =
f 22x i (11x) p' cos (1/x) if x 0 0,

O if

fy(x, y) = S 2y
if
sin (y/y)O cos (1/y) if y 54 0,

are discontinuous at the origin and hence f is not continuously dif-
ferentiable there. However, f is differentiable everywhere. For ex-
ample, f is differentiable at (0, 0), since for h2 + k2 54 0, f(h, k) -
f(0, 0) can be written in the form

f=(0, 0)h + fv(0, 0)k + ej(h, k)h. + e2(h, k)k,

where

lim el(h, k)
yylini

CA, k) = 0.
(h.k)-(o.O) (kk)-. (O.O)

Indeed, this representation takes the specific form
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II. 'Higher Dimensions

(h sin ) h + (k sin k if hk 96 0,

f(h,k)-f(0,0)= (hsinJ)h+O.k if h,-0 and k=0,

if h=0 and k00.

10. A differentiable function with unequal mixed second order
partial derivatives.

If

then

reJ
x2

+
1F

if x2 + y2 0,
f(x, y)

0 if x=y=0,

fv(x, 0) =

fx if x00,
f(O k) =lim 0 if = 0k

.

-y if y 0,

x ,

f=(O, ii) =
. f(h, 0) = 0 if 0y =

a-.o h
,

and hence at the origin,

f.(O, 0) = lim fa(h, 0) MO, 0) = lim h = 1,h
h

f.(0, O) = lim k = -1.fvz(O, O) =
limff(O, k)

k k

The function f is continuously differentiable since both of/ax and
of/ay are continuous everywhere. In particular, of/ax is continuous
at the origin since, for x2 + y2 0 0,

1of I = I x'y + 4x y3 - y5I s 6(x2 + y2)b,2 = 6(x2 + y2)112
ax (x2 + y2)2 (x2 + y2)2

The present example would be impossible in the presence of con-
tinuity of the mixed partal derivatives f. and in a neighborhood
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9. Functions of Tun Variables

of the origin. In fact (cf. [34], p. 2 63) if f, f , and f, exist in a region
R and if f,, (or exists and is continuous at any point (a, b) of R,
then (or also exists at (a, b) and f 1, = fv= there.

11. A continuously differentiable function f of two vari-
ables x and y, and a plane region R such that of/ay vanishes
identically in R but f is not independent of y in R.

Let L be the ray (closed half-line) in & X cR:

L={(x,y)Ix>0,y=0},
and let R be the region (61 X 61) \ L. The function

xa if x > 0 and y > 0,
f(x' y) 0 otherwise for (x, y) E R,

is continuously differentiable in R and, in fact, has continuous second
order partial derivatives. (If x2 is replaced by a-11x2, f has continuous
partial derivatives of all orders.) Although the first partial derivative
f2(x, y) off with respect to y vanishes identically throughout R, the
function f is not independent of y; for instance, f(1, 1) = 1 and
f(1, - 1) = 0. This example demonstrates the invalidity of the fol-
lowing argument in showing that a function f having identically
vanishing first partial derivatives throughout a region R is constant
there (cf. [34], p. 280): "Since 8f/ax = 0, f does not depend on x; since
of/ay = 0 , f does not depend on y; therefore f depends on neither
x nor y and must be a constant." If the intersection with a region
R of every line parallel to the y axis is an interval, the present
counter example becomes impossible (cf. [34], p. 288, Ex. 32).

12. A locally homogeneous continuously differentiable func-
tion of two variables that is not homogeneous.

A function f(x, y) is homogeneous of degree n in a region R if
for all x, y, and positive A such that both (x, y) and (Ax, Ay) are in
R, f(Xx, Ay) = Xn f (x, y). A function f (x, y) is locally homogeneous
of degree n in a region R iff f is homogeneous of degree n in some
neighborhood of every point of R.

Let L be the ray (closed half-line) in 61 X 61:

L={(x,y)Ix=2,yz0},
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II. Higher Dimensions

and let R be the region (6t X (R) \ L. The function

f(x
y'/x if x>2 and y>0,

' otherwise for (x, y) E R,

is continuously differentiable in R (in fact, f has continuous second
order partial derivatives). Since, for A near 1 and for any (x, y) E R,
f(Xx, ay) = X f(x, y), f is locally homogeneous of degree 3 in R.
However, f is not homogeneous of degree 3 in R since, for the point
(x, y) = (1, 2) and for A = 4, f(x, y). = 8 and f(4x, 4y) = f(4, 8) =
1024 0 43.8. The function f is not homogeneous of degree n for any
n 0 3 since if it were it would be locally homogeneous of degree n,
which is clearly impossible.

13. A differentiable function of two variables possessing no
extremum at the origin but for which the restriction to an
arbitrary line through the origin has a strict relative minimum
there.

The function

.f(x, y) = (y - x2) (y - 3x2)
has no relative extremum at the origin since there are points of the
form (0, b) arbitrarily near the origin at which f is positive, and also
points of the form (a, 2a2) arbitrarily near the origin at which f is
negative. If the domain off is restricted to the x axis, the restricted
function 3x' has a strict absolute minimum at x = 0. If the domain
of f is restricted to the y axis, the restricted function y2 has a strict
absolute minimum at y = 0. If the domain off is restricted to the
line y = mx through the origin where 0 < I m < + -, the restricted
function of the parameter x:

g(x) = f(x, mx) = (mx - x2)(mx - 3x2) = m2x2 - 4mx3 + 3x4

has a strict relative minimum at the origin since g'(0) = 0 and g'(0) _
2m2 > 0.

14. A refinement of the preceding example.
The function

AX, y) _ if
t2) (0 -

3e-,1_2) if x ;d 0,
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9. Functions of Two Variables

has no relative extremum at the origin (cf. Example 13), but if the
domain of f is restricted to the algebraic curve y = cxm/n, where m
and n are relatively prime positive integers and c is a nonzero con-
stant (x > 0 in case n is even), the restricted function of the param-
eter x:

g(x) = f(x, ex-in) = (xm/n - e-1/z)(cxm/n - 3e-uz=)

= x2m/n[C2 - 4ce1/x2x-m/n + 3e-!/z "x-2m/n]

has a strict relative minimum at x = 0 . This is true since the factor
X2-In is positive for x 5` 0, while the quantity in brackets has the posi-
tive limit c2 as x -> 0.

15. A function f for which d/dx f a f (x, y) dy f4' [a/ax f (x, y) I dy,
although each integral is proper.

The function

2 if y > 0,
AX, Y) = y

0 if y=0,
with domain the closed upper half-plane y ? 0, is a continuous
function of x for each fixed value of y and a continuous function of
y for each fixed value of x, although as a function of the two vari-
ables x and y it is discontinuous at (0, 0) (let y = x2). By explicit
integration,

g(x) = f1 f(x, y) dy = xe'2
a

for every real number x (including x = 0), and hence g(x) =
e-x2 (1 - 2x2) for every real number x (including x = 0). For x X 0,

y41 dy=e='(1-2x2),

while for x = 0, since fi(0, y) `= 0 for all y (including y = 0):
1 1

f fi(0, y) dy = f 0 dy = 0.
0 0
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II. Higher Dimensions

Therefore,

9 (0) = 1 0 fl fi(O, y) dy = 0.
0

Each integral evaluated above is proper since in every case the
integrand is a continuous function of the variable of integration.

16. A function f for which f o' f o f (x, y) dy dx 54 f o' f o f (x, y) dx dy,
although each integral is proper..

Let
y-z if 0<x<y<1,

f(x,y) -x-2 if 0<y<x<1,
0 otherwise if 0 5 x 5 1,

For0<y<1,

and therefore

0<y51.

jdx

lf(x, y) = fr dx - f l dx
o y2 v xE

fo f f(x,y)dxdy= f 1dy =
0 0 0

1,

1.

Similarly, for 0 < x < 1,

,

Z

f f(x, y) dy = -.b - f d2

and therefore

fl flf(x,y)dydx= fl(-1)dx= -1.
0 0 0

17. A double series Fm,,, a,,,,, for which Em
although convergence holds throughout.

Let (a.), where m designates the number of the (horizontal) row
and n designates the number of the (vertical) column, be the infinite
matrix (cf. Example 20, Chapter 6) :

[0 1 12 a -I A iff ...

-a 0 a 4 8 IS-1 -1 0 1 1 ..
4 2 2 48 -4 2 0 z 4 ..
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Then
+00
Z amn = 2--m + 2--m-1 + .. . = 2-+a+1 m = 1, 2, ,
ns1

and hence

+-0 +m
=2.

m-1 n-1

Similarly,
+-0 +00 +0o a.(-2-R+)=-2.
n'1 n=1

(Cf. [14], p. 109.)

18. A differential P dx + Q dy and a plane region R in which
P dx + Q dy is locally exact but not exact.

The expression

P dx +Qdy,
where P and Q are continuous in a region R of 61 X 6t, is called an
exact differential in R if there exists a differentiable function 0
defined in R such that

aO=P, 4=Q
ax 8y

throughout R. The expression P dx + Q dy is called locally exact in
a region R if it is exact in some neighborhood of every point of R. A
necessary and sufficient condition for P dx + Q dy to be exact in a
region R is that for every sectionally smooth closed curve C lying in
R the line integral of P dx + Q dy vanishes:

fPdx+Qdy=o.

(Cf. [34], p. 587.) A necessary and sufficient condition for P dx + Q dy ,

where P and Q are continuously differentiable, to be locally exact in a
region R is that at every point of R

aP _ aQ
ay ax'
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The expression

Pdx+Qdy= -x2+y2dx+ +y2dy

is locally exact throughout the "punctured plane"

R= {(x,y)Ix2+y2>0],
since

OP_8Qy2-_x2
a y 8x ( ± 2 _+ - y 2 ) 2

if x2 + y2 > 0. On the other hand, P dx + Q dy is not exact in R,
since if C is the unit circle x = cos 0, y = sin 0, 0 < 0 5 2,ir, then,
with 0 as parameter,

f P dx + Q dy = f 2, [(- sin 0)(-sin 0) + cost 0] do = 2,r 0.f o

It should be noted that if R is simply-connected (cf. [34], p. 598),
then P dx + Q dy is exact in R iff it is locally exact in R (cf. [34],
p. 601).

19. A solenoidal vector field defined in a simply-connected
region and possessing no vector potential.

A vector field (cf. [34], p. 568) Pi + Qj + Rk , where P , Q , and R
are continuously differentiable functions over a region W in three-
dimensional Euclidean space, is said to be solenoidal in W if its
divergence vanishes identically there:

ax+29+ aR0.

If a vector field F is the curl (cf. [34], p. 572) of a vector field G, in a

region W, the vector field G is called a vector potential for F.
Since the divergence of the curl always vanishes identically (cf. [34],
p. 572), any vector field that has a vector potential is solenoidal. The
converse, however, is not true, as the example

F = (x2 + y2 + z2)-312 (xi + yj + zk),
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for the region

W = {(x,y,z)Ix2+y2+zs>0},
shows. That F is solenoidal is shown by straightforward differenti-
ation :

a {(x2 + y2 + z2)-1/2x} + a {x2 + y2 + z2)_3/2y} + ...

= (x2 + y2 + z2)-612 [(-2x2 + y2 + z2)

+(x2-2y2+z2)+...]=0.
That F has no vector potential G can be shown by consideration of
the sphere x2 + y2 + z2 = 1. If n denotes the outer normal unit vector

for this sphere S, then the surface integral f f s F. n dS is equal to

ff {(x2 + y2 + z2)-3/2(xi + yj + zk) (x2 + y2 + z2)-112

s

1dS=47r.(xi+yj+zk)dS = f f,s

However, if F were the curl of a vector potential, then by Stokes's

theorem (c£ [34], pp. 636, 637), the surface integral f f s dS over
the closed surface S would vanish. The region W is simply-connected
(cf. [34], pp. 639, 640).

Simple-connectedness of a region can be thought of thus, that any
simple closed curve in the region may be shrunk to a point without
leaving the region. In the "punctured space" region W of this example,
any simple closed curve not passing through the origin can be shrunk
to a point without passing through the origin - and hence without
leaving W. The kind of pathology for the region W that permits the
present counterexample is the impossibility of shrinking spherical
surfaces - or "sphere-like" surfaces - to a point without leaving W.
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Chapter 10
Plane Sets

Introduction
In this chapter we shall assume that the reader is familiar with the

elements of the topology of the Euclidean plane, including such ideas
as boundedness, openness, closedness, compactness, denseness, and
nowhere-denseness. A few other concepts are defined in the following
paragraphs. In each case the space is assumed to be the Euclidean
plane, E2.

The distance d(A, B) between two nonempty sets A and B is
defined:

d(A,B) - inf {d(p,q)I pE A,gEB},

where d(p, q) is the distance between the points p : (x1, yl) and
q : (x2, y2), and is given by the formula [(x2 - x1)2 + (1/2 - 1/1)2]112.
Thus, the distance between two sets is always nonnegative, is zero if
the sets have a point in common, and may be zero if the sets are
disjoint. If the sets are disjoint and compact, their distance is positive
(cf. [34], p. 200 (Ex. 17)). The diameter 8(A) of a nonempty set A
is defined

8(A) =sup{d(p,q)I PE A,gEA},
is always nonnegative, and is finite if and only if A is bounded.
If A is compact its diameter is attained as the distance between two
of its points (cf. [34], p. 200 (Ex. 18)).

A closed disk is a set of the form

{(x,y)I (x-h)2+(y-k)2<r2},
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10. Plane Sets

for some point (h, k) and a positive number r. An open disk is
defined similarly, with the inclusive inequality <_ being replaced by a
strict inequality <.

Two nonempty sets A and B are separated iff they are disjoint and
neither contains a limit point of the other: A n f? = A n B = Q.
A nonempty set E is connected if there do not exist two nonempty
separated sets A and B whose union is E. A set containing more than
one point is totally disconnected iff its only connected subsets are
one-point sets. A set A is locally connected iff whenever p E A and
N is a neighborhood of p there exists a subneighborhood M of p such
that every pair of points of M belongs to a connected subset of N.

