agssucllnoldl

HKing Saud University

CSC 220: Computer Organization

Unit 10
Arithmetic-Logic Units

Department of Computer Science
College of Computer and Information Sciences

Overview

Arithmetic Unit Design

° Primitive gates base implementation
» MUX-based implementation

* Logic Unit Design

Arithmetic—logic Unit Design

Function Unit Design

« Combinational Shifter

Chapter-8

M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design
Fundamentals, Global (5™") Edition, Pearson Education Limited, 2016. ISBN:
9781292096124

Designing a simple 4-bit AU

Arithmetic Unit Design

8 arithmetic operations
Inputs:

— X (4 bits)

— Y (4 bits)

— S (3 bits)
Outputs:

— G (4 bits)

— C, (final carry)

The / and 4 on a line indicate
that it's actually four lines

Cout

Arthrmetic
[Init ﬁ‘L

W0
N

v

Operation

= === 0000

_ =, OO0 R, ~0O0

_, OO+~ O~DO

G =X
G=X+1
G=X+YVY
G=X+VY+1
G=X+YVY
G=X+VY'+1
G=X-1

G =X

The four-bit parallel adder

The basic four-bit adder always computes S = A + B + CL.

By A, B, A,
l J: Y l
C, G,
FA |« = FA |«
S, S,

B3
B2
B1
BO

A3
A2
Al
AD

53
52
51
S0

But by changing what goes into the adder inputs A, B and CI, we can

change the adder output S.

This is also what we did to build the combined adder-subtractor

circuit.

The adder-subtractor

* Here the signal Sub and some XOR gates alter the adder inputs.
— When Sub = (, the adder inputs A, B, CI are Y, X, 0, so the adder

produces G=X+Y + 0, or just X + Y.

— When Sub = 1, the adder inputs are Y’, X and 1, so the adder output is G

=X+Y’ +1, or the two’s complement

X3

operation X - Y.

X2

X1

X0

L ¥ Y Y1

B3
B2
B1
BO

A3
A2
Al
A0

| , Cout
co
53 G3
52 G2
S1 G1
S0 GO
Cl

5 5, 5 Y0

A e A s A s FA " Y3 — W\Di

OVERFLOW Sub

The multi-talented adder

* So we have one adder performing two separate functions.

* “Sub” acts like a function select input which determines whether the
circuit performs addition or subtraction.

* “Sub” modifies the adder’s inputs A and CI.

| . Cout
CcO
A3
X2
X1
X0 53 G3
S2 G2
51 G1
S0 GO
¥3
Y2
vi Cl
Y0 .
Sub — N

Modifying the adder inputs

By following the same approach, we can use an adder to compute other
functions as well.

We just have to figure out which functions we want, and then put the
right circuitryinto the “Input Logic” box.

| . Cout
CO

X3 B3

X2 B2

X1 B1

X0 BO S3 G3

52 G2

A3 S1 G1
A2 S0 GO

Y3 — "y

Y2 — Cl

¥$] Input Logic

S by

Some more possible functions

* Wealready saw how to set adder inputs A, B and CI to compute either
X+YorX-Y.

* How can we produce the increment functionG=X+1?

m==) One way: Set A = 0000, B = X, and CI = 1

* How aboutdecrement: G=X-1? r3|D— Cout
2 =
BE1
A=1111 (-1), Ble CI=0" B0 53 3
A3 a1 =1
A2 =0 =0
* How about transfer: G = X? 13 Al]

(This can be useful.) YU nput Logic

mas

) A -0000, B=X, CI=0

5 =

This is almost the same as the
increment function!

The role of CI

The transfer and increment operations have the same A and B inputs,
and differ only in the CI input.

In general we can get additional functions (not all of them useful) by
using both CI =0 and CI=1.

Another example:
— Two’s-complementsubtraction is obtained by setting A=Y’,B =
X,andCI=1,s0G=X+Y"+1.
— IfwekeepA=Y’and B=X, butsetClto 0, wegetG=X+Y".
This turns out to be a ones’ complement subtraction operation.

—— Cout
co
#a B3
B2
#1 E1
X0 BO =3 (=3
52 52
Al o =1
A =0 0
vy | A1

%] Input Logic

mas

Table of arithmetic functions

Here are some of the different possible arithmetic operations.

We’ll need some way to specify which function we’re interested in, so
we’ve randomly assigned a selection code to each operation.

S52: 51 S Arithmetic operation

0 0 0 | X (transfer)

0 0 1 | X+1 (increment)

0 1 0 | X+Y (add)

0 1 1 [X+Y+1

1 0 0 | X+Y (1€ subtraction)
1 0 1 | X+¥Y'+1 (2C subtraction)
1 1 0 | X-1 (decrement)

1 1 1 | X (transfer)

BEERSE

Y3 —
Y2 —

Y —

5 -

Input Logic

mas

G3
=2

[E]

10

Mapping the table to an adder

This second table shows what the adder’s inputs should be for each of

our eight desired arithmetic operations.

