
1

CSC 220: Computer Organization

Unit 12
CPU Design & Programming

Prepared by:

Md Saiful Islam, PhD

Department of Computer Science
College of Computer and Information Sciences

Overview

• Overview of CPU Design

• Simple Computer Architecture

• Control Unit Design

• Machine languages

• Assembly languages

Chapter-8
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design
Fundamentals, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

3

An overview of CPU design

We can divide the design of our CPU into

three parts:

• The datapath does all of the actual data

processing (Unit-11).

• Instruction Set Architecture: An
instruction set is the programmer’s

interface to CPU.

Control
Unit

Datapath

Control signals

Status signals

Program

• A control unit uses the programmer’s instructions to tell the datapath what to do.

– In real computers, the datapath actions are determined by the program

that’s loaded and running

– It converts program instructions into control words for the datapath,

including signals WR, DA, AA, BA, MB, FS, MW, MD.

– It executes program instructions in the correct sequence.

– It generates the “constant” input for the datapath.

• The datapath also sends information back to the control unit. For instance, the

ALU status bits V, C, N, Z can be inspected by branch instructions to alter a
program’s control flow.

4

Instruction Set Architecture (ISA)

 A computer is controlled by a series of instructions. Instructions

are binary words that are used to determine both the datapath

processing and the control behavior.

 A program is a collection of instructions that are used to

accomplish some task(s).

 A program counter (PC) is used to keep track of the address of

the next instruction in memory. The PC has counting logic, as

well as parallel load and other logic to permit changes in the

instruction sequence.

 Changes in the instruction sequence can be either conditional or

unconditional.

 Instructions are executed by activating the necessary

microoperations to perform the specified task.

 The instruction set architecture (ISA): a

comprehensive description of the instructions a

computer can execute.

 The ISA has three major components

• Storage Resources

• Instruction Formats

• Instruction Specification

5

Instruction Set Architecture (ISA) …

6

ISA: Storage Resources ..

• resources available for

storing information

– Register file

– Program counter

(PC)

– Instruction memory

(program memory)

– Data memory

Instruction
memory

215x 16

Data
memory

215x16

Register file
8x16

Program counter
(PC)

FIGURE 8-13 Storage Resource Diagram for a Simple Computer

7

ISA: Instruction Formats

 Instructions are divided into bit groupings called fields.

Each field will contain a specific part of the instruction.

• Operation code (opcode)

 The opcode field determines what the actual operation will

be.

 An n-bit opcode can specify up to 2n different operations.

• Operand(s)

 Registers

 Addresses of Operands

 Constant data

• Operands may be specified implicitly as well.

Instruction Formats -1 …

Register: The source(s) and destination of an instruction

can all be registers.

 The source registers are read and the new information

is written to the destination register.

 All registers are explicitly identified (usually).

9

Instruction Formats – 2 …

Immediate operands: data constants are

contained within the instruction.

 Note that only three bits of data can be specified

here, so

 It must be extended to the register length by

zero-fill or sign-extension.

 Clever encodings enable wider immediates

 RR format, RI format, B format

10

Instruction Formats – 3 …

Jump and Branch:

 Changes in program flow are caused by jump or

branch instructions

 Affecting only the PC.

1. Can load the PC from source SA.

2. Can add the sign-extended 6-bit offset (AD) to the PC.

3. Can be either unconditional, or conditional based on

some flag value (i.e. Z, N, C, V).

11

ISA: Instruction Specifications

 The instruction specifications describe in detail each

instruction the system can execute.

 A mnemonic is written by the programmer to represent

the opcode in text.

 assembler generates the actual binary instruction

• To make things simpler, people typically use assembly

language

• Example assemblers for Intel x86 processor: NASM,

YASM, MASM

 Not every instruction sets every flag

• Refer to Table 8-8

12

ISA: Instruction Specifications …

• The specifications provide:

– The name of the instruction

– The instruction's opcode

– A shorthand name for the opcode called a mnemonic

– A specification for the instruction format

– A register transfer description of the instruction, and

– A listing of the status bits that are meaningful during

an instruction's execution (not used in the

architectures defined in this chapter)

ISA: Instruction Specifications …

• Here we have arithmetic, logic and shift instruction sets correspond to micro-

operations discussed in Unit 8-11. The opcode (7 bit) and FS (4 bit) have one-to-one

correspondence – first three bits of an opcode are 000.

