agesucllndl

King Saud University

CSC 220: Computer Organization

Unit 4
Signed Number Representation

Department of Computer Science
College of Computer and Information Sciences

Overview

Unsigned Representation
Representation of signed numbers

* Signed Magnitude Representation

* One’s Complement Notation

* Two’s Complement Notation
Two’s Complement Addition
Comparing Signed Number Systems
Signed Overflow

Unsigned Representation

* Represents positive integers.
Ex: 8 bit representation of unsigned numbers:

position 7 |6 |5 |4 |3 2 1]o
contribution 20 12612524 |23 |22 |21 |20
157 1 10 {0 (1 |1 1 0 |1
1 o (0|00 (O (O (0 |1
10 O (0 |0 O (1 0 1 |0
0 o (0|00 (O (O (0 |O

« Addition is simple:
00001001 +00000101=00001110.

Binary Addition (1 of 2)

« Two 1-bit values

A
0
0
1
1

CCtWO,’]

Binary Addition (2 of 2)

* Two n-bit values
— Add individual bits
— Propagate carries
- E.g.,

1 1
00010101 21
+00011001 + 25
00101110 46

Unsigned Representation ...

Advantages:
One representation of zero
Simple addition

Disadvantages

Negative numbers can not be represented.

The need of different notation to represent
negative numbers.

Representation of signed numbers

Is a representation of negative numbers possible?

— you can not just stick a negative sign in front of a binary number.
(it does not work like that)

There are three methods used to represent negative
numbers.

— Signed magnitude representation

— One’s complement representation

— Two’s complement representation

We will consider two operations
— How to get —ve number from +ve number
— How to add two signed Numbers

Signed magnitude representation

* Humans use the signed-magnitude system. We add + or - to the front of a
number to indicate its sign.

= We can do this in binary too, by adding a sign bit in front of our numbers.
— A 0 sign bit represents a positive number.

— A 1 sign bit represents a negative number.

1101,
01101
11101

0100,
00100
10100

13,
+13,,
-1350

410
"'41:]
'41D

(a 4-bit unsigned number)
(a positive number in 5-bit signed magnitude)
(a negative number in 5-bit signed magnitude)

(a 4-bit unsigned number)
(a positive number in 5-bit signed magnitude)
(a negative number in 5-bit signed magnitude)

For Review

n-bit Representation

For n bit representation we use the (n-1)™ bit for the sign
and remaining bits for magnitude

Example:

e Suppose is a signed magnitude representation
of a 8 bit number.

 The sign bitis 1, then the number represented is negative
« The magnitude is with a value 24+23+22+20= 29
* Then the number represented by 10011101 is —29.

position / 6 S 4 3 2 1 0
contribution 24 |23 |22 20

-29 1 0 |0 1 1 1 0 1

Signed magnitude representation

Exercise 1:

37,,has 0010 0101 in signed magnitude notation. Find the
signed magnitude of —37,, in 8 bits?

Using the signed magnitude notation find the 8-bit binary
representation of the decimal value 24,, and -24,,.

Find the signed magnitude of —63 using 8-bit binary
sequence?

10

Disadvantage of Signed Magnitude

 Addition and subtractions are difficult:

Signs and magnitude, both have to carry out the required
operation.

* There are two representations of O
00000000 = + 0,
10000000 = - 0,

To test if a number is O or not, the CPU will need to see whether
it is 00000000 or 10000000.

0 is always performed in programs.
Therefore, having two representations of 0 is inconvenient.

11

In a different representation, ones’ complement, we negate numbers by

Ones’ complement representation

complementing each bit of the number.
We keep the sign bits: 0 for positive numbers, and 1 for negative.
The sign bit is complemented along with the rest of the bits.

12

1101, = 13,,
01101 = +13,,
10010 =-13,,
0100, = 4,
00100 = +4,,
11011 =-4,,

(a 4-bit unsigned number)
(a positive number in 5-bit ones’ complement)
(a negative number in 5-bit ones’ complement)

(a 4-bit unsigned number)
(a positive number in 5-bit ones’ complement)
(a negative number in 5-bit ones’ complement)

Why is it called ones’ complement?

