
CSC 220: Computer Organization

Unit 10
Arithmetic-Logic Units
Prepared by:

Md Saiful Islam, PhD

Department of Computer Science
College of Computer and Information Sciences

Overview

• Arithmetic Unit Design

• Primitive gates base implementation

• MUX-based implementation

• Logic Unit Design

• Arithmetic-logic Unit Design

• Function Unit Design

• Combinational Shifter

Chapter-8
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design
Fundamentals, Global (5th) Edition, Pearson Education Limited, 2016. ISBN:

9781292096124

3

Designing a simple 4-bit AU
• 8 arithmetic operations

• Inputs:

– X (4 bits)

– Y (4 bits)

– S (3 bits)

• Outputs:

– G (4 bits)

– Cout (final carry)

• The / and 4 on a line indicate
that it’s actually four lines

Arithmetic Unit Design

S2 S1 S0 Operation

0 0 0 G = X

0 0 1 G = X + 1

0 1 0 G = X + Y

0 1 1 G = X + Y + 1

1 0 0 G = X + Y’

1 0 1 G = X + Y’ + 1

1 1 0 G = X – 1

1 1 1 G = X

4

The four-bit parallel adder

• The basic four-bit adder always computes S = A + B + CI.

• But by changing what goes into the adder inputs A, B and CI, we can

change the adder output S.

• This is also what we did to build the combined adder-subtractor

circuit.

5

The adder-subtractor

• Here the signal Sub and some XOR gates alter the adder inputs.

– When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder

produces G = X + Y + 0, or just X + Y.

– When Sub = 1, the adder inputs are Y’, X and 1, so the adder output is G

= X + Y’ + 1, or the two’s complement operation X - Y.

6

The multi-talented adder

• So we have one adder performing two separate functions.

• “Sub” acts like a function select input which determines whether the

circuit performs addition or subtraction.

• “Sub” modifies the adder’s inputs A and CI.

7

Modifying the adder inputs

• By following the same approach, we can use an adder to compute other

functions as well.

• We just have to figure out which functions we want, and then put the

right circuitry into the “Input Logic” box .

8

Some more possible functions

• We already saw how to set adder inputs A, B and CI to compute either

X + Y or X - Y.

• How can we produce the increment function G = X + 1?

• How about decrement: G = X - 1?

• How about transfer: G = X?

(This can be useful.)

This is almost the same as the

increment function!

One way: Set A = 0000, B = X, and CI = 1

A = 1111 (-1), B = X, CI = 0

A = 0000, B = X, CI = 0

9

The role of CI

• The transfer and increment operations have the same A and B inputs,

and differ only in the CI input.

• In general we can get additional functions (not all of them useful) by

using both CI = 0 and CI = 1.

• Another example:

– Two’s-complement subtraction is obtained by setting A = Y’, B =

X, and CI = 1, so G = X + Y’ + 1.

– If we keep A = Y’ and B = X, but set CI to 0, we get G = X + Y’.

This turns out to be a ones’ complement subtraction operation.

10

Table of arithmetic functions

• Here are some of the different possible arithmetic operations.

• We’ll need some way to specify which function we’re interested in, so

we’ve randomly assigned a selection code to each operation.

G

11

Mapping the table to an adder

• This second table shows what the adder’s inputs should be for each of

our eight desired arithmetic operations.

– Adder input CI is always the same as selection code bit S0.

– B is always set to X.

– A depends only on S2 and S1.

Selection code Desired arithmetic operation Required adder inputs

S2 S1 S0 G (A + B + CI) A B CI

0 0 0 X (transfer) 0000 X 0

0 0 1 X + 1 (increment) 0000 X 1

0 1 0 X + Y (add) Y X 0

0 1 1 X + Y + 1 Y X 1

1 0 0 X + Y’ (1C subtraction) Y’ X 0

1 0 1 X + Y’ + 1 (2C subtraction) Y’ X 1

1 1 0 X – 1 (decrement) 1111 X 0

1 1 1 X (transfer) 1111 X 1

• These equations depend on both the desired

operations and the assignment of selection codes.

12

Building the input logic

• All we need to do is compute the adder input A, given the arithmetic

unit input Y and the function select code S (actually just S2 and S1).

• Here is an abbreviated truth table:

• We want to pick one of these four possible values for A, depending on

S2 and S1.