An are is a continuous mapping into E2 of a closed interval (which
may be taken to be the unit interval [0, 1]), or the range of such a
mapping. In this latter case, when the arc is considered as a point-set,
the mapping is called a parametrization of the arc. If the mapping
is f(t) = (x(t), y(t)), the functions x(t) and y(t) are called the para-
metrization functions for the mapping. If f(t), a < t < b, is an
are, and if a = ao < a, < ... < an = b, then the polygonal arc made
up of the segments f (ao) f (al), f (al)f (a2), - - -, f (an_1)f (an) is called an
inscribed polygon, and the supremum of the lengths

d(f(ao), f(ai)) + d(f(a,), f(a2)) + ... + d(f(an-,), f(an))
for all inscribed polygons for the given arc is called the length of
the arc. An arc is rectifiable iff its length is finite. An arc is rectifiable
if its parametrization functions are both of bounded variation (cf.
[36], p. 353 (Ex. 27)). An arc f (t), for a < t < b, is a closed curve
iff f(a) = f(b)-

An arc f (t) is simple if it is a one-to-one mapping. In this case its
inverse is also continuous and the mapping is a homeomorphism
(cf. [34], p. 240). If y = g(x) is continuous on [a, b] then its graph is
a simple arc (with parametrization x = t, y = g(t), t E [a, b]). A
simple closed curve is an are f (t) such that if its domain is the closed
interval [a, b] , then f (ti) = f(t2) if tl = t2 or { tl , t2 } = { a, b 1. Equiva,
lently, a simple closed curve is a homeomorphic image of a circle.

A region is a connected open set. The Jordan curve theorem
states that the complement of any simple closed curve C consists of
two disjoint regions for each of which C is the frontier. (Cf. [33].) A
Jordan region is either of the two regions just described, for some
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simple closed curve C. A non -Jordan region is a region that is not
a Jordan region.

If IQ } is a decreasing sequence of nonempty compact sets
(C for n = 1, 2, ) , then there exists at least one point
belonging to every C., n = 1, 2, ; in other words, the intersection
of the is nonempty: n+_1 C. . (Cf. [34], p. 201 (Ex. 30).)

A set A is convex if the closed segment joining any pair of points
of A lies entirely in A. (A one-point set is considered to be a special
case of a closed segment.) Since any intersection of convex sets is
convex and since the plane is convex, every set in the plane is con-
tained in a "smallest convex set," the intersection of all convex sets
containing it. This resulting smallest convex set is called the convex
hull of the given set. Its closure, called the convex closure of the
set, is the smallest closed convex set containing it (cf. [36], p. 332
(Ex. 39) ).

A mapping is open if the image of every open set of its domain is
open. A mapping is closed if the image of every closed set of its
domain is closed.

For some of the examples of this chapter some familiarity with
plane Lebesgue measure and integration will be assumed. References
to Lebesgue theory are given in the Bibliography, and cited in
Chapter 8.

1. Two disjoint closed sets that are at a zero distance.
Let F = { (x, y) I xy = 11, F2 = { (x, y) I y = 0} = the x-axis.

Then Fl and F2 are closed and disjoint. For any E > 0, the points
(2/E, E/2) and (2/E, 0) in Fi and F2, respectively, are at a distance
2s <E.

2. A bounded plane set contained in no minimum closed disk.
By a minimum closed disk containing a given bounded plane set

A we mean a closed disk containing A and contained in every closed
disk that contains A. An arbitrary two-point set is contained in no
minimum disk in this sense. In contrast to this, any nonempty
bounded plane set is contained in a closed disk of minimum radius.
Any nonempty plane set A is contained in a minimum closed convex
set in the sense that A is contained in a closed convex set (its convex
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-
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Figure 7
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closure) that is itself contained in every closed convex set that contains
A. In the space 61 of one dimension every nonempty bounded set is
contained in a minimum closed interval.

3. "Thin" connected sets that are not simple arcs.
In the present context the word "thin" means "nowhere dense in

the plane."
First example: The set

S, - J (x, y) I y = sin (11x), 0 < x S 11 u 1(0, O) j

is not a simple arc because it is not compact ({0} X [-1, 1] C
Second example: If S, is the set of the first example, let

S2 -S1= {(x,y)Iy=sin(1/x),0<x;9 1) u({0} X[-1,1]).

131



II. Higher Dimensions

Then although S2 is compact, the removal of an arbitrary set of
points from the segment {0} X [-1, 1] does not disconnect S2. It will
be shown in Example 11 that the set S2 of this example is not an arc.
In Example 24 we shall describe a connected set in the plane that
becomes totally disconnected upon the removal of one point.

4. Two disjoint plane circuits contained in a square and con-
necting both pairs of opposite vertices.

For purposes of this example a "circuit" will mean a nowhere dense
connected set. Let the square be [-1, 1] X [-1, 1], and let the
circuits be given as follows (cf. Fig. 7):

C,{(x,y)Iy=ix-}, -15x50}
u{(x,y)Iy=Isin(',r/2x)+ , 0<x<1}

u{(x,y)Ix= 1, *Sy51}.
C2 {(x,y)I y= -ix+1, -1 S x 5 0}

u{(x,y)Iy=I sin (',r/2x)-1, 0<x<1}
u{(x,y)Ix= 1, -1 <y<J}.

Then C, connects (-1, -1) to (1, 1) and C2 connects (-1, 1) to-
(1, - 1) , and C, n C2 = 0.

5. A mapping of the interval [0, 1] onto the square [0, 1] X [0, 1] .

If t E [0, 1), let 0. tltWta be a binary expansion of t, and to
avoid ambiguity we assume that this expansion contains infinitely
many binary digits equal to 0. The point (x, y) of the unit square
S = [0, 1] X [0, 1] that is the image oft under the mapping f is defined

x = 0. titatb... , y = 0. t2t4t6 . ' .

Finally, define f(1) = (1, 1). It is not difficult to see that f is a many-
to-one onto mapping. For example, the point (0.1, 0.1) is the image
of precisely three distinct points 0.11 , 0.100101010101 , and

The mapping f is not continuous. For example, if is the sequence

0.0011, 0.001111, 0.00111111, 0.0011111111, ,

and if (x,,, f(4 ), then the sequences {x.,,} and {ya} are both

0.01'. 0.011, 0.0111, 0.01111, .
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However, t, -+ 0.01, and (x,,, (0.1, 0.1) , while f(0.01) _
(0.0, 0.1) (0.1, 0.1). That is, lim,,.+., 5-6 f(lim,,.+., Q.

It is left as an exercise for the reader to show that f is neither open
(the image of the open interval from 0.101 to 0.111 contains the
point (0.1, 0.1) but does not contain it in its interior) nor closed (the
image of the closed interval from 0.001 to 0.01 has the point (0.1, 0.1)
as a limit point but not a member).

6. A space-filling are in the plane.
By a space-filling are we mean an are lying in a Euclidean space

of dimension greater than one and having a nonempty interior in that
space (it is not nowhere dense). In 1890 the Italian mathematician
G. Peano (1858-1932) startled the mathematical world with the first
space-filling arc. We present here a description (given in 1891 by the
German mathematician D. Hilbert (1862-1943)) of an are that fills
the unit square S = [0, 1] X [0, 1]. Higher-dimensional analogues can
be described similarly.

As indicated in Figure 8, the idea is to subdivide S and the unit
interval I = [0, 1] into 4" closed subequares and subintervals, re-
spectively, and to set up a correspondence between subsquares and
subintervals so that inclusion relationships are preserved (at each
stage of subdivision, if a square corresponds to an interval, then its
subsquares correspond to subintervals of that interval).

We now define the continuous mapping f of I onto S : If x E I,
then at each stage of subdivision x belongs to at least one closed sub-
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interval. Select either one (if there are two) and associate the corre-
sponding square. In this way a decreasing sequence of closed squares
is obtained corresponding to a decreasing sequence of closed intervals.
This sequence of closed squares has the property that there is exactly
one point belonging to all of them. This point is by definition f(x).
It remains to be shown that (i) the point f(x) is welldefined, that is,
independent of any choice of intervals containing x; (ii) the range of
f is S; and (iii) f is continuous. The details are left to the reader.

It should be noted that the mapping f just defined is many-to-one
in places. (For example, the three points }, 1, and I are all mapped
onto the point (1, i).) This is inevitable, since if f were one-to-one,
then it would be a homeomorphism, whereas I and S are not homeo-
morphic (removal of any three points disconnects I but not S). The
fact that f is many-to-one is somewhat paradoxical since it seems to
say that I has more points than S!

7. A space-filling are that is almost everywhere within a
countable set.

If .0 is the Cantor function of Example 15, Chapter 8, if f is the
mapping of the preceding Example 6, and if g(x) = f (4i(x)), then g
maps the Cantor set C onto the unit square [0, 1] X [0, 1], and the
complementary set [0, 1] \ C onto the image under f of the set of
points of the form where n is a positive integer and m is a
positive integer less than 2".

The present example could also be described as a space-filling arc
that is almost everywhere stationary, or a space-filling arc that is almost
everywhere almost nowhere.

8. A space-filling are that is almost everywhere differentiable.
By "almost everywhere differentiable" we mean "defined by para-

metrization functions that are almost everywhere differentiable." The
mapping defined in Example 7 has this property.

9. A continuous mapping of [0, 1] onto [0, 1.1 that assumes
every value an uncountable number of times.

Each of the parametrization functions of the space-filling arcs of
Examples 6 and 7 has this property as, indeed, must each para-
metrization function for any continuous mapping of [0, 1] onto
[0, 1] X [0, 1]. Each of the parametrization functions for the mapping
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of Example 7 has the additional property that it is differentiable with
a vanishing derivative almost everywhere. (Cf. [2].)

10. A simple arc in the unit square and of plane measure
arbitrarily near 1 .

As was seen in Example 6, no simple are can fill the unit square
S = [0, 1] X [0, 1]. By the same argument, every simple arc in the
plane is nowhere dense. It would appear from this that a simple are
cannot occupy "very much" of S. In particular, it cannot occupy
almost all of S, since if a simple are A in S had measure equal to 1 it
would be dense in S, and being closed it would be equal to S. How-
ever, it is possible for a simple are A to have positive plane measure.
Indeed, if e is any number between 0 and 1, there exists a simple are
A whose plane measure is greater than 1 - e. We now outline a
proof of this remarkable fact.

The general procedure will be to modify the construction given in
Example 6 by cutting open "channels" between adjacent subsquares
of S that do not correspond to adjacent subintervals of I. After the
first stage the "subsquares" become sub quadrilaterals which, in turn,
are subdivided by lines joining opposite midpoints. Further open
channels are cut out, and each closed quadrilateral is reduced to a
sequence of eight subquadrilaterals. The first subdivision and the
general scheme, where squares are used instead of general quadri-
laterals, for simplicity, are shown in Figure 9. The second stage is
shown in Figure 10. In both cases the channels deleted are indicated
by shading. After n stages there are 8" closed quadrilaterals, those
numbered 8k - 7 to 8k being subquadrilaterals of the quadrilateral
numbered k at stage n - 1 (k = 1, 2, , 8-1). Furthermore, at
each stage, two quadrilaterals are adjacent if and only if they bear

k4 5
3 6

2 7

1 99

s

Figure 9
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Figure 10

consecutive numbers, and hence correspond to adjacent subintervals
of I = [0, 1]. It is not hard to show that the diameter of each quadri-
lateral is at most a the diameter of the quadrilateral that contains it
at the preceding stage. Consequently, any decreasing infinite sequence
of quadrilaterals determines a unique point of intersection, and the
mapping is well-defined, as in Example 6. Furthermore, this mapping
is continuous for the same reasons that apply in Example 6, and is
one-to-one because all irrelevant adjacencies have been removed.
Finally, since the channels removed can be made of arbitrarily small
area, their union can be made of arbitrarily small plane measure, and
the simple are remaining has plane measure arbitrarily near 1.

A second method of constructing a simple are with positive plane
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measure is indicated in Figure 11. This is somewhat simpler con-
ceptually than the construction just described, but has the dis-
advantage that certain subintervals of [0, 11 are mapped onto sets of
zero plane measure. The construction suggested in Figure 11 produces
a simple are containing A X A, where A is a Cantor set. Since, for
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0 < e < 1 , we may chose A to have (linear) measure at least 1-e,
the arc in question has plane measure at least 1 - e.

The American mathematician W. F. Osgood (1864 1943), in 1903 (cf.
[37]) constructed a simple are having plane measure greater than
1 e by making use of a Cantor set A of linear measure greater than
1/1 - e. The simple arc was constructed in such a way that it
contains the product set A X A.

11. A connected compact set that is not an are.
The set 82 of the second example of Example 3 is not an are because

it is not locally connected: If N = { (x, y) I (x, y) E S2, x2 + y2 < 2
there is no neighborhood of the origin that is a subneighborhood of N
in which every two points can be joined by a connected set lying in
N (cf. [17], p. 204).

12. A plane region different from the interior of its closure.
Let S = {(x, y) I x2 + y2 < 1} \ ([0, 1) X {01), i.e., an open disk

with a slit deleted. Then

S = { (x, y) I x2 + y2 < 1 },

and the interior of S is I(S) (x, y) I x2 + y2 < 1 }.
Since every Jordan region is equal to the interior of its closure

([36], p. 477), this is a simple example of a region that is not a Jordan
region. Example 14, below, shows that not every region that is equal
to the interior of its closure is a Jordan region.

13. Three disjoint plane regions with a common frontier.
This example is most easily described by means of a story. A man

lives on an island in the ocean. On the island are two fresh-water
pools, one of cold and the other of hot water, and the man wishes to
bring all three sources of water to within a convenient distance from
any point of the island. He proceeds to dig channels, but always in
such a way that the island remains homeomorphic to its original
form. He starts by permitting the ocean to invade his island, coming
within a distance of at most one foot of each point of his residual
island (but not into contiguity with the fresh-water pools). He then
extends the cold fresh-water domain in a similar fashion, and follows
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this by forming channels for the hot fresh-water, with the result that
every point of the island thus remaining is within one foot of all
three types of water supply. Unsatisfied with this result the islander
repeats the triple process just described in order to have each type
of water within a half foot of each point remaining on the island.
Again he is not satisfied, and refines the approximation to within a
quarter-foot. He then extends this process to an infinite sequence of
steps, each time halving the critical distance, and also the time of
completion in order to finish in a finite length of time. If we assume
that the original "island" is a compact disk with two inner disjoint
open disks removed, and that the "ocean" is the open planar comple-
ment lying outside this disk, and that all extensions of the three
original regions remain homeomorphic to their original forms, we
obtain three final disjoint regions, R1, R2, and R3, each being a
union of the regions of an infinite sequence of regions. The final
"island," similarly, is the intersection F of the islands of an infinite
sequence, and is the common frontier of the three regions R1, R2,
and R3. Since the complement of F consists of three disjoint regions
instead of two, no one of the regions R1, R2, and R3 is a Jordan
region. (For a discussion and proof of the Jordan curve theorem, see
[33].) On the other hand, each of these three regions is equal to the
interior of its closure as we shall see in the following Example 14.

