agsesacllodl

King Saud University
CSC 220: Computer Organization

Unit 8
Registers and RTL

Department of Computer Science
College of Computer and Information Sciences

Overview

* Registers Construction
* Basic Registers
* Shift Registers
* Bus Construction
* Register Transter Language

e Micro operations

Chapter-6
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design

Fundamentals, Global (5") Edition, Pearson Education Limited, 2016. ISBN:
9781292096124

Registers

* Flip-flops are limited because they can store only one bit.

— We had to use two flip-flops for most of our examples so far.

— Most computers work with integers and single-precision floating-point
numbers that are 32-bits long.

» Avregister is an extension of a flip-flop that can store multiple bits.
» Registers are commonly used as temporary storage in a processor.
— They are faster and more convenient than main memory.
— More registers can help speed up complex calculations.

= Later we'll learn more about how registers are used in processors, and
some of the differences between registers and random-access memories

or RAM.

A basic register

Basic registers are easy to build. We can store multiple bits |
just by putting a bunch of flip-flops together!

A 4-bit register from LogicWorks, Reg-4, 1s on the right, and

its internal implementation is below.

— This register uses D flip-flops, so it’s easy to store data '3'|-R
without worrying about flip-flop input equations.

— All the flip-flops share a common CLK and CLR signal.

CLK
— D3 Q3
— D2 Q2
— D1 1
— D0 Q0

A Register with parallel load

Adding another operation

= The input D3-D0O 1s copied to the output Q3-Q0 on every clock cycle.
= How can we store the current value for more than one cycle?
= Let’s try to add a load input signal LD to the register.

— |If LD = 0, the register keeps its current contents.
— If LD = 1, the register stores a new value, taken from inputs D3-DO.

LD | Q(t+1)
0| Q(t)
1 | D,-D,

D3 D2 D1 DO
| | | |

CLR—
LD —
CLK—

Q3 Q2 Q1 Q0

A better parallel load

= Another idea 1s to modify the flip-flop D inputs and not the clock signal.

— When LD = 0 the flip-flop inputs are Q3-QO0, so each flip-flop keeps its
current value.

— When LD = 1 the flip-flop inputs are D3-D0, so this new value is loaded
into the register.

MUX 2 - 1

Shift registers (Left Shift)

= A shift register "shifts” its output once every clock cycle. Sl is an input
that supplies a new bit to shift “into” the register.

: OD—*+{0OD——oDH——*{Q D =l
1
- CLK
Q3 Q2 Q1 Qo
= Here is one example transition.
Present State | Input | Next State
Q3-Q0 Sl Q3-Q0
0110 1 1101

QO(t+1) = Sl
Q1(t+1) = QO(t)
Q2(t+1) = Q1(t)
Q3(t+1) = Q2(t)

= The current Q3 (O in this example) will be lost on the next cycle.

Shift registers (Right Shift)

= A shift register "shifts” its output once every clock cycle. Sl is an input
that supplies a new bit to shift “into” the register.

DQOQ%*—DQ*— 1D O*—D QO

Q3 02 Q1 Q0

= Here is one example transition.

Present State | Input | Next State
Q3-Q0 Sl Q3-Q0

0110 1 1011

= The current QO (O in this example) will be lost on the next cycle.

Shift registers with parallel load

= We can add a parallel load operation, just as we did for regular registers.

Serial — When LD = 0 the flip-flop inputs will be S1Q3Q2Q1, so the register will
shift on the next positive clock edge.

Parallel — When LD = 1, the flip-flop inputs are DO-D3, and a new value is loaded
into the register on the next positive clock edge. MUX 2 - 1

D3 D2 MUX2-1 p1 DO

o /// e

= | s T

D1 Q DiQ— —{D1Q
sl —4 DO Q3 — DO Q2 —{ DO Q1— DO

|
2
0

c c c c
CLK —i l . J.