= Complementing a single bit 1s equivalent to subtracting 1t from 1.

= Similarly, complementing each bit of an n-bit number is equivalent to
subtracting that number from 2"-1.

= For example, we can negate the 5-bit humber 01101.
— Here n=5, and 2°-1 = 11111,.
— Subtracting 01101 from 11111 yields 10010,

”

1 1
- 0 0
1 1

= =
)| =2 -
™= =

o

Ones’ complement addition

* There are two steps in adding ones’ complement numbers.
1. Do unsigned addition on the numbers, including the sign bits.
2. Take the carry out and add it to the sum.

0111 (+7) 0011 (+3)
+ 1011 + (-4) + 0010 + (+2)
1 0010 00101

0010 0101
+ 1 + 0

0011 (+3) 0101 (+5)

= This i1s simpler than signed magnitude addition, but still a bit tricky.

= Two representation of zero (0000 = +0, 1111 = -0)

14

Two’s Complement representation

* The most used representation for integers.
All positive numbers begin with O.
All negative numbers begin with 1.

15

Two’s complement representation

= Qur final 1dea is two’s complement. To negate a number, we complement
each bit (just as for ones’ complement) and then add 1.

1101, =13,, (a 4-bit unsigned number)
01101 =+13,, (a positive number in 5-bit two’s complement)
10010 =-13,, (a negative number in 5-bit ones’ complement)
10011 =-13,, (anegative number in 5-bit two’s complement)

0100, = 4,, a 4-bit unsigned number)

(
00100 =+4,, (a positive number in 5-bit two’s complement)
11011 =-4,, (a negative number in 5-bit ones’ complement)
11100 =-4,, (a negative number in 5-bit two’s complement)

16

More about two’s complement

= Another way to negate an n-bit two’s complement number is to subtract

it from 2°.
100000 100000
- 01101 (+13,,) - 00100 (+4,,)
10011 (-13,,) 11100 (-4,)

= You can also complement all of the bits to the left of the rightmost 1.

17

01101 =+13,, (a positive number in two’s complement)
10011 =-13,, (a negative number in two’s complement)

00100 =+4,, (a positive number in two’s complement)
11100 =-4,, (a negative number in two’s complement)

Two’s Complement representation ...

Example:
11110101 in Two’'s Complement (8 bit number)

The most significant bit is 1, hence it is a negative
number.

Corresponding numberis 00001011 =8+ 2+1 =11
the result is then —11.

18

Two’s complement addition

Negating a two’s complement number takes a bit of work, but addition is
much easier than with the other two systems.

To find A + B, you just have to do unsigned addition on A and B (including
their sign bits), and ignore any carry out.

For example, we can compute 0111 + 1100, or (+7) + (-4).
— First add 0111 + 1100 as unsigned numbers.

0111
+ 1100

10011

— lgnore the carry out (1). The answer 1s 0011 (+3).

19

Another two’s complement example

= To further convince you that this works, let’s try adding two negative
numbers—1101 + 1110, or (-3) + (-2) in decimal.

= Adding the numbers gives 11011.

1101
+ 1110

11011

= Dropping the carry out (1) leaves us with the answer, 1011 (-5).

20

An algebraic explanation

= For n-bit numbers, the negation of B in two’s complement is 2" - B. (This
was one of the alternate ways of negating a two’s complement number.)

A-B=A+(-B)
=A+(2"-B)
= (A-B)+2"

= |f A= B, then (A - B) has to be positive, and the 2" represents a carry out
of 1. Discarding this carry out leaves us with the desired result, (A - B).

= |f A<B, then (A - B) must be negative, and 2" - (A - B) corresponds to the
correct result -(A - B) in two’s complement form.

21

Advantages of Two's Complement Notation

* One representation of zero
* 0 is represented as 0000 using 4-bit binary sequence.