The preceding construction may be carried out with any finite
number of (indeed, with countably many) disjoint regions. If more
than four regions are used we can thus produce a "map" in which
all "countries" have a common frontier. This shows that the famous
four-color problem requires careful formulation to avoid a trivial and
negative solution. (Cf. [13].)

14. A non-Jordan region equal to the interior of its closure.
Let R be any one of the regions Rl, R2, and Rs defined in Example

13. As has been noted, R is not a Jordan region. On the other hand,
R is equal to the interior of its closure, as we shall now demonstrate.
In the first place, since R e R and R is open, R = I(R) e I(R).
We now wish to show the reverse inclusion : I (R) = I (R u F) C R.
If this were false, there would be a point p of F that is an interior
point of R u F. But this means that there is a neighborhood N of p
that lies in R u F and therefore contains no points of either of the
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remaining two regions, in contradiction to the fact that every point
of F is a limit point of each of the three regions R1, R2, and R3.

15. A bounded plane region whose frontier has positive
measure.

Let A be a Cantor set of positive measure in [0, 1] , and let

R = ((0, 1) X (-1, 1)) \ (A X [0, 1)).

Then R is a region and

F(R) = ({0} X [-1, 1]) u ((1) X [-1, 1]) u (A X [0, 1))

u ((0, 1) X (1}) u ((0, 1) X (-1})

whence 1i(F(R)) = 1.(A) > 0. Clearly R is not a Jordan region
(1(R) 0 R). (Cf. [14], p. 292.) (See Example 4, Chapter 11 for a
Jordan region having a frontier with positive plane measure.)

16. A simple arc of infinite length.
First example: Let

_ 0 if x=1/n, nE91, n odd,
f(x) = 1/n if x = 1/n, n E 9t, n even,

let f (O) = 0, and let f (x) be linear in each interval [1/(n + 1), 1/n],
n E 91. Then the graph of f (x), for x E [0, 1], is a simple arc of
infinite length because of the divergence of the harmonic series.

Second example: Let f (x) = x sin (1/x) for x E (0, 1] and f (O) = 0.
The graphof f (x), for x E [0, 1], is again a simplearc of infinite length
for the same reason as in the first example. The lengths of inscribed
polygonal arcs dominate sums of heights of individual arches of the
graph of f(x), and these sums have the form F, 2/(2n - 1)7r.

In contrast to the two preceding examples, the graph of the function
defined f (x) = x2 sin (11x) for x E (0, 1] and f (O) = 0 is of finite
length for x E [0, 1], since it is differentiable and its derivative is
bounded there. (Cf. [36], p. 353 (Exs. 24 and 27), p. 176 (Theorem II).)

17. A simple are of infinite length and having a tangent line
at every point.

If f(x) = x2 sin (1/x2) for x E (00 1] and f(0) = 0, the graph of
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f (x) for x E [0, 11 is a simple arc of infinite length for reasons given
for the second example of Example 16. The graph of f (x) has a tangent
line at every point since f(x) is everywhere differentiable.

18. A simple arc that is of infinite length between every pair
of distinct points on the arc.

First example: Let f (t) = (x(t), y(t)) be any space-filling are mapping
[0, 1] onto [0, 1] X [0, 11 and possessing the additional property that
f maps every nondegenerate interval of [0, '11 onto a set having a
nonempty (two-dimensional) interior. (The mapping of Example 6
has this property.) Then the graph of either x(t) or y(t), for t E [0, 11,
has the stated properties. To see that the graph of x(t) for a 5 t < b
has infinite length, for example, we may use the fact (cf. Example 9)
that x(t) assumes at least two of its values uncountably many times
each.

Second example: Let f be a mapping of the type described in Ex-
ample 10 and such that every nondegenerate subinterval of [0, 1] is
mapped onto a set of positive plane measure. Then f has the properties
specified above, since any rectifiable simple are has plane measure
zero (cf. [36], p. 436).

Third example: The graph of any function that is everywhere con-
tinuous and nowhere differentiable on a closed interval (cf. Example
8, Chapter 3) has the desired properties since if this graph were
rectifiable the function would be of bounded variation, and every
function of bounded variation is differentiable almost everywhere.
(Cf. [16].)

Fourth example: Cf. [14], p. 190.

19. A smooth curve C containing a point P that is never the
nearest point of C to any point on the concave side of C.

Let the curve C be the graph of y$ = x4, which is everywhere con-
cave up, and let P = (0, 0). If (a, b) is a point lying above C and if
a 9d 0, then clearly (a, a413) is nearer (a, b) than (0, 0) is. If b is an
arbitrary number greater than or equal to 1, then the point (}, ) is
nearer (q b) than (0, 0) is Finally, if b is an arbitrary positive number
less than 1, then the point (b8, b4) is nearer (0, b) than(0, 0) is. The
idea is that the origin is a point of infinite curvature (zero radius of
curvature) of C. (Cf. [34], p. 258 (Ex. 16).)
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20. A subset A of the unit square S = [0, 11 X [0, 11 that is
dense in S and such that every vertical or horizontal line that
meets S meets A in exactly one point.

What we are seeking is a one-to-one correspondence f with domain
and range [0, 1] and with a graph dense in S. We start by defining
f (x) for x E (0, 1] n Q, in stages. Let the points of B ((0, 1] n Q) X
((0, 1] n Q) be arranged in a sequence: (x1 , yl), (x2, y2),
We define f(xi) = y1 for the zero stage. For stage one we partition B
into four disjoint parts by vertical and horizontal bisecting lines,
((0,1]nQ) X ((0,21]nQ),((0,f]nQ) denote
these parts in any order: B11, B12, B13, B14 . Denote by (X11, y11)
the first point of the sequence { (x", y") } that belongs to B11 and is
such that neither x11 = x1 nor yii = yi, and let f (xli) = yu . Denote
by (x12 , y12) the first point of the sequence { (x", y") } that belongs to
B12 and is such that x12 is different from both x1 and x11 and y12 is
different from both yi and yii, and let f(x12) = y12. After f(xia) is
defined similarly to be equal to yla, we denote by (X14, y14) the first
point of { (x", y") } that belongs to B14 and is such that x14 is different
from x1, x11, x12, and xis, and y14 is different from yi, y11, 7/12,

and yla, and define f(x14) y14. This completes stage one. Stage two
is similar, with B partitioned into sixteen = 42 parts by further ver-
tical and horizontal bisections, Bn, B22, . , B2j4,. For each of
these parts in turn we define fat a rational point not yet in its domain
and having as value a rational point not yet in its range. If this
procedure is indefinitely continued, with B partitioned into 4" con-
gruent parts at stage n , a function f having the specified properties
for (0, 1] n Q is obtained. Finally, we extend the domain and range
of f to [0, 1] by defining f(x) = x for x E [0, 1] \ ((0, 1] n Q).

21. A nonmeasurable plane set having at most two points in
common with any line.

This example, due to W. Sierpinski [44], depends for its construction
on the maximality principle, appearing in the form of the well-
ordering theorem and also in the form of Zorn's lemma (of. [16],
[30], and [46]). We start by listing four statements having to do with
cardinal and ordinal numbers:

(z) If a is an infinite cardinal, then a2 = a (cf. [16] and [46]).
(ii) The cardinality f of the set of closed sets of positive plane
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measure is c, the cardinal number of 61. (Since the closed sets and
their complements are in one-to one correspondence, f < the cardinal
number of the set of all open sets. Since every open set is a countable
union of open disks having rational radii and centers with rational
coordinates, we see that f < c. Since the closed disks centered at
the origin constitute a set of cardinality c, we see that f ? c.)

(iii) Let ' denote the first ordinal number corresponding to the
cardinality c (cf. Example 10, Chapter 12). Then { a I a < T j has
cardinality c.

(iv) If E is a linear measurable set of positive linear measure, then
the cardinality of E is c. (E contains a closed linear set F of positive
linear measure. F is the union of a countable set (possibly empty) and
a (necessarily nonempty) perfect set. (Cf. [20] and [45].))

Let a -f F. be a one-to-one mapping of the set {a I a < P} onto the
set of all closed sets of positive plane measure. Let be the family of
all functions p(a) whose domains have the form [1, (3) for some a < ",
whose ranges are subsets of the plane, and are such that

(a) p(a) E Fa for every a E domain of p(a),
(b) no three points in the range of p(a) are collinear.
Let 9 be the set of all ranges of the functions in 5, and let 9 be

partially ordered by inclusion. Then by Zorn's lemma (cf. [16], [30],
and [46]) there exists a maximal set E E g, which is the range of a
function q(a) of the set v. If the domain of q(a) is [1, a), we shall now
show that 0 =' by assuming the contrary, 0 <', and obtaining a
contradiction. If b is the cardinal number corresponding to ,a, then
b < b2 < c (the strict inequality b < b2 holding iff 1 < b and b is
finite). This means that the cardinality of the set of all directions de-
termined by pairs of points in the range E of q(a) is less than c,
and therefore that there exists a direction a different from all direc-
tions determined by pairs of points in E. Then some line L in the
direction 0 must meet the set F,5 in a set of positive linear measure
(by the Fubini theorem). Since this latter set has cardinality c there
is a point po E Fg such that ps is collinear with no pair of points in
the range of q (a). We now extend the function q (a) so that its domain
is [1, (3] = 1), and so that q(0) = po. Then this extended func-
tion q(a) has both properties (a) and (b) and its range is strictly
greater than the maximal member E of 9. This is the desired con-
tradiction, and therefore 0 = ", the domain of the function q(a)
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consists of all a less than ', and the range E of q(a) contains a point
p. from every closed plane set F. of positive plane measure.

We now show that the set E is nonmeasurable by assuming the
contrary and obtaining a contradiction. Indeed, if E is measurable,
then so is its complement E', and since E' contains no closed plane
set of positive plane measure, E' must have measure zero. On the other
hand, since every line in the plane meets E in at most two points, E
must also have measure zero (by the,Fubini theorem). Therefore the
entire plane, being the union of the two sets E and E' of measure zero,
must also be of measure zero, and we have the desired contradiction.

We note too that if S is any set of positive plane measure, then
S n E is nonmeasurable. Otherwise the Fubini theorem implies that
u(S n E) = 0, whence µ(S \ E) > 0. Thus S \ E contains some closed
set F of positive plane measure. Since F n E = Ql, there is a contradic-
tion of the basic property of E: E meets every closed set of positive
plane measure.

S. Mazurkiewicz [31] constructed a plane set E meeting each line
of the plane in precisely two points. However, such a set E may be
measurable and indeed is then of measure zero. The reason for this
is the form of the construction which depends only upon the existence
of a set El in the plane such that El meets every line in a set of car-
dinality c. The set E is then formed as a subset of El.

However, sets enjoying the property of E1 may have plane measure
zero. For example, let C be the Cantor set on [0, 1] and let

E1= ((R XC)u(CX(R).

Then clearly each line meets E1 in a set of cardinality c and yet E1
is a (closed) set of plane measure zero.

In [3] the construction of a "Mazurkiewicz set" is given in answer
to a problem posed in that journal.

F. Galvin has shown the following: If 1 < n < 34o, where wo is
the cardinality of 9z, there is a nonmeasurable set S in the plane such
that the intersection of S with any line consists of precisely n points.

22. A nonnegative function of two variables f(x, y) such that

fo
f1f(x,y)dxdy= fl flf(x,y)dydx=0

0 0
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and such that f f s f(x, y) dA , where S = [0, 11 X [0, 11, does
not exist.

We shall give two examples, one in which Riemann integration is
used and one in which Lebesgue integration is used.

First example: Let f be the characteristic function of the set of
Example 20. Then for every y E [0, 1], f a f(x, y) dx = 0, and for
every x E [0, 1], f o f(x, y) dy = 0, the integrals being those of
Riemann. However, the double Riemann integral over S fails to
exist, since for the function f the upper and lower Riemann integrals
are equal to 1 and 0, respectively.

Second example: Let f be the characteristic function of the set of
Example 21. Then the iterated integrals are again both equal to zero,
where the integration is that of either Riemann or Lebesgue, while
the function f is not measurable on S, and hence has no double
Lebesgue integral there.

23. A real-valued function of one real variable whose graph is a
nonmeasurable plane set.

Let f(x) be defined as follows, for x E 6t:

AX) _ jmax{y I (x, y) E E} if {y I (x, y) E E} Fl- 0,
0 if {yI(x,y)EE} = 0,

where E is the set of Example 21. Let El = { (x, f(x)) I x E (R) n E,
E2 = E \ E,. Then either El or E2 (or both) must be nonmeasurable
since their union is E. If El is nonmeasurable, then

F= {(x,f(x))Ix E 6i.
the graph of f, is the union of El and a subset of the x axis; hence,
since the latter has plane measure zero, F is nonmeasurable. If E2
is nonmeasurable, let g(x) be defined, for x E 6t:

min{y I (x, y) E E)} if {y I (x, y) E E}
g(x) ¢ consists of two distinct points,

0 otherwise.

Then G = {(x, g(x)) I x E 6i.}, the graph of g, is the union of E2
and a subset of the x axis, and hence nonmeasurable. There must exist,
then, in one way or the other, a function whose graph is a nonmeasur-
able plane set.
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24. A connected set that becomes totally disconnected upon
the removal of a single point.