S2 S1 A

0 0 0000

0 1 Y

1 0 Y’

1 1 1111

13

Primitive gate-based input logic

• We could build this circuit using primitive gates.

• If we want to use K-maps for simplification, then we should first

expand out the abbreviated truth table.

– The Y that appears in the output column (A) is actually an input.

– We make that explicit in the table on the right.

• Remember A and Y are each 4 bits long!

S2 S1 A

0 0 0000

0 1 Y

1 0 Y’

1 1 1111

S2 S1 Yi Ai

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

inputs output

14

Primitive gate implementation

• From the truth table, we can
find an MSP:

• Again, we have to repeat this
once for each bit Y3-Y0,
connecting to the adder inputs
A3-A0.

• This completes our arithmetic
unit.

S1

0 0 1 0

S2 1 0 1 1

Yi

Ai = S2Yi’ + S1Yi

15

Multiplexer-based implementation

Selection code Desired arithmetic operation Required adder inputs

S2 S1 S0 G (X + Y + CI) Y X CI

0 0 0 A (transfer) 0000 A 0

0 0 1 A + 1 (increment) 0000 A 1

0 1 0 A + B (add) B A 0

0 1 1 A + B + 1 B A 1

1 0 0 A + B’ (1C subtraction) B’ A 0

1 0 1 A + B’ + 1 (2C subtraction) B’ A 1

1 1 0 A – 1 (decrement) 1111 A 0

1 1 1 A (transfer) 1111 A 1

Alternative Implementation using 4 bit adder circuit and multiplexers

16

Multiplexer-based implementation

17

Logic Unit Design

• Most computers also support logical operations like AND, OR, XOR

and NOT, but extended to multi-bit words instead of just single bits.

• Bitwise operations: To apply a logical operation to two words X and Y,

apply the operation on each pair of bits Xi and Yi:

• Single operand logical operation: “complementing” all the bits in a

number.

1 0 1 1
AND 1 1 1 0

1 0 1 0

1 0 1 1
OR 1 1 1 0

1 1 1 1

1 0 1 1
XOR 1 1 1 0

0 1 0 1

NOT 1 0 1 1
0 1 0 0

• Inputs:

– X (4 bits)

– Y (4 bits)

– S (2 bits)

• Outputs:

– G (4 bits)

18

Defining a logic unit

• A logic unit supports different logical

functions on two multi-bit inputs X and

Y, producing an output G.

• This abbreviated table shows four

possible functions and assigns a selection

code S to each.

• We’ll just use multiplexers and some

primitive gates to implement this.

• Again, we need one multiplexer for each

bit of X and Y.

S1 S0 Output

0 0 Gi = XiYi

0 1 Gi = Xi + Yi

1 0 Gi = Xi  Yi

1 1 Gi = Xi’

19

Our simple logic unit

• Inputs:

– X (4 bits)

– Y (4 bits)

– S (2 bits)

• Outputs:

– G (4 bits)

20

The arithmetic and logic units

• Now we have two pieces of

the puzzle:

– An arithmetic unit that

can compute eight

functions on 4-bit inputs.

– A logic unit that can

perform four functions on

4-bit inputs.

• We can combine these

together into a single circuit,

an arithmetic-logic unit

(ALU).

A B

ALU

G
Z
N
C
V

FS

44

4

4

YX

21

Our ALU function table

S3 S2 S1 S0 Operation

0 0 0 0 G = X

0 0 0 1 G = X + 1

0 0 1 0 G = X + Y

0 0 1 1 G = X + Y + 1

0 1 0 0 G = X + Y’

0 1 0 1 G = X + Y’ + 1

0 1 1 0 G = X – 1

0 1 1 1 G = X

1 x 0 0 G = X and Y

1 x 0 1 G = X or Y

1 x 1 0 G = X  Y

1 x 1 1 G = X’

• This table shows a sample

function table for an ALU.

• All of the arithmetic operations

have S3=0, and all of the logical

operations have S3=1.

• These are the same functions we

saw when we built our arithmetic

and logic units a few minutes ago.

• Since our ALU only has 4 logical

operations, we don’t need S2.

The operation done by the logic

unit depends only on S1 and S0.

22

4

4

4

4 4

A complete ALU circuit

G is the final ALU output.
• When S3 = 0, the final

output comes from the
arithmetic unit.

