
CSC 220: Computer Organization

Unit 8
Registers and RTL

Prepared by:

Md Saiful Islam, PhD

Department of Computer Science
College of Computer and Information Sciences

Overview

• Registers Construction

• Basic Registers

• Shift Registers

• Bus Construction

• Register Transfer Language

• Micro operations

Chapter-6
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design

Fundamentals, Global (5th) Edition, Pearson Education Limited, 2016. ISBN:

9781292096124

3

4

5

A Register with parallel load

6

MUX 2 - 1

MUX 2 - 1

7

8

9

Serial

Parallel

MUX 2 - 1
MUX 2 - 1

10

OperationS0S1

No change00

Shift left 10

Shift right01

Parallel load11

A Bidirectional Shift Register with parallel load

11

Other types of shift registers

• Logical shifts – Standard shifts like we just saw. In the absence of a SI input, 0 occupies

the vacant position.

– Left: 0110 -> 1100

– Right: 0110 -> 0011

• Circular shifts (also called ring counters or rotates) – The shifted out bit wraps around to

the vacant position.

– Left: 1001 -> 0011

– Right: 1001 -> 1100

• Switch-tail ring counter (aka Johnson counter) – Similar to the ring counter, but the serial

input is the complement of the serial output.

– Left: 1001 -> 0010

– Right: 1001 -> 0100

• Arithmetical shifts – Left shifting is the same as a logical shift. Right shifting however

maintains the MSB.

– Left: 0110 -> 1100

– Right: 0110 -> 0011; 1011 -> 1101

Bus-based Data transfers

 The computer need several registers
 Bus is the Path for data transfer among registers

 A bus consists of a set of parallel data lines

13

Multiplexer-based bus construction

14

Bus-based transfers for multiple registers

To transfer data using a bus:
connect the output of the source register to the bus;
connect the input of the target register to the bus;
when the clock pulse arrives, the transfer occurs

D3 C3 B3 A3

D3 C3 B3 A3

D2 C2 B2 A2 D1 C1 B1 A1 D0 C0 B0 A0

S1 S0 LDA LDB LDC LDD Operation

0 0 0 1 0 0 Register B  Register A

1 1 1 0 0 0 Register A  Register D

0 0 0 1 1 0 Register B  Register A; Register C  Register A

Examples: Bus-based transfers

Register Transfer Language

• Micro operations (micro-ops) are operations on data stored in registers

• Register transfer language (RTL) is a concise and precise means of
describing those operations

• RTL expressions are made up of elements which describe the registers
being manipulated, and the micro-ops being performed on them

• Registers are denoted by uppercase letters (sometimes followed by

numbers) that indicate the function of the register

– e.g. R0, R1, AR, PC, MAR, et al.

– The individual bits can be denoted using parenthesis and bit numbers

or labels

• e.g. R0(0), R0(7:0), PC(L), PC(H)

16

Destination register  Source register:

• Data in source register does not change

• A datapath are available from the outputs of the source register to the

inputs of the destination register

• The destination register has a parallel load capability

• All RTL statements occur in response to a clock tick

• Normally we want a given transfer to occur not for every clock pulse,

but only for specific values of the control signals

Register Transfer Language

17

• RTL conditional statements:

• e.g. If (K1 = 1) Then (R2  R1)

Control function notation (Colon, :)

• e.g. K1: R2  R1

Register Transfer Language

18

 Every RTL statement written in register-transfer notation

presupposes a hardware construct for implementing the transfer.

19

Bitwise operations:

• Most computers also support logical operations like AND, OR and NOT, but extended to

multi-bit words instead of just single bits.

• To apply a logical operation to two words X and Y, apply the operation on each pair of

bits Xi and Yi:

• Single operand logical operation: “complementing” all the bits in a number.

1 0 1 1
AND1 1 1 0

1 0 1 0

1 0 1 1
OR 1 1 1 0

1 1 1 1

1 0 1 1
XOR 1 1 1 0

01 01
NOT1 0 1 1

01 00

Register Transfer Language

20

• Languages like C, C++ and Java provide bitwise logical operations:

& (AND) | (OR) ^ (XOR) ~ (NOT)

• These operations treat each integer as a bunch of individual bits:

13 & 25 = 9 because 01101 & 11001 = 01001

• They are not the same as the operators &&, || and !, which treat each integer as a single

logical value (0 is false, everything else is true):

13 && 25 = 1 because true && true = true

• Bitwise operators are often used in programs to set a bunch of Boolean options, or flags,

with one argument.

• Easy to represent sets of fixed universe size with bits:

– 1: is member, 0 not a member. Unions: OR, Intersections: AND

Bitwise operations in programming

Register Transfer Language

21