We give only a sketch. For details see [25].
Let C be the Cantor set of Example 1, Chapter 8, let B be the subset

of C consisting of all endpoints of the open intervals that were deleted
from [0, 1] in the construction of C, and let E = C \ B (cf. Example
24, Chapter 8). For every x E C let L(x) be the closed segment join-
ing the points (x, 0) and (1, 1) in the plane. If x E B let S(x) consist
of those points of L(x) whose ordinates are irrational, and if x E E
let S(x) consist of those points of L(x) whose ordinates are rational.
Then S = UZEc S(x) is a set having the required properties.

The connectedness of S is proved by means of arguments involving
sets of the first and second categories, and we shall omit the discus-
sion. If So = S \ { (1, 1){, then So is totally disconnected. For if
E C So, if E contains more than one point, and if E is a subset of
any S(x), x E C, then E is clearly not connected. On the other hand,
if p and q are two points of So on two distinct intervals L(x) and L(y),
where x and y E C and x < y, there is in the complement of So a
straight line through (1, 1) that separates p and q, namely the straight
line passing through (1, 1) and any (a, 0) where x < a < y and
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Chapter 11
Area

Introduction
The concept of area is based on that of the Riemann double in-

tegral. A bounded plane set S is said to have area if its characteristic
function X$ is (Riemann) integrable over a closed rectangle R con-
taining S and such that the sides of R are parallel to the coordinate
axes. If S has area, its area A(S) is equal to the double integral of
xs over R:

A(S) = f fR Xa dA.

These definitions are meaningful in the sense that the concepts of
having area and of area are independent of the containing rectangle
R. If R is subdivided into closed subrectangles by means of a net 91
of lines parallel to the sides of R, then some of these subrectangles
may be subsets of S, and some may be subsets of the complement
S' of S. For any such net 92, let a(91) be the sum of the areas of all
subrectangles that are subsets of S (a(ft) = 0 in case there are no
such- subrectangles), and let A(%) be the sum of the areas of all
subrectangles that are not subsets of S' (that is, that intersect S
nonvacuously). The inner area and outer area of S, denoted
A (S) and A (S), respectively, are defined as the supremum of a(%2)
and the infimum of A (91), respectively, for all nets 9 of lines parallel
to the sides of R :

1(S) = sup a(91), A(S) = inf A(9).
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Again, these definitions are independent of R. A bounded set S has
area iff A(S) = A(S), and in case of equality, A(S) = A(S) = A(S).

A necessary and sufficient condition for a bounded set S to have
area is that its frontier F(S) have zero area, or equivalently, that F(S)
have zero outer area. Since for any bounded set S, F(S) is a compact
set (and hence measurable as a plane set), and since for compact sets
outer area and outer plane (Lebesgue) measure are identical, a
bounded set has area iff its frontier has plane measure zero.

The preceding statements concerning area apply in similar fashion
to volume, for sets in three-dimensional Euclidean space. A generaliza-
tion of area and volume that applies to Euclidean spaces of any num-
ber of dimensions - and, indeed, to much more general spaces - is
Jordan content. (Cf. [36], p. 431.) Lebesgue measure is a generaliza-
tion of Jordan content in the sense that every set that has content is
measurable, and its content and measure are equal. The principal
advantages of Lebesgue measure over Jordan content lie in the broader
applicability of measure to limiting processes. For an elementary
treatment of plane area and volume, including proofs of many of the
preceding statements, cf. [36], pp. 431-465.

Examples 7 and 8 of this chapter concern surface area. For a dis-
cussion of this subject see the references given in connection with
these two examples.

1. A bounded plane set without area.
The set S = (Q n [0, 1]) X (Q n [0, 1]) of points in the unit square

both of whose coordinates are rational is without area since its
frontier F(S) does not have zero area. (The set F(S) is the unit square
itself and hence has area equal to 1.) The outer area of S is 1 and its
inner area is 0.

2. A compact plane set without area.
Let A be a Cantor set of positive measure e (Example 4, Chapter

8), and let S = A X [0, 1] . Then F(S) = S, and the plane measure
of F(S) is equal to the linear measure e of A. Since F(S) = S is a
compact set its outer area is equal to its measure, and is thus positive.
Therefore S is without area. The outer area of S is equal to e and its
inner area is 0.
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3. A bounded plane region without area.
The region R of Example 15, Chapter 10 is bounded and without

area.

4. A bounded plane Jordan region without area.
Let e be a positive number less than 1, and let A be a simple are

with parametrization f (t), 0 < t <_ 1, lying in the unit square
[0, 1] X [0, 1], and of plane measure greater than 1 - ZE (cf. Ex-
ample 10, Chapter 10). Let C be the simple closed curve formed by
the union of A and the three segments { 0 } X [ a e, 0], 111 X [ - a e, 0],
and [0, 1] X { - z E 1, and let R be the bounded region having C as
its frontier. Then R is a Jordan region and its frontier has outer area
greater than 1 - Ze > 1 - E > 0.

5. A simple closed curve whose plane measure is greater than
that of the bounded region that it encloses.

If C and R are the curve and region defined in Example 4 and if µ
is plane Lebesgue measure, then

A(RuC)=µ(R)+µ(C)<1+Ze.
Therefore, since µ(C) > 1 - Ze, it follows that

L(R) < E.

The measure of R is less than that of C whenever E < 3. Simul-
taneously, the measures of R and C can be made arbitrarily near 0 and
1, respectively.

6. Two functions 0 and defined on [0, 11 and such that
(a) ¢(x) < ¢(x) for x E [0, 1],
(b) f o O(x)] dx exists and is equal to 1,
(c) S = {(x, y) 10 < x < 1, O(x) < y < ¢(x)} is without area.
Let 4(x) be the characteristic function of Q n [0, 1] and let ¢(x)

O(x) + 1. Then (a) and (b) are clearly satisfied, while F(S) is the
closed rectangle [0, 1] X [0, 2] of positive area, whence S is without
area. The outer area of S is 2 and its inner area is 0.

This example is of interest in connection with Cavalieri's Princi-
ple, which states that if every plane II parallel to a given plane no
intersects two three dimensional sets Wi and W2 in plane sections of
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equal area, then Wl and W2 have equal volume (cf. [181). A two-
dimensional analogue states that if every line L parallel to a given
line Lo intersects two plane sets Si and S2 in segments of equal length,
then S% and S2 have equal area. The present example shows that
unless Si and S2 are assumed to have area, this statement is false.
(The sets Sl and S2 can be taken to be the set S of (c) and the closed
square [0, 1] X [3, 4], respectively, with the family of parallel lines
being the family of all vertical lines.) Construction of a three-dimen-
sional counterexample to Cavalieri's Principle is left as an exercise
for the reader.

7. A means of assigning an arbitrarily large finite or infinite
area to the lateral surface of a right circular cylinder.

Let S be the right circular cylinder
S {(x,y,z)Ix2+y2 = 1, 0 S z -<_

of base radius 1 and altitude 1, and for each positive integer m let the
2 m + 1 circles Ckm be defined, for k = 0 , 1, - , 2m:

Ckm = S n { (x, y, z) I z = k/2m}.

On each of these 2m + 1 circles let the n equally spaced points Pkm;
be defined for e a c h positive integer n and for j = 0, 1, , n - 1:

if k is even,

I l cos (2i
n

1)'r , sin (2i
n

l)-, k
M if k is odd.

For each circle Ckm the points Pkmj, j = 0, 1, ,, n, are the vertices
of a regular polygon of n sides. If 0 < k < 2m, each side of the
polygon with vertices lying on the circle Ckm lies above a vertex of the
polygon in Cj{-1,m and thus determines a (plane) triangle in space.
Similarly, if 0 <= k < 2m, each side of the polygon in Ckm lies below
a vertex of the polygon in Ck{1,m and thus determines a triangle. It
is not difficult to see that there are a total of 4mn congruent space
triangles formed in this way with vertices lying on the given cylinder,
and a little trigonometry shows that the area of each of these triangles
is sin (ir/n) [(1/4m2) + (1 - cos (Ir/n))2]1i2. The area of the poly-

(
L35 sin

2ja k 1
cos n ' n

,
2m
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hedron IImn inscribed in S is therefore obtained by multiplying this
quantity by 4mn. The result can be expressed

A(lImn) = 2w sin (n)n)
1 + 4m2 2(1 - cosn

As m and n -> + w , the diameters of the triangles approach zero
and thus, presumably, the areas of the inscribed polyhedra should
approach a limit, and it is natural to expect that this limit should be
the number (2w1) 1 = 2w given by the familiar formula 27rrh for the
area of the lateral surface of a right circular cylinder, where r is the
base radius and h the altitude. We shall see, however, that the result
will depend on the relative rates at which m and n increase.

We observe first that as n -b + oo the factor preceding the radical
in the formula for A(IImn) has the limit 2w, and since the radical
itself is at least as great as 1, any limit that A(1Imn) may have must
be at least 2w. We concentrate our attention now on the quantity
within the radical and, in fact, on the function

f(m, n) = 2m (1 - cos!) =

We shall consider three cases :
(i) If m = n, then

29n 27r47n 27r6w mn2 -4!n4+Glne-

f(n,n) = 2n1 - cosn1 n 4 ' + ...r
limfl.., f (n, n) = 0, A (flan) = 27r.

(ii) If m = [an2], where the brackets indicate the bracket function
of Chapter 2, and where 0 < a < + m, then

f([an% n) = 2[an2] C1 - cos
-

= w2[n2 n2] - 244[2]\ I a +

n) = awl, and 2w'\/1 + a2w4.
(iii) If m = n3 , then

/ a

f(n3, n) _ + -,and limn-+. A (rn3,n) = + c0
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We conclude that as m and n --* + co, any result, finite or infinite,
that is at least equal to 21r can be obtained for the limit of A(IImn).
Although, in general, limm,n A (IImn) does not exist, we can at least
say that the limit inferior exists and that

lim A (IImn) = 2a.
mm-r}OO

The example just described is due to H. A. Schwarz (Gesammelte
Mathematische Abhandlungen, Vol. 2, p. 309 (Berlin, Julius Springer,
1890.) ). It serves to demonstrate that the concept of surface area is
far more complicated than that of arc length. For a discussion of
surface area and further references, see [40]. An elementary treatment
of surface area is given in [34], pp. 610-635.

8. For two positive numbers E and M, a surface S in three-
dimensional space such that:

(a) S is homeomorphic to the surface of a sphere,
(b) The surface area of S exists and is less than r,
(c) The three-dimensional Lebesgue measure of S exists and

is greater than M.
This example is due to A. S. Besicovitch (cf. [7]). The ideas involved

in this construction are somewhat similar to those involved in the
construction of a simple are of positive plane measure (Example 10,
Chapter 10), but far more complicated and sophisticated. Since an
ample discussion would require a definition of surface area as well as
an intricate description of tubular connections among faces of cubes,
we shall omit the particulars.

The following discussion points up some interesting aspects of
Example 8.

a. There is an analogy between Example 8 and Example 5. In both
cases, there is more in the sides of the container than in the interior
of the container. However, the linear measure (length) of the bounding
curve of Example 5 is infinite whereas the planar measure (surface
area) of the bounding surface of Example 8 is finite and small

b. The familiar relations between the volume of a cube and its
surface area: volume = } edge. surface area, and between the volume
of a sphere and its surface area: volume = radius. surface area,
lead one to feel that a closed surface of small area together with the
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three-dimensional region that it encloses should have small three-
dimensional measure. Example 8 is a counterexample to this feeling.

c. A right cylindrical "can" of finite height and based on a non-
rectifiable Jordan curve has finite volume (three dimensional measure)
and infinite surface area. (The can can be filled with paint, but its
sides cannot be painted.) This example is a weak dual to Example 8.

9. A plane set of arbitrarily small plane measure within which
the direction of a line segment of unit length can be reversed
by means of a continuous motion.

This example was given in 1928 by A. S. Besicovitch as a solution
to a problem posed in 1917 by S. Kakeya. (Cf. [5], [6], and [23], and
for an expository discussion, [8].)
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Chapter 12
Metric and Topological Spaces

Introduction
A metric space is an ordered pair (X, d), where X is a nonempty

set and d a real-valued function in X X X such that
(i) d is strictly positive:

xEX=> d(x, x) = 0,

xand y E X, x y= d(x, y) > 0;

(ii) the triangle inequality holds:

x, y, and z E X : d(x, z) < d(y, x) + d(y, z).

An early consequence of (i) and (ii) is
(iii) d is symmetric :

x and y E X : d(x, y) = d(y, x).

The function d is called the metric for the metric space (X, d), and
the number d(x, y) is called the distance between the points x and y.
If the metric is clear from context, the single letter X may be used
to represent both a metric space and the set of its points.

A topological space is an ordered pair (X, 0), where X is a
nonempty set and 0 is a family of subsets of X such that

(i) QE 0 and X E 0,
(ii) 0 is closed with respect to finite intersections:

01, 0= O1n . nOn E 0,
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where n is an arbitrary positive integer;
(iii) 0 is closed with respect to arbitrary unions :

(XEA=Ox E O)=UON E 0,
XEA

where A is an arbitrary nonempty index set.

The family 0 is called the topology of the topological space (X, 0)
and its members are called open sets. The family 0 is also called
a topology for the set X. If the family of open sets is clear from
context, the single letter X may be used to represent both a topological
space and the set of its points. By finite induction, condition (ii) is
equivalent to the same for the special case n = 2. A topological space
(Y, 3) is a subspace of a topological space (X, 0) if Y C X and
3 = { Y n 0 10 E 0} ; in this case the topology 3 is said to be induced
or inherited from 0.

A set is closed if its complement is open. An open covering of a
set A is a class of open sets whose union contains A. A set C is com-
pact iff every open covering of C contains a finite subcovering. A
Hausdorff space is a topological space such that whenever x and y
are two distinct points of the space there exist two disjoint open sets
of which one contains x and one y. In any Hausdorff space every com
pact set is closed. A point p is a limit point of a set A iff every open
set containing p contains at least one point of A \ {p}. The closure
A of a set A is the intersection of all closed sets containing A, and
consists of all points that are either members of A or limit points of
A. The closure of any set A is closed. A set A is closed iff it is equal
to its closure: A = A. A locally compact space is a topological
space such that every point is contained in an open set whose closure
is compact.