• When S3 = 1, the output
comes from the logic unit.

Status bits: Additional
outputs
• Cout (C)
• Over-flow (V)
• Zero (Z)
• Negative (N)

• The arithmetic and logic units share the select inputs S1 and S0, but only the arithmetic

unit uses S2.

• Both the arithmetic unit and the logic unit are “active” and produce outputs.

– The mux determines whether the final result comes from the arithmetic or logic unit.

– The output of the other one is effectively ignored.

• Our hardware scheme may seem like wasted effort, but it’s not really.

– “Deactivating” one or the other wouldn’t save that much time.

– We have to build hardware for both units anyway, so we might as well run them together.

23

The all-important ALU

• We’ll use the following general block symbol for the ALU.

– A and B are two n-bit numeric inputs.

– FS is an m-bit function select code, which picks one of 2
m

functions.

– The n-bit result is called G.

– Several status bits provide more

information about the output G:

• V = 1 in case of signed overflow.

• C is the carry out.

• N = 1 if the result is negative.

• Z = 1 if the result is 0.

A B

ALU

G
Z
N
C
V

FS

nn

n

m

S3 S2 S1 S0 Operation

0 0 0 0 G = X

0 0 0 1 G = X + 1

0 0 1 0 G = X + Y

0 0 1 1 G = X + Y + 1

0 1 0 0 G = X + Y’

0 1 0 1 G = X + Y’ + 1

0 1 1 0 G = X – 1

0 1 1 1 G = X

1 x 0 0 G = X and Y

1 x 0 1 G = X or Y

1 x 1 0 G = X  Y

1 x 1 1 G = X’

24

• Bidirectional shift register with parallel load

– Disadvantage: 3 clock pulses required

– Ex: R1 sr R2

• Combinational Shifter

– Transfer from a source to destination register

– One clock cycle

• Operations:

– Transfer

– Shift Left,

– Shift Right

Combinational Shifter

25

4-Bit Basic Left/Right Shifter

• Serial Inputs:

– IR for right shift

– IL for left shift

• Logic Shift (zero) will be used

• Many options depending on

instruction set

 Shift Functions:

(S1, S0) = 00 Pass B unchanged

01 Right shift

10 Left shift

11 Unused

• Serial Outputs (we will ignore)

– R for right shift (Same as MSB input)

– L for left shift (Same as LSB input)

B3

IR IL

S

Serial
output L

Serial
output R

2

B2 B1 B0

H0H1H2H3

S
M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2

26

Function Unit Design

Function Unit = ALU + Shifter

• The function select code FS is 4 bits

long, but there are only 15 different

functions here.

FS Operation

0000 F = A

0001 F = A + 1

0010 F = A + B

0011 F = A + B + 1

0100 F = A + B'

0101 F = A + B' + 1

0110 F = A - 1

0111 F = A

1000 F = A  B (AND)

1001 F = A  B (OR)

1010 F = A  B (XOR)

1011 F = A'

1100 F = B

1101 F = sr B (shift right)

1110 F = sl B (shift left)

V

C

N

Z

Bus A Bus B

Function unit

A B n

G select

4

Zero Detect

MF select

n
n

n
F

MUX F

H select

2A B

S
2:0

|| C
in

Arithmetic/logic

unit (ALU)

G

B

S

Shifter

H

I
L

I
R

0

0 1

A B

Function Unit

F
Z
N
C
V

FS

nn

n

m

0

27

Boolean

Equations:

MF = F3 F2

Gi = Fi

Hi = Fi

FS(3:0)
MF
Select

G
Select(3:0)

H
Select(3:0) Micr ooperation

0000 0 0000 XX

0001 0 0001 XX

0010 0 0010 XX

0011 0 0011 XX

0100 0 0100 XX

0101 0 0101 XX

0110 0 0110 XX

0111 0 0111 XX

1000 0 1X00 XX

1001 0 1X01 XX

1010 0 1X10 XX

1011 0 1X11 XX

1100 1 XXXX 00

1101 1 XXXX 01

1110 1 XXXX 10

F A

F A 1
+



F A B

F A B 1

F A B

F A B 1

F A 1-

F A

F A B

F A B

F A B

F A

F B

F sr B

F sl B

+

+ +

+

+ +



Definition of Function Unit Select (FS) Codes