* ltis easy to add two numbers.
* Subtraction can be easily performed.
* Multiplication 1s just a repeated addition.
* Division 1s just a repeated subtraction

* Two’s complement 1s widely used in ALU

22

Comparing the signed number systems

Here are all the 4-bit numbers in Decimal SM 1C 2C

the different systems. 0111 0111 0111

Positive numbers arelthe same in 0110 0110 0110
all three representations. 0101 0101 0101

There are two ways to represent 0100 0100 0100
0 in signed magnitude and ones’ 0011 0011 0011
complement. This makes things 0010 0010 0010

more complicated. 0001 0001 0001
In two’s complement, there is 0000 0000 0000

one more negative number than 1000 1111 —
positive number. Here, we can 1001 1110 1111
represent -8 but not +8. 1010 1101 1110

However, two’s complement is 1011 1100 1101
preferred because it has only one 1100 1011 1100
0, and its addition algorithm is 1101 1010 1011
the simplest. 1110 1001 1010
1111 1000 1001

- — 1000

OO b LWN = OO =2 MNWh oo]

23

Ranges of the sighed number systems

= How many negative and positive numbers can be represented in each of
the different four-bit systems on the previous page?

Unsigned SM 1C 2C
Smallest 0000 (0) | 1111 (-7) | 1000 (-7) | 1000 (-8)
Largest 1111 (15) | 0111 (+7) | 0111 (+7) | 0111 (+7)

= The ranges for general n-bit numbers (including the sign bit) are below.

Unsigned SM 1C 2C
Smallest 0 -(2™1-1) | -(2™'-1) _on-1
Largest 271 | A1) | @) | 27

24

Sighed overflow

= With 4-bit two’s complement numbers, the largest representable decimal
value 1s +7, and the smallest is -8.

= What if you try to compute 4 + 5, or (-4) + (-5)?

0100 (+4) 1100 (-4)
+ 0101 + (+5) + 1011 <+ (-5)
01001 (-7) 10111 (+7)

= Signed overflow is very different from unsigned overflow.

— The carry out 1s not enough to detect overflow. In the example on the
left, the carry out is O but there is overflow.

25

Detecting signed overflow

= The easiest way to detect signed overflow is to look at all the sign bits.

0100 (+4)
+ 10(101 + (+5)
0(1J0 0 1 (-7)

100 (-4)
011 + (-5)

==

111 (+7)

= Qverflow occurs only in the two situations above.

I:llf you add two positive numbers and get a negative result.
I:llf you add two negative numbers and get a positive result.

= Qverflow can never occur when you add a positive number to a negative
number. (Do you see why?)

20

2

Example1:

AAANAAY

0110101
+0101010

10111112

Example3:

AN

0110101,
+1101010,

0011111,

Overflow

(= 534))
(= 42,,)
(=-33,))
(= 53,,)
(=-22,,)
(= 31,,)

Example2:

TR

1010101, (=-43,,)
+1001010, (=-54,,)
0011111, (= 31,,)

Example4:

INEARAN

0010101, (= 21,,)

+0101010, (= 42,,)
0111111, (= 63,,)

Sign extension

= Decimal numbers are assumed to have an infinite number of 0s in front of
them, which helps in “lining up” values for arithmetic operations.

225
+ 006

231

= You need to be careful in extending signed binary numbers, because the
leftmost bit is the sign and not part of the magnitude.

= To extend a signed binary number, you have to replicate the sign bit. If
you just add Os in front, you might accidentally change a negative number
into a positive one!

= For example, consider going from 4-bit to 8-bit numbers.

(+5) 0101 » 0000 0101 (+5)
(-4) 1100 » 1111 1100 (-4)

28

Summary

= Data representations are all-important!

— A good representation for negative numbers can make subtraction
hardware much simpler to design.

— Using two’s complement, it’s easy to build a single circuit for both
addition and subtraction.

= Working with signed numbers involves several 1ssues.

— Signed overflow 1s very different from the unsigned overflow we
talked about last week.

— Sign extension is needed to properly “lengthen” negative numbers.