A base for the topology of a topological space (X, 0) is a subfamily
of 0 having the property that every nonempty member of 0 is the

union of a collection of members of 9. A neighborhood system for
a topological space (X, 0) is a collection 91z of ordered pairs (x, N)
such that x E N for every (x, N) E Mt, and the collection of all N
such that (x, N) E 3 is a base for 0. An example of a neighborhood
system is the set of all (x, A) such that x E A and A E g, where 9
is a base for (X, 0). If 9 is any nonempty family of subsets of a set
X, then 9 is a base for some topology 0 for X if (i) X is the union of
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the members of 9 and (ii) whenever G, and G2 are members of 9 with
a nonempty intersection, and x E G, n G2, then there exists a member
G of 9 such that x E G c G, n G. If (i) and (ii) hold, the topology
0 generated by 9 consists of the sets that are unions of members of
9. A sequence in a topological space converges to a point x,
and x is a limit of the sequence iff

V open set 0 containing x, 3 m E& 3

n E )l,n>m.x.E0.
In any Hausdorff space limits of convergent sequences are unique.

If 0i and 02 are two topologies for the same set X, and if 01 c 02,
then 01 is said to be weaker than 02 and 02 is said to be stronger
than 01. The weakest of all topologies on X is the trivial topology
o = [0, X } , and the strongest of all topologies is the discrete
topology 0 = 2' consisting of all subsets of X.

If (X, d) is a metric space and if x E X, then a neighborhood,
or spherical neighborhood, of x is a set of the form

fyIyEX,d(x,y)<E},
where E > 0 (x is called the center and E the radius of this spherical
neighborhood). A spherical neighborhood is sometimes called an open
ball. The set of all spherical neighborhoods for any metric space
satisfies the two conditions necessary for the generation of a topology,
and for this topology, called the topology of the metric space, the
set of all ordered pairs (x, N), where N is a spherical neighborhood
of x, is a neighborhood system. A topological space (X, 0) is metri-
zable if there exists a metric d for X such that 0 is the topology of
the metric space (X, d). A closed ball in a metric space (X, d) is a
set of the form

f y I y E X, d(x, y) SE},

where x E X and E > 0, and is a closed set (x is called the center
and e the radius). The single unmodified word ball should be con-
strued as synonymous with closed ball. A set in a metric space is
bounded if it is a subset of some ball. If the space (X, d) is bounded,
then d is called a bounded metric. If the metric spaces (X, d) and
(X, d*) have the same topology, then d and d* are called equivalent
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metrics. If (X, d) is any metric space, then d*, defined

d*(x, y) d(x, y)
1+d(x,y)

is a bounded metric equivalent to d; that is, every metrizable space
can be metrized by a bounded metric. In any finite-dimensional
Euclidean space with the standard Euclidean metric a set is compact
if it is closed and bounded. A sequence {x} of points in a metric
space (X, d) is a Cauchy sequence if

Ve>0 3 KE t
mand nE M,
m>K,andn>K

A metric space is complete if every Cauchy sequence of points in
the space converges (to a point of the space). A metric space that is
not complete is incomplete. Such concepts as connected set, totally
disconnected set, and perfect set are defined exactly as in Euclidean
spaces (cf. the Introduction, Chapter 10).

A topological space satisfies the second axiom of countability
if there exists a countable base for its topology. A set in a topological
space is dense if its closure is equal to the space. A topological space
is separable if it contains a countable dense set. A metrizable space
satisfies the second axiom of countability if it is separable.

If (X, 0) and (Y, 3) are topological spaces, and if f is a function
on X into Y, then f is continuous if B E 5 J1 (B) E 0; f is
open if A E 0 = f(A) E 3; f is closed if A' E 0 (f(A))' E I.
If f is a mapping of a topological space X onto a topological space Y,
then f is a topological mapping, or a homeomorphism if f is a
one-to-one correspondence, and both f and f-1 are continuous.

Let V be an additive group, with members x, y, z, , and let F
be a field, with members A, p, v, . Then V is a vector space or
linear space over F if there exists a function (A, x) -* Ax on F X V
into V such that for all A and p in F and x and y in V:

(i) X (X + y) = Ax + Ay,
(ii) (A + p)x = Ax + lam,

(iii) A(px) _ (ap)x,
(iv) lx = X.
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The points of a vector space are also called vectors. If F is either the
field 6t of real numbers or the field (°, of complex numbers, V is called
a normed vector space over F if there exists a real-valued norm
II

II with the properties, for all x and y in V and X in F:
(v) x 1 1 2 ; 0 ; X = Oiff X = O,
(vi) x+yI IIxiI+11yll,

(vii) IiXxI = IXI'IIxii
Any normed vector space is a metric space with metric d(x, y)
I x - y II . A Banach space is a complete normed vector space.

For further information on topological spaces and mappings see
[11], [17], [20], [24], [27], [45], and [50]. For vector spaces in general,
see [22]. For Banach spaces see [4] and [291.

1. A decreasing sequence of nonempty closed and bounded
sets with empty intersection.

In the space CR with the bounded metric d(x, y) = I X y I1+ Ix - yJ'
let F. = [n, + o ), n = 1, 2, . Then each F. is closed and bounded,
and fl

Since an empty intersection is impossible if the nonempty sets
are compact, this example is impossible in any finite-dimensional
Euclidean space with the standard Euclidean metric.

2. An incomplete metric space with the discrete topology.
The space (9z, d) of natural numbers with the metric d(m, n)

I m - n I/mn has the discrete topology since every one-point set is
open, but the sequence fn] is a nonconvergent Cauchy sequence.

This example demonstrates that completeness is not a topological
property, since the space a with the standard metric is both complete
and discrete. In other words, it is possible for two metric spaces to be
homeomorphic even though one is complete and one is not. Another
example of two such spaces consists of the two homeomorphic inter-
vals (- co, + co) and (0, 1) of which only the first is complete in the
standard metric of 6t.

3. A decreasing sequence of nonempty closed balls in a com-
plete metric space with empty intersection.
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In the space (el, d) of natural numbers with the metric

1+m 1
if min,

d(m,n)
0 if m=n,

let

B. = [m I d(m, n) < 1 + (1/2n)} _ {n, n + 1, },

for n = 1, 2, . Then satisfies the stipulated conditions, and
the space is complete since every Cauchy sequence is "ultimately
constant."

Trivial examples are possible if completeness is omitted -for
example, f y I 1(1/n) - y 1 < (1/n) l in the space ( of positive numbers
with the standard 6t metric. On the other hand, the present example
is impossible if the complete metric space is a Banach space (cf. [15]).

This example (cf. [45] (Sierpinski)) is of interest in connection with
Baire's category theorem (cf. Example 7, Chapter 8, and [1], [4],

[20], and [27]), which states that every complete metric space is of the
second category or, equivalently, that any countable intersection of
dense open sets in a complete metric space is dense. The proof involves
the construction of a decreasing sequence of closed balls, with radii
tending toward zero, and having as a consequence a nonempty inter-
section. We see, then, that if the balls get small they must have a
point in common, whereas if they do not get small they may have
nothing in common!

4. Open and closed balls, 0 and B, respectively, of the same
center and radius and such that B 54 0.

Let X be any set consisting of more than one point, and let (X, d)
be the metric space with

_f1 if x0y,
fix' y) 0 if x = Y.

Let x be any point of X, and let 0 and B be the open and closed balls,
respectively, with center x and radius 1. Then

0={x}, B=X,
and since the topology is discrete, 0 = 0 5,6 B.
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This example is impossible in any normed vector space. (Proof of
this fact is left as an exercise.)

5. Closed balls Bi and B2, of radii ri and r2, respectively, such
that Bl C B2 and r, > r2.

Let (X, d) be the metric space consisting of all points (x, y) in the
closed disk in the Euclidean plane, defined:

X={(x,y)Ix2+y2<9},
with the standard Euclidean metric. Let B2 - X , and let

Bi=B2n{(x,y)I (x-2)2+y2 < 161.
Then B, C B2, and r, = 4 > r2 = 3.

This example is impossible in any normed vector space since the
radius of any ball is half its diameter. (Proof is left as an exercise.)

6. A topological space X and a subset Y such that the limit
points of Y do not form a closed set.

Let X be any set consisting of more than one point, and let the
topology of X be the trivial topology 0 = {0, X. If y is an arbitrary
member of X, let Y = { y} . Then the limit points of Y are all points.
of X except for y itself. That is, the set of limit points is X \ Y, and
since Y is not open, X \ Y is not closed.

7. A topological space in which limits of sequences are not
unique.

First example: Any space with the trivial topology and consisting
of more than one point has this property since in this space every
sequence converges to every point.

Second example: Let X be an infinite set, and let 0 consist of 0 and
the complements of finite subsets of X. Then every sequence of
distinct points of X converges to every member of X.

8. A separable space with a nonseparable subspace.
First example: Let (6t, 0) be the space of real numbers with the

topology 0 generated by the base consisting of sets of the form

{x}u (Qn(x-e,x+e)), xE6t, a>0,
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and let (Y, 3) be the subspace of irrational numbers with the discrete
topology (this is a subspace since every one-point set in Y is the
intersection of Y and a member of 0). Then Q is a countable dense
subset of (6t, 0), but (Y, 3) has no countable dense subset.

Second example: Let (X, 0) be the space of all points (x, y) of the
Euclidean plane such that y > 0, and let 0 be the topology generated
by the base consisting of sets of the following two types:

{(x,ii)I [(x-a)2+(y-b)2]1'2< min (b, e)},

aE(R, b>0, a>0,
{(a,0)} u{(x,y)I (x-a)2+(y-e)2<e2}, aE (R, a>0.
Then the set { (x, y) I x E Q , y E Q n (Q} is a countable dense subset
of (X, 0), but the space { (x, y) I x E (R, y = 0} with the discrete
topology is a subspace of (X, 0) with no countable dense subset.
(Cf. [1], p. 29, 5°.)

9. A separable space not satisfying the second axiom of
countability.

Each example under Example 8 satisfies these specifications since
(1) every space satisfying the second axiom of countability is separable
and (2) every subspace of a space satisfying the second axiom of count-
ability also satisfies the second axiom of countability. If either ex-
ample under Example 8 satisfied the second axiom of countability,
then the subspace under consideration would be separable.

10. For a given set, two distinct topologies that have identical
convergent sequences.

First example: Let (X, 0) be any uncountable space with 0 con-
sisting of 0 and complements of countable (possibly empty or finite)
sets. Then the sequence converges to x iff x = x for n > some
m E L. In other words, the convergent sequences are precisely those
of (X, 3), where 3 is the discrete topology. Finally, 0 91- U.

Second example: Let X be the set of all ordinal numbers less than
or equal to St, where St is the first ordinal that corresponds to an
uncountable set (cf. [20] and [46]). Let 0 be generated by the intervals

1110), (al PI (a' all
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where a and fl E X. Since every countable set in X \ {S2} has an
upper bound in X \ {Q), no sequence of points in X \ {2} can converge
to ft. Therefore a sequence in X converges to 2 if all but a finite
number of its terms are equal to 0. In other words, the convergent
sequences in X are the same as those in the topology obtained by
adjoining to the subspace X \ {S2) of X the point St as an isolated point
(that is, with {S2} a one-point open set of the new space X).

Third example: (Cf. [4] and [29] for definitions and discussion.) Let
X be the Banach space l1 of real (alternatively, complex) sequences
x = {xn} such that I+=1 I x I < + c, with norm II x II = I xri 1.

The strong topology of X is that of the metric space (X, d) with
d(x,y)=llx-yll.

We now define a second topology for X, called the weak topology,
in terms of the following neighborhood system:

( +oo

Nz = { y = J ' xn) I < C, m=
l n-1 ;

where is a bounded p X + 00 matrix, x E X, and e > 0. It
can be shown that { NJ satisfies the conditions, specified in the
Introduction, that guarantee the generation of a topological space
(X, e).

To demonstrate that the strong topology of X is indeed stronger
than the weak topology we show that every weak neighborhood of a
point x contains a spherical neighborhood of x. This is an easy
consequence of the triangle inequality for real series:

+00

ama(yn - x,,)
n-1

+00

n=1

where K is an upper bound of the set of absolute values of the ele-
ments of the matrix (am ). To prove that the strong topology is
strictly stronger than the weak topology, we shall now show that
every weak neighborhood is unbounded in the metric of the strong topology
(and hence no weak neighborhood is a subset of any strong neighbor-
hood). Accordingly, let (amn) be the p X + co matrix for a weak
neighborhood N., let (zi, z2, , z,Fi) be a nontrivial (p + 1)-dimen-
sional vector such that

p+1

E amn zn = 0 for
A-1

162
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and let zp+z = zp+a = = 0. The vector y(a) = x + az
{yn(a)} = {x. + ca.} belongs to N. for every real number a:

+'0

am.(y.(a) - x.) = E am. az.
A_1 A-1

P+1

aEam.z.=0, m=
.-1

On the other hand, 11y(a) - x I = 11azII _ aI'flz11,and 11zii 5;60.
We now turn our attention to sequences of points in X. We already

know that every sequence {x(m) of points in X that converges to x
in the strong topology must converge to x in the weak topology. We
shall now show the converse: If lim,... x(m) = x in the weak topology,
then lim,,,._.+m x("`) = x in the strong topology. It will then follow that
the weak and strong topologies of X determine identical convergent
sequences.

Assume that there exists a sequence converging to x in the weak
topology but not in the strong topology. By the linear character of
the two limit definitions we may assume without loss of generality
that the limit x is the zero vector 0. Furthermore, if the sequence
under consideration does not converge to 0 in the strong topology,
then there must be a subsequence whose norms are bounded from 0.
If this subsequence is denoted {x(m) }, then there exists a positive
number e such that

II
x(m) 11 > 5e

for m = 1, 2, . Since {x()} is a subsequence of a sequence con-
verging weakly to 0, {x(')} must also converge weakly to 0. If we
represent x(m):

X
(m) xl(m) X-2(m) xn(m)

then the sequence {x(')} is represented by an infinite matrix M each
row of which corresponds to one of the vectors of the sequence {x(m)}.
The next step is to show that since {x()} converges to 0 in the weak
topology, every column of M is a real sequence with limit 0; that is,
the limit as m -> + oD of the nth coordinate of x(m), for any fixed
n = 1, 2, ,is0:

lim xn(m) = 0.
m.+ C
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This follows immediately from considering the neighborhood of 0
given by the matrix (a,,) consisting of one row only, with 1 in the
nth place and 0's elsewhere.