Q3 Q2 Q1 Q0

A Bidirectional Shift Register with parallel load

0 Iz 5 d o § Iy
3 |3 £
S 5
3 g
Operation
0 0 No change
0 1 Shift left
1 0 Shift right PR wnro ol | [wvko o Wnmo D@
b -
1 1 Parallel load
4 x1 4x1 4x1 4x 1
MUX MUX MUX MUX
4 -ﬁf:_ ¥ ::l.i»_:u Jy -'_U A y fj_v .-_'_ i c =0
o el | fe S o
s iy A, A

11

Other types of shift registers

Logical shifts — Standard shifts like we just saw. In the absence of a Sl input, 0 occupies
the vacant position.

— Left: 0110 -> 1100
— Right: 0110 -> 0011

Circular shifts (also called ring counters or rotates) — The shifted out bit wraps around to
the vacant position.

— Left: 1001 -> 0011
— Right: 1001 -> 1100

Switch-tail ring counter (aka Johnson counter) — Similar to the ring counter, but the serial
input is the complement of the serial output.

— Left: 1001 -> 0010
— Right: 1001 -> 0100

Arithmetical shifts — Left shifting is the same as a logical shift. Right shifting however
maintains the MSB.

— Left: 0110 -> 1100
— Right: 0110 -> 0011; 1011 -> 1101

Bus-based Data transfers

* The computer need several registers
+ Bus is the Path for data transfer among registers
+ A bus consists of a set of parallel data lines

Multiplexer-based bus construction

Figure 4-3 Bus system for four registers.

-
—

13

Y

-+ 4- line
common
™ bus
4 x 1 o 4x1 4x1 4x1
MUX 3 , : MUX 2 MUX 1 MUX 0
4 2 LB 3 2 1 0 S SR R ¢ 3. 2 -%-9
' I r) TR R D, C, B, A, By O By Ay
D, D, D, C G G B, B, By A, A A
. U R U ¢ 3 "2°°1'% 3% ¥ 0 3 2 1 0
Register D Register C Register B Register A

TABLE 4-2 Function Table for Bus of Fig. 4-3

5 So Register selected
0 0 A
0 1 B
1 0 i
1 1 D

Bus-based transfers for multiple registers

.
2) TS
So_ | ’7
[1
il :-.: UX 3 s MUX 2 T r-: UX 1 f_ M UK:-;' 0
| 3 2 1 0 3 2 1 o 3 2 1 0 3 2 1 ©
Tttt bt aEE Fitt
D, C; B; A, D, C, B, A Dy Cy By A Do Co By A
D; p; b, D, C, C2 G G B, B, B, B, A Ay A, Ay
] | it P 1 11
[DE-;._ :!Rc:lﬂ:rlﬂ = I_.'[Jc.*-— anlii“ﬂ:f ” mﬂ* 3“1’3?“:1'3 , LD~ ’ Rrilﬂ::d i
. I I T y 4 4 r A b 4§ r 4 4 f

LI» "Load”

To transfer data using a bus:
+connect the output of the source register to the bus;
sconnect the input of the target register to the bus;
+when the clock pulse arrives, the transfer occurs

Examples: Bus-based transfers

S1 SO0 LD, LDg LD. LDy Operation
0 0 0 1 0 0 Register B € Register A
1 1 1 0 0 0 Register A & Register D

14 0 0 0 1 1 0 Register B € Register A; Register C € Register A

Register Transfer Language

Micro operations (micro-ops) are operations on data stored in registers

Register transfer language (RTL) is a concise and precise means of
describing those operations

RTL expressions are made up of elements which describe the registers
being manipulated, and the micro-ops being performed on them

Registers are denoted by uppercase letters (sometimes followed by
numbers) that indicate the function of the register
— e.g. RO, R1, AR, PC, MAR, et al.
— The individual bits can be denoted using parenthesis and bit numbers
or labels

* e.g. RO(0), RO(7:0), PC(L), PC(H)

