CSC 220: Computer Organization

Unit 5 COMBINATIONAL CIRCUITS-1

Prepared by:
 Md Saiful Islam, PhD

Department of Computer Science

College of Computer and Information Sciences

Overview

- Introduction to Combinational Circuits
- Adder
- Ripple Carry Adder
- Subtraction
- Adder/Subtractor

Chapter-3

M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design

Fundamentals, Global (5 $5^{\text {th }}$) Edition, Pearson Education Limited, 2016. ISBN:
9781292096124

Combinational circuits

- So far we've only worked with combinational circuits, where applying the same inputs always produces the same outputs.
- This corresponds to a mathematical function, where every input has a single, unique output.
- In programming terminology, combinational circuits are similar to "functional programs" that do not contain variables and assignments.
- Such circuits are comparatively easy to design and analyze.

Binary addition by hand

- You can add two binary numbers one column at a time starting from the right, just like you add two decimal numbers.
- But remember it's binary. For example, $1+1=10$ and you have to carry!

Adder

- Design an Adder for 1-bit numbers?
- 1.Specification:

2 inputs (X,Y)
2 outputs (C,S)

- Design an Adder for 1-bit numbers?
- 1.Specification:

2 inputs (X,Y)
2 outputs (C,S)

- 2. Formulation:

\mathbf{X}	\mathbf{Y}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Adder ...

- Design an Adder for 1-bit numbers?
- 1.Specification:

2 inputs (X,Y)
2 outputs (C,S)
3. Optimization/Circuit
2. Formulation:

\mathbf{X}	\mathbf{Y}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder ...

- This adder is called a Half Adder
- Q:Why?

\mathbf{X}	\mathbf{Y}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

- A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit
- A truth table and sum of minterm equations for C and S are shown below.

$$
0+1+1=10 \longrightarrow \begin{array}{|lll|ll|}
\hline X & Y & Z & C & S \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1+1=11 \longrightarrow(X, Y, Z)=\sum m(3,5,6,7) \\
S(X, Y, Z)=\sum m(1,2,4,7)
\end{array}
$$

Full Adder

- A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{C}	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum

Carry

Full Adder

Full Adder $=2$ Half Adders

Manipulating the Equations:

$$
\begin{aligned}
\mathrm{S} & =(\mathrm{X} \oplus \mathrm{Y}) \oplus \mathrm{Z} \\
\mathrm{C} & =\mathrm{XY}+\mathrm{XZ}+\mathrm{YZ} \\
& =\mathrm{XY}+\mathrm{XZ}\left(\mathrm{Y}+\mathrm{Y}^{\prime}\right)+\mathrm{YZ}\left(\mathrm{X}+\mathrm{X}^{\prime}\right) \\
& =\mathrm{XY}+\mathrm{XYZ}+\mathrm{XY}^{\prime} \mathrm{Z}+\mathrm{X}^{\prime} \mathrm{YZ}+\mathrm{XY} \mathrm{Z}^{\prime} \\
& =\mathrm{XY}(1+\mathrm{Z})+\mathrm{Z}\left(\mathrm{XY}^{\prime}+\mathrm{X}^{\prime} \mathrm{Y}\right) \\
& =\mathrm{XY}+\mathrm{Z}(\mathrm{X} \oplus \mathrm{Y})
\end{aligned}
$$

Full Adder

Full Adder $=2$ Half Adders

Manipulating the Equations:

$$
\begin{aligned}
& \mathrm{S}=(\mathrm{X} \oplus \mathrm{Y}) \oplus \mathrm{Z} \\
& \mathrm{C}=\mathrm{XY}+\mathrm{XZ}+\mathrm{YZ}=\mathrm{XY}+\mathrm{Z}(\mathrm{X} \oplus \mathrm{Y})
\end{aligned}
$$

Src: Mano's Book

n-bit Adder

- How to build an adder for n-bit numbers?
- Example: 4-Bit Adder
- Inputs?
- Outputs?
- What is the size of the truth table?
- How many functions to optimize?

n-bit Adder

- How to build an adder for n-bit numbers?
- Example: 4-Bit Adder
- Inputs ? 9 inputs
- Outputs? 5 outputs
- What is the size of the truth table? 512 rows!
- How many functions to optimize? 5 functions

Binary Parallel Adder

- To add n-bit numbers:
- Use n Full-Adders in parallel
- The carries propagates as in addition by hand
- Use Z in the circuit as a $\mathrm{C}_{\text {in }}$
10010
01101
011

Binary Parallel Adder

- To add n-bit numbers:
- Use n Full-Adders in parallel
- The carries propagates as in addition by hand

This adder is called ripple carry adder

Subtraction (2’s Complement)

- How to build a subtractor using 2's complement?

$$
\begin{aligned}
S & =A-B \\
& =A+(-B)
\end{aligned}
$$

Src: Mano's Book

Adder-Subtractor

- How to build a circuit that performs both addition and subtraction?

Using full adders and XOR we can build an Adder/Subtractor!

Carry Look Ahead Adder

- How to reduce propagation delay of ripple carry adders?
- Carry look ahead adder: All carries are computed as a function of C_{0} (independent of n !)
- It works on the following standard principles:
- A carry bit is generated when both input bits Ai and Bi are 1, or
- When one of input bits is 1 , and a carry in bit exists

Detecting signed overflow

- The easiest way to detect signed overflow is to look at all the sign bits.

$$
\begin{array}{r|lll}
0 & 1 & 0 & 0 \\
+ & 1 & 0 & 1 \\
\hline 0 & 1 & 0 & 0
\end{array} \quad \begin{array}{r}
(+4) \\
+(+5)
\end{array}
$$

1	1	0	0			
1	0	1	1			
+	0	1	1	1		(-4)
---:						
$+(-5)$						
$(+7)$						

- Overflow occurs only in the two situations above.

1. If you add two positive numbers and get a negative result.
2. If you add two negative numbers and get a positive result.

- Overflow can never occur when you add a positive number to a negative number. (Do you see why?)

Detecting Sign Overflow ...

OVERFLOW