We can now define by induction two strictly increasing sequences
of positive integers, m1 < ms < and n1 < n2 < such that
forj E 91:

toon I

X.(mj) I < E(a)
n=1 n=nj+1+1

and consequently

(b)
n=n j +1

Finally, we define the sequence {an} :

an
=J1 if 1 5 n <n1,

sgn xn(mj) if nj + 1 S n S ni+l,

for j = 1, 2, . If No is the neighborhood of the zero vector 0,
defined by a and the matrix (amn) consisting of one row only, made up
of the terms of { an I:

fr
+cO

NOSy {yn} Ianyn <c ,
11 n-1

then no point x(mj) of the subsequence {x(")} of {x`} is a member
of No:

n'E an xn(mj) ]
1 I xn(m')

n=r. j+1

n1 +oo

an xn(mj) I - I

n=1 nnj+1+1

>3e-a-e=E.
But this means that {x(')} cannot converge to 0. (Contradiction.)

11. A topological space X, a set A C X, and a limit point of
A that is not a limit of any sequence in A.

First example: Let X be the space of the first example under 10,
preceding, with A any uncountable proper subset of X. Then any

n j') 1

2 I xn(mj) I > 3E.

E I xn(mj) I < C,
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point of X \ A is a limit point of A, but since x cannot be a limit of
a sequence of points of A in the discrete topology, it cannot in the
topology described in that example.

Second example: Let X be the space of the second example under
10, preceding, with A = X \ {St} in the first topology described in
that example. Then St is a limit point of A but no sequence in A can
converge to 0.

Third example: (Cf. [51], where a similar .example is constructed.
Also cf. [4], [15], [29], and [30] for definitions and discussions.) Let X
be real (alternatively, complex) sequential Hilbert space l2 consisting
of all sequences x = {x,.} of real numbers such that E+,:1 x,.2 < + .0

I X. 12 < + oo in the complex case), and in which there is
defined an inner product for any two points x = {x,.} and y = { y}

(x, y) X. Y. (x. y in the complex case ,
w-1 n=1

with the properties, for x, y, and z E 12 and X E Gt (only the real case
will be considered henceforth in this example) :

W (x + y, z) = (x, z) + (y, z),
(ii) (Xx, Y) _ X (XI y),

(iii) (y, x) _ (x, y),
(iv) (x, x) z 0,
(v) if I X II = (x, x)12, then II II is .a norm for which l2 is a

Banach space.
The space X = 12 is now made into a topological space (X, 0) by

means of a neighborhood system, defined somewhat as in the third
example under Example 10:

N== {yIbEB(y-x,b)I <e},
where B is any nonempty finite set of points of X, x E X, and e > 0.

Let A be the set {x('")}, where x('") is the point whose mth co-
ordinate is / and all other coordinates are equal to 0:

x(m) _ (0) 0, ... , 0, 0, ... ).

We shall show first that the zero vector 0 is a limit point of A by
assuming that the neighborhood of 0,

No= {yIbEB=I(y,b)I <e},
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where e > 0 and B consists of the points b(1) _ {bn(1)}, , b(p)

{bn(')}, contains no point x(m). This means that

V m E 9t 3 k E { 1, 2, , p} ) I /mbm(k) I > e,
and hence:

rp +oo +0 rp +oo 2

Lr ! (bm(k))2
(bm(k))2 E _ +00,

k-1 mat m=1 m1 ?n

in contradiction to the assumed convergence of _1 (bM (1:))2 for
k=

Finally, we shall show that no sequence of points of A can converge
to the zero vector 0. It is easy to show that if

(m1) (m2) (fni)+ 1 x ' .. . x , .. . --+ 0,

then the sequence ml, m2, is unbounded, and we can therefore
assume without loss of generality that m1 < m2 < and

+.0 1

-1 m;

We conclude by defining a neighborhood No of 0 in terms of e = 1
and the set B consisting of the single vector b whose math coordinate
is 1// for j = 1, 2, and whose other coordinates are all 0.
Then no point of the sequence { x(m1)} can belong to No since
(x(m'), b) = 1 for j = 1, 2, .

Fourth example: A fourth example is given below (Example 12).
Note that the phenomenon illustrated in the examples of this set

cannot occur in a metric space, and therefore each of the spaces
described above is neither metric nor metrizable.

12. A topological space X whose points are functions, whose
topology corresponds to pointwise convergence, and which is
not metrizable.

Let (X, 0) be the space of all real-valued continuous functions with
domain [0, 1], and let 0 be generated by the neighborhood system

Ni= {9IxEF=I9(x)-f(x)I <F},
where F is a finite nonempty subset of [0, 1], f E X, and e > 0.
Clearly, if gn --> g, as n --- + oo, in this topology then gn(x) -+ g(x),
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as n -> + oo, for each x E [0, 1] since F can be taken to be the one-
point set {x}. On the other hand, if g(x) as n --> + oo, for
each x E [0, 1], then g -* g, as n -> + ao, since for every e > 0 and
finite subset F of [0, 1], n can be chosen sufficiently large to ensure
I g (x) - g(x) I < e for every x E F.

Let A be the set of all functions f in X such that:
(a) x E [0, 11 05f(x)51,
(b) ,z({x I f(x) = 1}) > .

Then 0 is a limit point of A, but if a sequence (f.1 of members of A
converged to 0 in the topology 0, then { f (x) } would converge to 0
for every x E [0, 1], and by the Lebesgue dominated convergence
theorem, PAWA(x) dx -> 0 as n -> + ao, in contradiction to the
inequality f o dx J. By the final remark included with
Example 11, X is not metrizable.

13. A mapping of one topological space onto another that is
continuous but neither open nor closed.

First example: Let f(x) = ex cos x, with domain and range (R, with
the standard topology. Then f is continuous, but f((- oo, 0)) is not
open and f({ -nor I n E 9i}) is not closed.

Second example: Let X be the space (R with the discrete topology,
let Y be the space 6t with the standard topology, and let the mapping
be the identity mapping.

14. A mapping of one topological space onto another that is
open and closed but not continuous.

First example : Let X be the unit circle { (x, y) J x2 + y2 = 1) with
the topology inherited from the standard topology of the plane, let Y
be the half-open interval [0, 2ir) with the topology inherited from the
standard topology of 6t, and let the mapping f be (x, y) -> 6, where
x = cos 0, y = sin 0, and 0 <_ 0 < 2ir. Then f is both open and
closed since its inverse is continuous, but f is discontinuous at (1, 0).

Second example : The inverse of the mapping of the second example
under Example 13.

15. A mapping of one topological space onto another that is
closed but neither continuous nor open.

Let X be the unit circle { (x, y) 1x2 + y2 = 1} with the topology
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inherited from the standard topology of the plane, let Y be the
half open interval [0, 7r) with the topology inherited from the standard
topology of (R, and let the mapping f be defined:

(cos B, sin B)
0 if 0 < B < 7r,
B - 7r if 7r < B < 27r.

Then f is not open since the open upper semicircle of X maps onto
a point, and f is not continuous at (1, 0) (cf. the first example under
Example 14). However f is closed, as we shall now see. Assume that
f is not closed. Then there is a closed set A of X such that B -- f(A)
is not closed in Y. Therefore there is a sequence {bn} of points of B
such that bn --p b, and b B. If f(pn) = bn, where P. E A, for
n = 1, 2, , since A is compact we may assume without loss of
generality that { p.) converges : P. -f p E A. Since f (pn) --+ b X f (p) ,

f is discontinuous at p, and p = (1, 0). But this means that there
exists a subsequence of {p.} approaching (1, 0) from either the upper
or the lower semicircle; in the former case b.n -). 0 E B, and in the
latter case {bn} cannot converge in Y. In either case a contradiction
is obtained, and f is therefore closed.

16. A mapping of one topological space onto another that is
continuous and open but not closed.

Let (X, 0) be the Euclidean plane with the standard topology, let
(Y, 3) be (R with the usual topology, and let the mapping be the
projection P: (x, y) - x. Then P is clearly continuous and open, but
P({ (x, y) I y = 1/x > 0}) is not closed in (Y, 3).

17. A mapping of one topological space onto another that is
open but neither continuous nor closed.

First example: Let X = Y = (R with the standard topology and
let f be the function defined in Example 27, Chapter 8, whose range
on every nonempty open interval is (R. This function is clearly open
since the image of every nonempty open set is 1R, and it is everywhere
discontinuous. To show that f is not closed, let xn be a point between
n and n + 1 such that f (xn) is between 1/(n + 1) and 1/n, for
n = 1, 2, . Then { xn} is closed and { f (xn) } is not.

Second example: Let (X, 0) be the plane with 0 consisting of 0
and complements of countable sets, let (Y, 3) be (R with 3 consisting
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of 0 and complements of finite sets, and let the mapping be the
projection P : (x, y) -> x. Then P is open since any nonempty open
set in (X, 0) must contain some horizontal line, whose image is 61.
On the other hand, P is not closed since the set of points (n, 0),
where n E. 9Z, is closed in (X, 0), but its image is not closed in
(Y, 3), and since the inverse image of any open set in (Y, 3) that is a
proper subset of Y cannot be open in (X, 0), P is not continuous.

18. A mapping of one topological space onto another that is
continuous and closed but not open.

Let X and Y be the closed interval [0, 2] with the usual topology,
and let

f (x)
{0 if 0 <_ x < 1,
x-1 if 1 <x<_2.

Then f is clearly continuous, and hence closed since X and Y are
compact metric spaces. On the other hand, f((0, 1)) is not open in Y.

19. A topological space X, and a subspace Y in which there
are two disjoint open sets not obtainable as intersections of Y
with disjoint open sets of X.

Let X = 9Z, the open sets being 0 or complements of finite sets,
andletY {1,2}.Then {1} = Yn(X\{2})and{2} = Yn(X\ {1}),
so that the subspace topology of Y is discrete. However, the two
disjoint open sets { 1 } and { 21 of Y are not the intersections of Y
with disjoint open sets of X since no two nonempty open sets of X
are disjoint.

20. Two nonhomeomorphic topological spaces each of which
is a continuous one-to-one image of the other.

First example: Let X and Y be subspaces of 61, where at has the
standard topology, defined:

+00

X = U On, 3n + 1) u On + 2}), Y = (X\ {2}) u {1}.
n-0

Let the mappings S of X onto Y and T of Y onto X be defined

y if y !_5 1,
S(x)-{1 if x=2, T(y)= ay-1 if 3<y<4,

' y-3 if y_> 5.
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Then S and T are continuous, one-to-one, and onto mappings. How-
ever, X and Y are not homeomorphic since under any homeomorphism
of Y onto X the point 1 of Y can have no correspondent.

D3 D2 D1 Al Az As A4

-0001 i 1

X

C4 C2 C2 C1 B1 Bz Ba

Y
Figure 12

. ..

Second example: Let X and Y be subsets of the plane, with the
standard topology, as indicated in Figure 12. The vertical segments
are of length 2 and are open at the top ends, and the circles are of
radius 1. The mapping S of X onto Y is defined as follows : The horizon,
tal line of X is mapped onto the horizontal line of Y, the cirles D. onto
the circles C.+1, and the segments onto the segments
n E )1, by a translation downward in Figure 12, and the segment
A2 is mapped onto the circle B1 by a formula of the type x = sin art,
y = 1 - cos art, where 0 5 t < 2. The segment Al is mapped by
downward translation onto C1. The mapping T of Y onto X is
defined as follows: The horizontal line of Y is mapped onto the hori-
zontal line of X, the circles onto the circles the segments

onto the segments A,,, n E J1, and the circle B1 onto the circle
D1 by a translation upward and to the left in Figure 12, and the
segment C, is mapped onto the circle D2 by a formula of the type
used above. The mappings S and T have the properties claimed. It is
left as an exercise for the reader to show that the spaces X and Y
are not homeomorphic.

21. A decomposition of a three-dimensional Euclidean ball B
into five disjoint subsets Si, Si, Sa, S4, S6 (where Sr, consists
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of a single point) and five rigid motions, R1, R2, R3, R4, Ra
such that

B = R1(Si) u R2(S2) ' R3(Sa) U R4(S4) u R5(S6)

(where "'means "is congruent to").
(Cf. references given below.)

22. For E, M > 0, two Euclidean balls B. and Bu of radius E
and M respectively, a decomposition of B, into a finite number
of disjoint subsets Si, S2, , S,,, and n rigid motions R,,
R2, , R. such that

Bx = Ru(S1) u R2(S2) u u R(S).
The last two examples are due to the work of Hausdorff, Banach,

Tarski, von Neumann, and R Robinson. We shall give only a refer-
ence where these are discussed in detail. (Cf. [41].)
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Chapter 13
Function Spaces

Introduction
A function space is a collection of functions having a common

domain D. It is usually assumed that a function space is endowed
with some sort of algebraic or topological structure. In this chapter
we shall focus our attention on the algebraic structures of certain
spaces of real-valued functions of a real variable whose common
domain is a fixed interval I.

A function space S of real-valued functions on an interval I is said
to be a vector space or a linear space over 6i, (the real-number
system) iff S is closed with respect to linear combinations with real
coefficients; that is, if

f,9E S,) iE cR= Xf+tgES,
where the function of is defined

(kf)(x) = X(f(x)).

