King Saud Unversity

CSC 220: Computer Organization

Unit 2 Digital Circuit Design

Department of Computer Science

College of Computer and Information Sciences

Overview

- Digital Circuit Design
- Logic Gates
- Logic Functions
- Standard Forms (SOP/POS)
- Universal Gates (NAND/NOR)
- XOR and XNOR Gates
- Logical Equivalence
- Logic Chips

Chapter-2

M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design

Fundamentals, Global ($5^{\text {th }}$) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Digital Circuit

- Digital Circuit (hardware) manipulate binary information
- Input-output: one or more binary values
- Hardware consists of a few simple building blocks called logic gates
- Logic gate: a electronic device the operates on one or more input signals and produce an output.
- Basic Logic gates: AND, OR, NOT, ...
- Additional gates: NAND, NOR, XOR, XNOR...
- Logic gates are built using transistors
- NOT gate can be implemented by a single transistor
- AND-OR gate requires 3 transistors
- Transistors are the fundamental devices
- Pentium consists of 3 million transistors
- Compaq Alpha consists of 9 million transistors

1. Now we can build chips with more than 100 million transistors

Logic Gates

- Basic gates
- AND
- OR
- NOT
- Functionality can be expressed by a truth table
- A truth table lists output for each possible input combination
- Precedence

$$
\begin{aligned}
& \mathrm{NOT}>\mathrm{AND}>\mathrm{OR} \\
& \quad \begin{aligned}
\mathrm{F} & =\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B} \\
& =(\mathrm{A}(\overline{\mathrm{~B}}))+((\overline{\mathrm{A}}) \mathrm{B})
\end{aligned}
\end{aligned}
$$

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

Logic symbol

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

A	F
0	1
1	0

Truth table

Logic Gates ...

- Additional useful gates
- NAND
- NOR
- XOR
- XNOR
- NAND = AND + NOT
- NOR = OR + NOT
- NAND and NOR gates require only 2 transistors
- AND and OR need 3 transistors!
- XOR implements exclusiveOR function
- XNOR is complement of XOR

NOR gate

XOR gate
Logic symbol

A	B	F
0	0	1
0	1	1
1	0	1
1	1	0
A	B	F
0	0	1
0	1	0
1	0	0
1	1	0
A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

Logic Functions

- A Boolean function consists of
- Binary variables
- Constants 0, 1
, Logic operators: AND (.), OR (+), NOT(-), ...
- A function with N input variables
- With N logical variables, we can define 2^{N} combination of inputs
- A single-output function relates the output (0/1) to inputs
- Multiple-output Boolean function
- More that one outputs
- Each output (0/1) is related to same inputs

Logic Functions

- Designing a Logic Circuit
- A truth table is used to represent a logic function
- Logical expressions can be obtained from truth table
- Logical expressions can be transfer to logic diagram of the circuit
- Example:
- Majority function
- Output is one whenever majority of inputs is 1
- We use 3-input majority function

Logic Functions

Truth Table:

3-input majority function

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Logical expression form

$$
\begin{aligned}
F & =A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
& =A B+B C+A C \text { (after simplification) }
\end{aligned}
$$

Standard Forms

Standard Forms Boolean Expressions

- Sum-of-Products (SOP)

Derived from the Truth table for a function by considering those rows for which $F=I$.

- The logical sum (OR) of product (AND) terms.
- Realized using an AND-OR circuit.
- Product-of-Sums (POS)

Derived from the Truth table for a function by considering those rows for which $\mathrm{F}=0$.

- The logical product (AND) of sum (OR) terms.
- Realized using an OR-AND circuit.

Sum of products expressions

- There are many equivalent ways to write a function, but some forms turn out to be more useful than others.
- A sum of products or SOP expression consists of:
- One or more terms summed (OR'ed) together.
- Each of those terms is a product of literals.

$$
f(x, y, z)=y^{\prime}+x^{\prime} y z^{\prime}+x z
$$

- Sum of products expressions can be implemented with two-level circuits.

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n input variables has 2^{n} possible minterms.
- For instance, a three-variable function $f(x, y, z)$ has 8 possible minterms:

$$
\begin{array}{llll}
x^{\prime} y^{\prime} z^{\prime} & x^{\prime} y^{\prime} z & x^{\prime} y z^{\prime} & x \text { 'y } z \\
\text { xy'z'z } & x y z & x y z
\end{array}
$$

- Each minterm is true for exactly one combination of inputs.

Row number	x_{1}	x_{2}	x_{3}		
Minterm	Maxterm				
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Sum of minterms expressions

- A sum of minterms is a special kind of sum of products.
- Every function can be written as a unique sum of minterms expression.
- A truth table for a function can be rewritten as a sum of minterms just by finding the table rows where the function output is 1.

x	y	z	$C(x, y, z)$	$C^{\prime}(x, y, z)$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$
\begin{aligned}
C & =x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z \\
& =m_{3}+m_{5}+m_{6}+m_{7} \\
& =\Sigma m(3,5,6,7) \\
C^{\prime} & =x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime} \\
& =m_{0}+m_{1}+m_{2}+m_{4} \\
& =\Sigma m(0,1,2,4)
\end{aligned}
$$

C' contains all the minterms not in C , and vice versa.