• RTL instruction (in description) is written in a slightly different way. For example, R[DR]

<- R[SA] is a RTL instruction where DR and SA are destination and source register

addresses respectively.

ISA: Instruction Specifications …

• These are additional instructions having no corresponding micro-operations – for

them first three bits have non-zero values.

• For instruction LDI, RTL is R[DR] <- zf OP where zf means zero filled and OP is a 3

bit constant (that is used for the simple computer).

• In description of BRZ and BRN, se mean sign extended. This is done to make it 16 bit

because the RAM has 216 16 configuration (refer to slide 8, figure 8-13).

Machine Language …
• Table 8-9 shows Instructions and data, in binary, are placed in memory. Here, we assume that

we have a program (in machine language) in the RAM and we show instructions at locations

25, 35, 45, and 55 (as examples).

• Corresponding assembly codes for four instructions are as follows.

25: SUB R1, R2, R3

35: ST (R4), R5 [suppose R4=70, R5=80]

45: ADI R2, R7, 3
55: BRZ R6, AD [suppose AD(left)=101, AD(right)=100, se AD = 1111111111101100 = -20]

16

Control Unit Design

Single-cycle hardwired control Unit

 the PC is updated on each clock cycle. Each

instruction is completed in a single cycle.

 The PC is used to select a word from the

instruction memory:

• load the instruction to Instruction Register (IR)

• which is driven to the instruction decoder

 The instruction decoder then provides:

• the control word to the datapath to activate the

desired functionality,

• determines how the PC is updated.

 Note that the computer uses programmable

control, but we will use a hardwired control unit

to actually implement the programmable control.

Control Unit

IR

Chapter 8 17

The constant

field is zero-

filled and made

available to the

datapath

The concatenated offset field is sign-

extended for PC-relative addressing.The instruction

decoder maps the

instruction word to a

control word.

Control

Unit

IR

Control Unit …

18

Instruction Decoder …
destination Source A

Source B

19

Instruction Decoder …

 Control-word fields DA, AA, and BA are equal to the instruction fields DR,

SA, and SB, respectively

 Control field BC for selection of the branch condition status bits is taken

directly from the last bit of Opcode.

 The remaining control-word fields: MB, MD, RW, and MW

 There are two added bits for the control of the PC: PL and JB

20

Assembly Language Programming

LDI R3, 248 Load address 248 in R3

LD R1, (R3) Load R1 with contents of location 248 in memory (R1 becomes = 2)

ADI R1, R1, 3 Add 3 to R1 (R1 becomes =5)

INC R3, R3 Increment the contents of R3 (R3 becomes = 249)

LD R2, (R3) Load R2 with contents of location 249 in memory (R2 becomes = 83)

SUB R2, R2, R1 Subtract contents of R1 from contents of R2 (R2 becomes = 78)

INC R3, R3 Increment the contents of R3 (R3 = 250)

ST (R3), R2 Store R2 in memory location 250 (M[250] = 78)

memoryaddress

……

2248

83249

250

……

……

Example Program:

Assume that variable x is located at the address 248 in

data memory containing 2, and variable y is located at

the address 249 contains 83. Write an assembly

language program to evaluate the equation z = y - (x + 3)
where variable z is located at the address 250.

Chapter 10 21

Single-Cycle Computer Issues …

 Complex operations

• Only combinational logic can be used

in data transformation – no sequential

logic

 E.g. no multiplier

 Unified memory

• If program and data are in one memory,

how can you simultaneously access the

same memory for an instruction and a

data operand?

 Worst-case delay

22

Programming and CPUs

• Programs written in a high-level
language like C++ must be compiled
to produce an executable program.

• The result is a CPU-specific machine
language program. This can be loaded
into memory and executed by the
processor.

• CSC 220 focuses on stuff below the
dotted blue line, but machine
language serves as the interface
between hardware and software.

Datapath

High-level program

Executable file

Control words

Compiler

Control Unit
Hardware

Software

• Machine language instructions are

sequences of bits in a specific order.