It is easy to show that a function space of real-valued functions on an
interval is a vector space if it is closed with respect to the two
operations of addition, f + g, and scalar multiplication, X f. The
abstract concept of vector space is defined axiomatically in the Intro-
duction to Chapter 12. (For further discussion cf. [22].) Many of the
most important classes of functions in analysis are linear spaces over
CR (or over e, the field of complex numbers, in which case the co-
efficients X and µ are arbitrary complex numbers). Examples of
spaces of real-valued functions that are linear spaces over (R are:
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1. All (real valued) functions on an interval I.2. All bounded functions
on an interval I. 3. All Riemann-integrable functions on a closed
interval [a, b]. 4. All Lebesgue-measurable functions on an interval I.
5. All Lebesgue-integrable functions on an interval I. 6. All Lebesgue-
measurable functions on an interval I the pth power of whose absolute
value is Lebesgue-integrable on I, where p >_ 1. 7. All continuous
functions on an interval I. 8. All sectionally continuous functions on
a closed interval [a, b] (cf. [34], p. 131). 9. All sectionally smooth
functions on a closed interval [a, b] (cf. [34], p. 131). 10. All functions
having kth order derivatives at every point of an interval I for every
k not exceeding some fixed positive integer n. 11. All functions
having a continuous kth order derivative on an interval I for every k
not exceeding some fixed positive integer n. 12. All infinitely differ-
entiable functions on an interval I. 13. All (algebraic) polynomials on
an interval I. 14. All (algebraic) polynomials, on an interval I, of
degree not exceeding some fixed positive integer n. 15. All trigono-
metric polynomials, on an interval I, having the form

(1) ai cos ix + 6i sin ix,
i=0

where n is arbitrary. 16. All trigonometric polynomials of the form
(1) where n is fixed. 17. All step functions on a closed interval [a, b].
18. All constant functions on an interval I. 19. All functions satisfying
a given linear homogeneous differential equation, such as

d- + sin x dx + ex lox -
xy = 0,

on an interval I. Nineteen more examples of linear spaces over CR are
provided by permitting the functions of the preceding spaces to be
complex-valued functions.

In spite of the vital role played by linearity in analysis, there are
several important classes of real-valued functions that do not form
linear spaces. Some of these are indicated in the first five example"
below, which can be interpreted as saying that the following spaces
of real-valued functions on a fixed interval are nonlinear: (i) all
monotonic functions on [a, b], (ii) all periodic functions on (- oo, + oo )
(iii) all semicontinuous functions on [a, b], (iv) all functions whose
squares are Riemann integrable on [a, b], (v) all functions whose
squares are Lebesgue-integrable on [a, b].
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A function space S of real-valued functions on an interval I is
called an algebra over 6i if it is closed with respect both to linear
combinations with real coefficients and to products; that is, if S is a
linear space over M and

fES,gES= fg E S.
(As with linear spaces, the abstract concept of algebra is defined by
means of axioms. Cf. [22], vol. 2, pp. 36, 225.) As a consequence of
the identity

(2) f9=4(f+9)2-I(f-g)2
it follows that a function space that is a linear space is an algebra
if it is closed with respect to squaring.

A function space S of real-valued functions on an interval I is
called a lattice if it is closed with respect to the formation of the
two binary operations of join and meet, defined and denoted:

join of f and g : f v g, (f v g)(x) = max (f(x) , g(x)),

meet off and g : f n g, (f n g)(x) = min (f(x) , g(x)).

(Again, the abstract concept of lattice is defined axiomatically.
Cf. [9].) For a given real-valued function f , the two nonnegative
functions f+ and f- are defined and related to f and its absolute value
If I as follows:

(3) f+ = f v 0, f- = (-f) v 0,
(4) f=f+-f, IfI =f++f-,
(5) f+ = 4I f I + If, f- = 11f I - if.
Thanks to these relationships and the additional ones that follow:

v g A (-9)],

A g = - [(-f) v (- g)],

vg= +9)+f1f-9
A9=2(f+9)-1If-9I,

a function space that is a linear space is a lattice if it is closed with
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respect to any one of the following five binary or unary operations:

(10) fvg,fAg,
(11) f f-, if I.

In the preceding list of linear spaces, these that are also both
algebras and lattices are 1, 2, 3, 4, 7, 8, 17, and 18. Those that are
neither algebras nor lattices are 14 (cf. Example 6, below), 16, and 19.
Those that are algebras and not lattices are 9, 10, 11 (cf. Example 7,
below), 12, 13, and 15. Those that are lattices and not algebras are 5
(cf. Example 8, below) and 6.

1. Two monotonic functions whose sum is not monotonic.

sin x + 2x and sin x - 2x on [-a , a].

2. Two periodic functions whose sum is not periodic.

sin x and sin ax, a irrational, on (- 00, + oo).

If sin x + sin ax were periodic with nonzero period p , then the follow-
ing identities would hold for all real x:

sin (x + p) +sin(ax +ap) = sinx +sin ax,
sin (x + p) - sin x

cos (x + 4p) sin (4p)

cos x sin (4p)

_ -[sin (ax + ap) - sin ax],

_ -cos (ax + tap) sin (lap),

_ - cos (ax) sin (lap).

If x is set equal to 4r, the left-hand side of this last equation vanishes,
and hence sin lap = 0 , and ap is a multiple of 2a . If ax is set equal
to J r, the right-hand side vanishes and hence sin jp = 0, and p is
a multiple of 2a . Since a is irrational this is impossible and the
desired contradiction has been reached. (Cf. [36], p. 550, Note.)

3. Two semicohtinuous functions whose sum is not semi-
continuous.

If
1 if x > 0, 1 if x > 0,

f(x) = 2 if x = 0, g(z) -_ -2 if x = 0,
L-1 if x<0, I-1 if x<0,
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then f(x) + g(x) fails to be semicontinuous at x = 0, although f(x)
is everywhere upper semicontinuous and g(x) is everywhere lower
semicontinuous.

More dramatic examples are possible if f and g are functions each
of which is semicontinuous everywhere but upper semicontinuous at
some points and lower semicontinuous at other points. In the following
examples the notation p/q will indicate a quotient of integers in
lowest terms, with q > 0, the number 0 being represented 0/1. If

1 if x = p/q, q odd,
f(x) - {0 otherwise,

1 if x = p/q, q even,
g(x) - 0 otherwise,

then

11 if x = p/q, q odd,
AX) + g(x) _ -1 if x = p/q, q even,

0 if x is irrational,

and the function f(x) + g(x) is semicontinuous if x is rational, and
hence almost nowhere (that is, f + g fails almost everywhere to be
semicontinuous).

Now consider the three functions defined as follows:

4/q if x = p/q, q odd,
F(x) -2 - (4/q) if x = p/q, q even,

-2 if x is irrational,

f-1 - (1/q) if x = p/q, q odd,
G(x) = 1 + (1/q) if x = p/q, q even,

-1 if x is irrational

-1 - (1/q) if x = p/q, q odd,
H(x) - 3 + (1/q) if x = p/q, q even,

13 if x is irrational

Then F, G, and H are individually semicontinuous everywhere, while
their sum,

1-2 + (2/q) if x = p/q, q odd,
F(x) + G(x) + H(x) = 2 - (2/q) if x = p/q, q even,

0 if x is irrational,

is nowhere semicontinuous.
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4. Two functions whose squares are Riemann-integrable and
the square of whose sum is not Riemann-integrable.

If

11 if x is irrational,
AX) - 1 if x is rational,

and

then

1 if x is algebraic,
g(x) -1 if x is transcendental,

f(x) + g(x) = I2 if x is algebraic and irrational,
IO otherwise.

Then f2 and g2 are constants and hence integrable on every closed
interval - e.g., on [0, 1] to be specific -while (f + g)2 is everywhere
discontinuous and thus Riemann integrable on no interval, and in
particular it is not integrable on [0, 1].

5. Two functions whose squares are Lebesgue-integrable and
the square of whose sum is not Lebesgue -integrable.

Let El be a nonmeasurable subset of [0, 1] and let E2 be a non-
measurable subset of [2, 3] (cf. Example 10, Chapter 8). Then let

1 if x E [0, 1] u E2,
AX) = -1 if x E [2, 3] \ E2,

0 otherwise,

and

Then

Thus since

1 if x E [2, 3] u El,
g(x) = -1 if x E [0, 1] \ El,

0 otherwise.

f(x) + g(x) -
f 2 if x E El u E2,
0 otherwise.

f2(x) = g2(x) =
f 1 if x E [0, 1] u [2, 3],

0 otherwise,
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and

(Ax) + 9(x))2 =
4 if x E Ei u E2,
0 otherwise,

the result follows, since El u E2 is nonmeasurable.

6. A function space that is a linear space but neither an algebra
nor a lattice.

The polynomials cx + d of degree at most 1 on the closed interval
[0, 1] form a linear space. They do not form an algebra since the
square of the member x is not a member. They do not form a lattice,
since although 2x - 1 is a member, J 2x - 11 is not.

7. A linear function space that is an algebra but not a lattice.
The set of all functions that are continuously differentiable on

[0, 1] form an algebra because of the formula (fg)' = fg' + f'g.
However, they do not form a lattice. The function

f(x) _
xl

0 if x = 0,
sin 11x if 0 < x < 1

is continuously differentiable on [0, 1], but its absolute value fails'
to be differentiable at the infinitely many points where f (x) = 0.
In fact, I f(x) I is not even sectionally smooth.

8. A linear function space that is a lattice but not an algebra.
The set of all functions that are Lebesgue-integrable on [0, 1] is a

linear space and a lattice. However, this space is not an algebra since
the function

f(x) _ 0 if x = 0,
x-112 if 0<x<=1,

is a member of the set but its square is not.

9. Two metrics for the space C([0, 1]) of functions continuous
on [0, 1] such that the complement of the unit ball in one is
dense in the unit ball of the other.

Let p and a- be two metrics defined as follows: For f, g E C([0, 1]),
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13. Function Spaces

let

P(f,9)= f1If(x)-9(x)rdx If-9112;

q(f, 9) = sup I f(x) - 9(x) I = II f - 9 II-Ox1
Let P = if I p(f, 0) <_ 11, Z - If I o(f, 0) < 11 be the unit balls
in these metrics. Clearly E C P. We shall show that the complement
of E is dense in P. Indeed, let f E P, 0 < c < 1. If I f II > 1,
then f ( E and we need look no further. If II f II. < 1, let g(x) be
defined by:

0 if 0 < x 5 - (e2/9) or if # + (E2/9) _< x 5 1,
g(x) = 3 if x = 1,

linear otherwise.

Then f (x) + g(x) and II f - (f + 9) 112 = II 9 112 < 1/9 (e2/9) = e.
This last example illustrates an essential distinction between finite-

dimensional and infinite-dimensional normed linear spaces. In either
case the closed unit ball is such that any line through the origin (that
is, all scalar multiples of a fixed nonzero point) meets the unit ball in a
closed segment having the origin as midpoint. In the finite-dimen-
sional case the topology is thereby uniquely determined. The present
example shows that in the infinite-dimensional case this is not true.
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Special Symbols

Symbol Meaning Page

E () is (is not) an element of 3
is contained in, contains 3
implies, only if 3

if if and only if 3
p if and only if 3
(a, b, c, } the set consisting of the members

a,b,c, 3{ } the set of all such that 3
equal by definition 3

AuB the union of A and B 3
A n B the intersection o' IA and B 3
A \ B the set of points in A and not in B 3
A' the complement of A 4
0 the empty set 4
(a, b) ordered pair 4
A X B Cartesian product 4
3 there exist(s) 4

such that 4
Df, Rf domain of f, range off 4
J-1 the function inverse to f 4

a function fDf=A,RfcB 5
f(S) {y 3x E S f(x) = y} 6
fag composite off and g ( (f a g) (x) = f(g(x))) 6
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Symbol

if

Ixl
(a, b), [a, b)
(a, b], [a, b]
(a,+00),(-oc,a)
[a, +ocill, a]
(_00' +00 )
N(a, e), D(a, e)
max (Z' Y)
min (x, y)
inf (A), inf A;
sup (A), sup A
X <--> x

sgn x

xe

f '(a)
I a.)

(x, y)
e
xk+ iy
3C

CD

min
+ o +m

U A,,, fA,
n-1 n-1

Meaning Page

.field 6
group 7
positive part of a field 7
order symbols 8
absolute value of x 9

intervals of an ordered system 9

neighborhood, deleted neighborhood 9
maximum of z and y 9
minimum of x and y 9
infimum of A 10
supremum of A 10
one-to-one correspondence 10
the real number system 10
signum function 10
characteristic function of the set A 10
the natural number system 10
the field of rational numbers 11

ring 11

integral domain 11

the ring of integers 11

for all 12
the limit of f(x) at x = a 12

the derivative of f (x) at x = a 12

a sequence a1, a2, 13
a complex number 13
the field of complex numbers 13
a complex number 13
the field of rational functions 16
{a+b/Ia,bE91 17
m divides n 18

union, intersection, of the (countably)

infinite set of sets Al i A2, 20
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Symbol

z+a x- .a

D(foo, N)
lim f(x)

Jim f(x) = =EGO
z+a

F>

Jim, limAn

an _ a.
n'1

(ti,)
fcn) (x)

deg P
Q-ring
A
C
x+A
B
S
P << a

X, (X, S)
B

C
C

D(A)
Ga,FQa, -
r + A(mod l]
a

50

S,s
A

Special Symbols

Meaning Page

frontier, interior, closure of A 20
open covering, 21
sup(nInE E,nSx) 21

limit superior, inferior, of f(x) at x = a 21

deleted neighborhoods of f 22
limits at f o 22

infinite limits 22

F-sigma
limit superior, inferior, of the sequence of

30

sets A,, A2, 51

infinite series 53

matrix 64
nth derivative of f(x) 70
degree of polynomial P 74
sigma-ring 83
class of sets 83
class of compact sets 83
translate of A by x 83
class of Borel (-measurable) sets 83
a-ring 83
p absolutely continuous with respect to a. 84
measure space 84
class of Lebesgue-measurable sets 84
measure 84
inner, outer measure 84
the Cantor set 85
cardinality of at 86
difference set (of A) 87
G-delta, F-sigma delta, 91
translation (of A by r) modulo 1 92
{zIzEe,IzI=1} 93

<B< 1} 93
3/3o, one-to-one preimage of S in 3 93
measure on 3 94
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Symbol Meaning Page

the Cantor function 95
length of the interval 1 105

ax , axay ,
f2 , f S,

f21, partial derivatives off 115
P dx + Q dy differential 125
F vector field 126
E2 Euclidean plane 128
d(A, B) distance of set A from set B 128
d(p, q) distance of the point p from

the point q 128, 154
S(A) diameter of the set A 128
a infinite cardinal 142
f cardinality of the set of closed sets in

the plane 143
IF first ordinal of cardinality c 143

A(S), A (S), A(S) area, inner area, outer area of S 147
SQ net of lines 147
(X, d) metric space 154
d metric 154
d(x, y) distance between the points x and y 154
0 family of open sets, topology 154
(X, 0) topological space 154

induced topology 155
J1t neighborhood system 155

base of a topology 156
{Q, X}, 2a trivial, discrete topologies 156

d*(x, y) equivalent bounded metric 157

II norm 158
Sl first uncountable ordinal 161
(x, y) inner product of x and y 165
f v g join of f and g 174
f n g meet off and g 174

f+, r f v 0, (-f) v 0 174
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Index

(The numbers refer to pages.)