Sum-of-Products

- Any function F can be represented by a sum of minterms, where each minterm is ANDed with the corresponding value of the output for F.

$$
F=\Sigma\left(m_{i} \cdot f_{i}\right)
$$

Denotes the logical
sum operation and f_{i} is the corresponding functional output
Only the minterms for which $f_{i}=I$ appear in the expression for function F.
$\mathrm{F}=\Sigma\left(\mathrm{m}_{\mathrm{i}}\right)=\Sigma \mathrm{m}(\mathrm{i}) \longleftarrow$ shorthand notation

- Sum of minterms are a.k.a. Canonical Sum-of-Products
- Synthesis process

Determine the Canonical Sum-of-Products
Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

Product of sums expressions

- As you might expect, we can work with the duals of these ideas too.
- A product of sums or POS consists of:
- One or more terms multiplied (AND'ed) together.
- Each of those terms is a sum of literals.

$$
g(x, y, z)=y^{\prime}\left(x^{\prime}+y+z^{\prime}\right)(x+z)
$$

- Products of sums can also be implemented with two-level circuits.

Maxterms

- A maxterm is a sum of literals where each input variable appears once.
- A function with n input variables has 2^{n} possible maxterms.
- For instance, a function with three variables x, y and z has 8 possible maxterms:

$$
\begin{array}{llll}
x+y+z & x+y+z^{\prime} & x+y^{\prime}+z & x+y^{\prime}+z^{\prime} \\
x^{\prime}+y+z & x^{\prime}+y+z^{\prime} & x^{\prime}+y^{\prime}+z & x^{\prime}+y^{\prime}+z^{\prime}
\end{array}
$$

- Each maxterm is false for exactly one combination of inputs.

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Product of maxterms expressions

- Every function can also be written as a unique product of maxterms.
- A truth table for a function can be rewritten as a product of maxterms just by finding the table rows where the function output is 0 .

x	y	z	$C(x, y, z)$	$C^{\prime}(x, y, z)$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$
\begin{aligned}
& C=(x+y+z)\left(x+y+z^{\prime}\right) \\
&\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right) \\
&= M_{0} M_{1} M_{2} M_{4} \\
&= \prod M(0,1,2,4) \text { When the o/p is Zero } \\
&= \sum m(3,5,6,7) \text { When the o/p is } \mathbf{1} \\
& C^{\prime}=\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+z^{\prime}\right) \\
&\left(x^{\prime}+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right) \\
&= M_{3} M_{5} M_{6} M_{7} \\
&= \prod M(3,5,6,7) \\
& C^{\prime} \text { contains all the maxterms not in } \\
& C, \text { and vice versa. }
\end{aligned}
$$

Product-of-Sums

- Any function F can be represented by a product of Maxterms, where each Maxterm is ANDed with the complement of the corresponding value of the output for F .

$$
\begin{aligned}
& F= \Pi\left(M_{i} \cdot f_{i}^{\prime}\right) \\
& \quad \text { where } M_{i} \text { is a Maxterm }
\end{aligned}
$$

Denotes the logical \quad and f_{i} i is the complement of the corresponding product operation functional output

Only the Maxterms for which $f_{i}=0$ appear in the expression for function F .

$$
F=\Pi\left(M_{i}\right)=\Pi M(i) \longleftarrow \text { shorthand notation }
$$

- The Canonical Product-of-Sums for function F is the Product-of-Sums expression in which each sum term is a Maxterm.
- Synthesis process

Determine the Canonical Product-of-Sums
Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

Universal Gates

- NAND and NOR gates are called universal gets
- Proving NAND gate is universal

Universal Gates...

- Proving NOR gate is universal

OR gate

NOT gate
AND gate

XOR and XNOR Gates

The XOR A
B

The XOR gate produces a HIGH output only when the inputs are at opposite logic levels. The truth table is

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

The XOR operation is written as $X=\bar{A} B+A \bar{B}$.
Alternatively, it can be written with a circled plus sign between the variables as $\quad X=A \oplus B$.

XOR and XNOR Gates ...

The XOR
A
B

Example waveforms:
A
B
X
Notice that the XOR gate will produce a HIGH only when exactly one input is HIGH.

XOR and XNOR Gates ...

The XNOR A
B

The XNOR gate produces a HIGH output only when the inputs are at the same logic level. The truth table is

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

The XNOR operation can be shown as $X=A B+\bar{A} \bar{B}$.

Example waveforms:

Notice that the XNOR gate will produce a HIGH when both inputs are the same. This makes it useful for comparison functions.

Logical Equivalence

- When two circuits implement same logic function

Example: All three circuits implement $F=A B$ function

Logical Equivalence ...

- Proving logical equivalence:
- Derivation of logical expression from a circuit
- Trace from the input to output
- Write down intermediate logical expressions along the path

Logical Equivalence ...

- Build the truth table relating inputs to the output for each circuit
- If each function give the same output, they are logically equivalent

A	B	$F I=A B$	$F 3=(A+B)(\bar{A}+B)(A+\bar{B})$
0	0	0	0
0	I	0	0
I	0	0	0
I	I	I	I

- Exercise:
- Show that $X \oplus Y$ is logically equivalent to $X^{\prime} Y+X Y^{\prime}$

Logic Chips

Logic Chips

- Integration levels
- SSI (small scale integration)
- Introduced in late 1960s
- 1-10 gates (previous examples)
- MSI (medium scale integration)
- Introduced in late 1960s
- 10-100 gates
- LSI (large scale integration)
- Introduced in early 1970s
p 100-10,000 gates
, VLSI (very large scale integration)
- Introduced in late 1970s
- More than 10,000 gates