Selection code | Desired arithmetic operation | Required adder inputs
S; S So G (A +B+ CI) B CI
O O O |X (tfransfer) X 0)

O O 1 | X+1 (increment) X 1
O 11 0 |X+Y (add) X 0
0 1 1 | X+Y+1 X 1
1 0) O [X+VY (1C subtraction) X 0
1 0 1 |X+Y'+1 (2C subtraction) X 1
1 1 O |X-1 (decrement) X 0
1 1 1 |X (transfer) X 1
— Adder input CI is always the same as selection code bit S,. 3 5

— Bs always set to X.

— A depends only on S, and S,.

These equations depend on both the desired

operations and the assignment of selection codes. s -

3 —
T2 —

%] Input Logic

B

Building the input logic

* All we need to do is compute the adder input A, given the arithmetic
unitinput Y and the function select code S (actually just S, and S,).

* Hereis an abbreviated truth table:

|—~Cnu1
S: S |A : 2
0 0 (0000 & R
o 1 |y s s—.
1 O y' ﬁ; Input Logic J ” =
1 1 |1un N J

°* We want to pick one of these four possible values for A, depending on
S, and S,.
12

Primitive gate-based input logic

* We could build this circuit using primitive gates.

* If we want to use K-maps for simplification, then we should first
expand out the abbreviated truth table.

— The Y that appears in the output column (A) is actually an input.
— We make that explicit in the table on the right.

* Remember A and Y are each 4 bits long!
inputs output

S, S; VY| A
0 0 o0]o0
S S |A O O 1160
0 0 |ooo0 0 1 010
o 1 ly ’ 0 1 1]1
1 o |y 1 O 011
1 1 |uu 1 0 1]0
1 1 o0]1
1 1 1]1

Primitive gate implementation

From the truth table, we can
find an MSP:

S
O[O 11]O0
S;1110] 11
Yi
Ai = Szyi' + Slyi

Again, we have to repeat this
once for each bit Y3-Y0,
connecting to the adder inputs
A3-A0.

This completes our arithmetic
unit.

T

T

1

o

Cout

B3
B2

B0
A3

Co

Cl

=3
52
=1
=0

—53

—51
—=0

=0

Arithrmetic

LInit

Cout

Multiplexer-based implementation

Alternative Implementation using 4 bit adder circuit and multiplexers

Selection code | Desired arithmetic operation | Required adder inputs

Sz 51 So G (X +Y + CI) Y X CI

O O O0]A (transfer) 0000 A 0]

O O 1 |A+1 (increment) 0000 A 1

o) 1 O |A+B (add) B A 0

o) 1 1 |[A+B+1 B A 1

1 O O |A+PB (1C subtraction) B A 0]

1 0) 1 |A+B +1 (2C subtraction) B’ A 1

1 1 0 [A-1 (decrement) 1111 A 0

1 1 1 |A (tfransfer) 1111 A 1

4
S S |Y |
Y Y X X Y X

g (1) (;000 | Cout : ;E:n 3 Cout _on Lz . cin-C1 cout _Cn
1 O B’ | - i T
11 |1y | ¢

15

Multiplexer-based implementation

52
Ay Xo Co
3
FA e (G0
52
0 4xl
Yo C,
B, 1 MUX
2
3
Ay X, C,
3
Sq FA — G1
0 4x1
Y: C
8, , MuUx
E 2
3
Az X3 Cz
5
_5' FA — G2
2
{) 4x]]r: C']
B, 1
—‘%c y.
3
Ay X Cy
5
& FA — G3
2
0 dxl Y C
3 &
By 1 MUX
LM 2
3
Com

=%

So

= 0

0000

B'
1111

16

Logic Unit Design

Most computers also supportlogical operations like AND, OR, XOR
and NOT, but extended to multi-bit words instead of just single bits.

4, * Inputs:
’ — X (4 bits)
v 74; Logi # — Y (4 bits)
— S (2 bits)
gﬁl: * QOutputs:
— G (4 bits)

Bitwise operations: To apply a logical operation to two words X and Y,
apply the operation on each pair of bits X; and Y;:

1011 1011 1011
AND 1110 OR 1110 XOR 1110
1010 1111 0101

Single operand logical operation: “complementing” all the bits in a

number.
NOT 1011

0100

17

A logic unit supports different logical
functions on two multi-bitinputs X and

Defining a logic unit

Y, producing an output G.

This abbreviated table shows four
possible functions and assigns a selection

code S to each.

Sq So OUTPUT

0] O G.‘ = X.‘yi

0] 1 G.‘ = X.‘ + yi
1 0] G.‘ = X.‘ @® yi
1 1 G.‘ = X."

We’ll just use multiplexers and some
primitive gates to implement this.

Again, we need one multiplexer for each

bitrof X and Y.