Abel, N. H., 70
Abelian group, 7
Absolute value, 8
Absolutely continuous, 84
Addition, 6, 11, 13
Additive identity, 7
Algebra, 174
Algebraic function, 25
Almost everywhere, 42
Alternating series theorem, 56
Are, 129

simple, 129
space-filling, 133

Archimedean, 15
Area, 147

have, 147
inner, 147
surface, 150, 152
outer, 147

Associative law, 6, 7
Axiom of choice, 85

Baire, R., 90
Baire's category theorem, 159
Ball, 156

closed, 156
open, 156

Banach, S., 171
Banach space, 158
Base, 155
Basis, Hamel, 33
Besicovitch, A. S., 152, 153

Bessel's inequality, 70
Binary expansion, 86
Binary operation, 6
Bore! measure, 84
Borel set, 83
Bound,

greatest lower, 10
least upper, 9
lower, 10
upper, 9

Bounded, 156
above, 9
below, 10
interval, 8
metric, 156

Bracket function, 21

Cancellation law, 11
Cantor, G., 85
Cantor function, 97
Cantor set, 85, 86

of positive measure, 89
Cardinal number, 142
Cartesian product, 4
Category,

first, 90
second, 90

Cauchy-complete, 17
Cauchy principal value, 45
Cauchy product series, 61
Cauchy sequence, 13, 157
Cavalieri's Principle, 149
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Index

Center of a spherical neighborhood,
156

Characteristic function, 10
Circuit, plane, 132
Closed ball, 156
Closed curve, 129
Closed disk, 128
Closed interval, 9
Closed mapping, 157
Closed set, 20, 155
Closed under translations, 83
Closure, 20, 155

convex, 130
Commutative group, 7
Commutative law, 6, 7
Compact, 21, 155

locally, 155
Compares favorably (series), 63
Complement, 4

of one set relative to another, 4
Complete extension of Borel meas-

ure, 84
Complete measure, 84
Complete metric space, 157
Complete ordered field, 10
Completion of Borel measure, 84
Complex number, 13
Component, 4

first, 4
second, 4

Composite, 17
of two functions, 6

Condensation,
point of, 94
of singularities, 29

Conditionally convergent, 54
Congruent,171
Connected, 129

locally, 129

simply, 126
Continuous function, 12, 157
Continuous mapping, 157
Converge(s), 156
Convergence, 13, 51, 53, 110, 156

almost everywhere, 110

dominated, 110
mean, 110
in measure, 110

Convergent sequence, 13
of functions, 76
of sets, 51

Convergent series, 53, 54
Convex, 130
Convex closure, 130
Convex hull, 130
Coordinate, 4

first, 4
second, 4

Correspondence, one-to-one, 4
Countability, second axiom of, 157
Countable, 21
Countably additive, 84
Cover(s), 21
Covering, open, 21,155
Curl (of a vector field), 126
Curve, 129

closed, 129
Jordan, 129

de Morgan laws, 91
Decreasing function, 8
Deleted neighborhood, 9
Dense, 16, 128, 157
Dense graph, 105
Derivative, 13, 35

partial, 115
Diameter, 128
Difference of sets, 3
Difference set, 87
Differentiable function, 35
Differentiable, infinitely, 35
Differential, 125

exact, 125
locally exact, 125

Dini's theorem, 81
Discrete topology, 156
Disk,

closed, 128
minimum closed, 130
open, 129

188



Index

Distance, 128, 154
between two functions, 44

Distributive law, 7
Divergence of a vector field, 126
Divergent sequence, 13

of sets, 51
Divergent series, 53
Divide(s), 18
Division, 7
Divisor, greatest common, 18
Domain,

of a function, 4
integral, 11
unique factorization, 17

Dominated convergence, 110
Domination of series, 54

Empty set, 4
Equivalence classes, 85

of Cauchy sequences, 17
Equivalence relations, 85
Equivalent, 106
Equivalent metrics, 156, 157
Euclidean plane, 128
Exact differential, 125
Existential quantifier, 4
Extension of a function, 6

Field, 6
Archimedean ordered, 15
complete ordered, 10
non Archimedean ordered, 15

ordered, 7

solenoidal vector, 126
vector, 126

Finite interval, 8
First category, 90
Frontier, 20
Frontier point, 20
Fourier series, 70
Fourier transform, 72
Function, 4

algebraic, 25
bracket, 21
characteristic, 10

composite, 6
constant, 4
continuous, 12, 157
decreasing, 8
differentiable, 35
extension of a, 6
greatest integer, 21
increasing, 8
infinitely differentiable, 35
Lebesgue-integrable, 72
Lebesgue measurable, 173
linear, 33
locally bounded, 22
locally bounded at a point, 22
lower semicontinuous, 22
monotonic, 8
nonnegative extended real valued,

83
on into, 4, 5
on-onto, 4, 5
one to one, 4
polynomial, 15
rational, 16
real valued, 10
of a real variable, 10
restriction of a, 6
Riemann integrable, 42
semicontinuous, 22
signum, 10
space, 172
strictly decreasing, 8
strictly increasing, 8
strictly monotonic, 8
transcendental, 25
uniformly continuous, 12
upper semicontinuous, 22

Fundamental Theorem of Calculus,
43

Fundamental Theorem of Induction,
11

Galvin, F., 94,144
Generated sigma ring, 83
Generated topology, 156
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Index

Graph,
dense, 105
nonmeasurable, 145

Greatest common divisor, 18
Greatest integer function, 21
Group, 7

Abelian, 7
commutative, 7
topological, 94

Half closed interval, 9
Half open interval, 9
Hamel basis, 33
Harmonic series, 49
Hausdorff, F., 171
Hausdorff space, 155
Have area, 147
Heine Borel theorem, 21
Hilbert, D., 34, 133
Hilbert space, 165
Homeomorphic, 95
Homeomorphism, 95, 157
Homogeneous, 121

locally, 121
Hull, convex, 130

Identity,
additive, 7
multiplicative, 7

Incomplete metric space, 157
Increasing function, 8
Index set, 155
Induced topology, 155
Induction, Fundamental Theorem

of, 11
Inductive set, 10
Inequality,

Bessel's, 70
triangle, 8

Infimum, 10
Infinite interval, 9
Infinite limit(s), 22
Infinite matrix, 64
Inherited topology, 155
Inner area, 147

Inner measure, 84
Inner product, 165
Inscribed polygon, 129
Integer, 11
Integral domain, 11
Interior, 20
Interior point, 20
Intermediate value property, 13

Intersection, 3
Interval,

bounded,8
closed, 9
finite, 8
half-closed, 9
half-open, 9
infinite, 9
open, 9
open and closed, 9
unbounded, 9

Inverse,
additive, 7
multiplicative, 7

Isomorphic, 10

Join, 174
Jordan curve theorem, 129
Jordan region, 129

Kakeya, S., 153
Kolmogorov, A. N., 34, 74

Lattice, 174
Law,

associative, 6, 7
commutative, 6, 7
distributive, 7
of the mean, 19, 39

Laws, de Morgan, 91
Least upper bound, 9
Lebesgue, H., 31
Lebesgue integrable, 72
Lebesgue measurable, 173
Lebesgue-Stieltjes integral, 109
Length, 129
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Limit, 12, 156
inferior, 21

of sets, 51
point, 12, 155

of a sequence, 48
of a sequence, 13, 156
superior, 21

of sets, 51
Limits,

infinite, 22
subsequential, 48

Linear function, 33
Linear space, 157, 172
Locally bounded, 22

at a point, 22
Locally compact, 155
Locally exact differential, 125
Locally homogeneous, 121
Lower bound, 10
Lower semicontinuous function, 22
Luxembourg, W. A. J., 105

M test, 22
Maclaurin series, 53

Mapping,
closed, 130
continuous, 157
open, 130

Matrix,
infinite, 64
Toeplitz, 65

Maximality principle, 85
Mazurkiewicz, S., 144
Mean convergence, 110
Measure, 83

absolutely continuous, 84
inner, 84
outer, 84

Measure space, 84
Measure zero, 42
Meet, 174
Member of a set, 3
Mertens's theorem, 61

Index

Metric, 154
Metric space, 154

complete, 157
incomplete, 157

Metrics, equivalent, 156, 157
Metrizable, 156
Minimum closed disk, 130
Monotonic function, 8
Moore Osgood theorem, 119
Motion, rigid, 171
Multiplication, 6, 11, 13
Multiplicative identity, 7
Multiplicative inverse, 7

Natural number, 10
Negative, 7, 8
Neighborhood, 9, 156

deleted, 9
spherical, 156
system, 155

Non Archimedean, 15
Nonempty set, 4
Non Jordan region, 130
Nonmeasurable function, 109
Nonmeasurable graph, 145
Nonmeasurable set, 92
Nonnegative extended real valued

function, 83
Nonnegative series, 53
Norm, 158
Normed vector space, 158
Nowhere dense set, 85
Null set, 84
Number,

cardinal, 142
complex, 13
natural, 10
ordinal, 143
real, 10

One, 7
One to one correspondence, 4
One to-one function, 4
Open ball, 156
Open and closed interval, 9
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Index

Open covering, 21, 155
Open disk, 129
Open interval, 9
Open mapping, 130, 157
Open set, 20, 155
Operation, 6

binary, 6
from a set to a set, 6
on a set to a set, 6

unary, 175
Ordered field, 7

Cauchy-complete, 17
Ordinal number, 143
Osgood, W. F., 138

Moore-Osgood theorem, 119
Outer area, 147
Outer measure, 84

Parametrization, 129
Parametrization functions, 129
Partial derivative(s), 115
Pastor, J. R., 98
Peano, G., 133
Perfect set, 85
Periodic, 21

with period p, 21
Plane, 128

circuit, 132
Euclidean, 128
punctured, 126

Point,
frontier, 20
interior, 20
limit, 12, 155

Point(s), 3
of condensation, 94

Polygon, inscribed, 129
Polynomial function, 15
Positive, 8
Positive series, 53
Potential, vector, 126
Power series, 68
Prime, 17
Primitive, 42

Product,
Cartesian, 4
inner, 165

Punctured plane, 126

Quantifier,
existential, 4
universal, 12

Radius, 156
Radon-Nikodym theorem, 112
Range of a function, 4
Ratio test, 59
Rational function, 15
Rational number, 11
Real number, 10
Real number system, 10
Real-valued function, 10
Reciprocal, 7
Rectifiable, 129
Region, 115, 129

Jordan, 129
non-Jordan, 130

Relation, 4
Restriction of a function, 6
Riemann derangement theorem, 55
Riemann-integrable, 42
Riemann-integral, 42
Riemann-Stieltjes integral, 42
Rigid motion, 171
Ring, 11
Robinson, R., 171
Rolle's theorem, 19
Root test, 60

Schwarz, H. A., 152
Second axiom of countability, 157
Second category, 90
Semicontinuous function, 22
Separable, 157
Separated, 129
Sequence, 13

Cauchy, 13
convergent, 13
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divergent, 13
Series,

Cauchy product, 61
conditionally convergent, 54
convergent, 53
divergent, 53
domination of, 54
Fourier, 70
harmonic, 54
Maclaurin, 53
nonnegative, 53
positive, 53
power, 68
sum of, 53
trigonometric, 70

Set, 3
closed, 20, 155
compact, 21, 155
countable, 21
empty, 4
index, 155
inductive, 10
member of a, 3
nonempty, 4
nowhere dense, 85
open, 20, 155
"thin" connected, 131
totally disconnected, 129

Sets closed under translations, 83
Sierpinski, W., 55, 75, 142, 159
Sigma ring, 83

generated, 83
Signum function, 10
Simple arc, 129
Simple closed curve, 129
Simply connected, 126
Space,

Banach, 158
complete metric, 157
function, 172
Hausdorff, 155
Hilbert, 165
incomplete metric, 157
linear, 157, 172
locally compact, 155

metric, 154
normed vector, 158
topological, 154
vector, 157, 172

Space filling are, 133
Spherical neighborhood, 156
Stokes's theorem, 127
Stone Weierstrass theorem, 74
Strictly decreasing, 8
Strictly increasing, 8
Strictly monotonic, 8
Strong topology, 162
Stronger topology, 156
Subsequential limit, 48
Subset, 3
Subtraction, 7
Sum of a convergent series, 53
Supremum, 9
Surface area, 150, 152

Tarski, A., 171
Term of a sequence, 13
Ternary expansions, 86
Test,

ratio, 59
root, 60

Thin, 131
Toeplitz, 0., 65
Toeplitz matrix, 64
Topological group, 94
Topological mapping, 98, 157
Topological space, 154
Topology, 155

discrete, 156
generated, 156
induced, 155
inherited, 155
strong, 162
stronger, 156
trivial, 156
weak, 162
weaker, 156

Totally disconnected, 129
Transcendental function, 25
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Transform, 64
Fourier, 72

Translate, 83
Translation-invariant, 84
Translation modulo 1, 92
Triangle inequality, 8
Trigonometric series, 70
Trivial topology, 156

Unary operation, 175
Unbounded interval, 9
Uniform convergence, 76
Uniformly continuous function, 12
Union, 3
Unique factorization domain, 17
Unit, 17
Unity, 7
Universal quantifier, 12
Universe of discourse, 4
Upper bound, 9
Upper semicontinuous function, 22

Value,
absolute, 8
Cauchy principal, 45

Values of a function, 4
van der Waerden, B. L., 39
Vector field, 126
Vector potential, 126
Vector space, 157, 172

normed, 158
Vector(s), 158
von Neumann, J., 171

Weak topology, 162
Weaker topology, 156
Weierstrass, K. W. T., 39

M test, 22
Stone Weierstrass theorem, 74

Well ordering theorem, 85

Zaanen, A. C., 105
Zero, 7
Zorn's lemma, 85
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