R 76543210
(a) Register R (b) Individual bits of 8-bit register
15 0 15 8 7 0
R2 PC (H) P L)

(c) Numbering of 16-bit register (d) Two-part 16-bit register

©2016 Pearson Education, All Rights R

16

Register Transfer Language

[1 TABLE 6-1
Basic Symbols for Register Transfers

Symbol Description Examples

Letters (and numerals) Denotes a register AR,R2,DR,IR
Parentheses Denotes a part of a register R2(1),R2(7:0), AR(L)
Arrow Denotes transfer of data R1 < R2

Comma Separates simultaneous transfers R1 < R2, R2 < R1
Square brackets Specifies an address for memory DR < M[AR]

Destination register « Source register:

Data in source register does not change

A datapath are available from the outputs of the source register to the
inputs of the destination register

The destination register has a parallel load capability
All RTL statements occur in response to a clock tick

Normally we want a given transfer to occur not for every clock pulse,
but only for specific values of the control signals

Register Transfer Language

RTL conditional statements:
« e.g.If(K1=1)Then (R2 «+ R1)

Control function notation (Colon, :)
 e.g.K1: R2 « R1

Transfer occurs here
Load l ‘

t t+1

R1 ﬁr"l;” R2 Clock r +_
Clock ? ? i / \

Register transfer operations

s aRRRRiRRRiRiRRRRD}D}D}}}RR,
* We can apply arithmetic operations to registers.

R1 « R2 + R3
R3 <« R1 -1

= Every RTL statement written in register-transfer notation
presupposes a hardware construct for implementing the transfer.

L1 TABLE 6-3
Arithmetic Microoperations

Symbolic Designation Description

RO« R1 + R2 Contents of R1 plus R2 transferred to RO
R2 <— R2 Complement of the contents of R2 (1s complement)
R2<—R2 + 1 2s complement of the contents of R2

RO<—R1 + R2 +1 R1 plus 2s complement of R2 transferred to RO (subtraction)

Rl < R1 + 1 Increment the contents of R1 (count up)
18 R1<—R1 -1 Decrement the contents of R1 (count down)

Register Transfer Language

Bitwise operations:

Most computers also support logical operations like AND, OR and NOT, but extended to
multi-bit words instead of just single bits.

To apply a logical operation to two words X and Y, apply the operation on each pair of
bits X; and Y

1011 1011 1011
AND1110 OR 1110 XOR1110
1010 1111 0101
Single operand logical operation: “complementing” all the bits in a number- NOT(I) (1) (l)é
TABLE 6-4
Logic Microoperations
Symbolic
Designation Description
RO < R1 Logical bitwise NOT (1s complement)
RO<—R1 A R2 Logical bitwise AND (clears bits)
RO<— R1 V R2 Logical bitwise OR (sets bits)

19 RO<—R1 ® R2 Logical bitwise XOR (complements bits)

Register Transfer Language

Bitwise operations in programming

20

Languages like C, C++ and Java provide bitwise logical operations:
& (AND) | (OR) N (XOR) ~ (NOT)
These operations treat each integer as a bunch of individual bits:
13&25=9 because 01101 & 11001 = 01001

They are not the same as the operators &&, || and !, which treat each integer as a single
logical value (O is false, everything else is true):

13 && 25 =1 because true && true = true

Bitwise operators are often used in programs to set a bunch of Boolean options, or flags,
with one argument.

Easy to represent sets of fixed universe size with bits:
— 1:is member, 0 not a member. Unions: OR, Intersections: AND

Register transfer operations

 Finally, we can shift values left or right by one bit. The source register is
not modified, and we assume that the shift input is always 0.

L] TABLE 6-5
Examples of Shifts
Eight-Bit Examples
Symbolic After Shift:
Type Designation Source R2 Destination R1
Shift left R1 < sl R2 10011110 00111100

Shift right R1 «—sr R2 11100101 01110010

21