EM

S1
S0

D3
Lz
D1
Do

—Gi

18

Our simple logic unit

+4 | I—0|EN

’ 21— 51
4 .

e I R 2 o>

s0—ap
D3

w3]
W3 —
* Inputs: —dem
— X (4 bits) 015!
— Y (4 bits) z? B e
— S (2 bits) 5=l >
wa
* QOutputs: 12
W

— G (4 bits) 12—

The arithmetic and logic units

* Now we have two pieces of 4
4 + Cout
the puzzle:]
! Arithmetic 4
— An arithmetic unit that ! Ui —
can compute eight §§
functions on 4-bit inputs.
(o
— A logic unit that can A . ,
perform four functions on "7 T S A
4-bit inputs. a1
51—
. X y
* Wecan combine these 4 4
together into a single circuit,
an arithmetic-logic unit V2N [A °
(ALU). y AL
—] ¢
+«—]K
—2Z
G

i ’

Our ALU function table

This table shows a sample
function table for an ALU.

All of the arithmetic operations
have S;=0, and all of the logical
operations have S;=1.

These are the same functions we
saw when we built our arithmetic
and logic units a few minutes ago.

Since our ALU only has 4 logical
operations,we don’t need S,.
The operation done by the logic
unit depends only on S, and S,.

n
w

Sz

S1

So

Operation

= = = =, 0000 00O0O0

o

X X X X mr ==~ 0O0O

_ =, OO0 R, OORRROO

@)

—_, O O, O, 0O~ 0O -

G =X
G=X+1
G=X+Y
G=X+Y+1
G=X+YVY
G=X+Y'+1
G=X-1

G =X

G =Xand VY
G=XorY
G=X®Y
G=X

21

A complete ALU circuit

4
/s Cout (C) G is the final ALU output.
4 - v * When S3 =0, the final
/e prthmetie output comes from the
arithmetic unit.
. 4 —Z * When S3 =1, the output
DO — N comes from the logic unit.
4 Cluad 4
D1 ﬁ]tf; “ G Status bits: Additional
outputs
Logic — = ' Couf (C)
Unit « Over-flow (V)
Zero (Z)
Negative (N)

The arithmetic and logic units share the selectinputs S1 and S0, but only the arithmetic
unit uses S2.

Both the arithmetic unit and the logic unit are “active” and produce outputs.
— The mux determines whether the final result comes from the arithmetic or logic unit.
— The output of the other one is effectively ignored.
Our hardware scheme may seem like wasted effort, but it’s not really.
“Deactivating” one or the other wouldn’t save that much time.
— We have to build hardware for both units anyway, so we might as well run them together. 22

The all-important ALU

* We’ll use the following general block symbol for the ALU.
— A and B are two n-bit numeric inputs.

— FS is an m-bit function select code, which picks one of 2™ functions.
— The n-bit result is called G.

— Several status bits provide more S3 52 St So Operation
information about the output G: 0O 0 0 0|6=X
* V=1in caseofsigned overflow. 0 0 0 1 16=X+1
* Cis the carry out. 0 0 1 0 |6=X+Y
* N =1if the result is negative. O 0 1 1]|6=X+Y+1
e 7 =1if the resultis 0. 0 1 0 O |6=X+Y
0 1 0 1 |[G=X+Y'+1
ﬂl’ ﬂl’ O 1 1 0]6=X-1
A B O 1 1 1]6=X
——| Fs 1 x 0 0]|6=XandY
—y ALU 1 x 0 1|6=XorY
—% 1 x 1 0f6=xaV
G 1 x 1 1|6=X

Jvr

Combinational Shifter

* Bidirectional shift register with parallel load
— Disadvantage: 3 clock pulses required
— Ex: R1<« sr R2
* Combinational Shifter
— Transfer from a source to destination register
— One clock cycle
* Operations:
— Transfer
— Shift Left,
— Shift Right

24

4-Bit Basic Left/Right Shifter

Bg Bz B1 B0
Serial
output L
Serial
output R
IR _IL
0 1 M 0 1 M 01 2M 012M
B U U U U
X X X X
5%
Ha Ho H1 Ho

= Shift Functions:
(S1, SO) =00 Pass B unchanged
01 Right shift
10 Left shift
11 Unused

Serial Outputs (we will ignore)
— R for right shift (Same as MSB input)
— L for left shift (Same as LSB input)

25

* Serial Inputs:
— I forright shift
— I for left shift
* Logic Shift (zero) will be used
* Many options depending on R
instruction set

Function Unit Design

Function Unit= ALU + Shifter

* The functionselect code FS is 4 bits

long, but there are only 15 different

functions here.
FS Operation
0000 |F=A
0001 |F=A+1
0010 |F=A+B
0011 |[F=A+B+1
0100 |[F=A+B'
0101 |[F=A+B'+1
0110 |[F=A-1
o111 _lF-A
1000 |F=A A B (AND)
1001 [F=A Vv B (OR)
1010 |F= A ® B (XOR)
1011 |F=A"
1100 |F=B
1101 |F = sr B (shift right)
1110 |F = sl B (shift left)

G select Y

Bus A Bus B

B

; H select

s S:o IFC B >

L

V <———— Arithmetic/logic 0—>
c unit (ALU)
G H
N < .
h
Z <«—|Zero Detect y *
MF select 0 !
SEICt — MUX F
F
h
n %
A B
_QL> Fs
—vV Function Unit
«—C
«—N
«— Z
F

%

Function unit

26

Definition of Function Unit Select (FS) Codes

MF G H
FS(3:0) Select Select(3:0) Select(3:0) Micr ooperation
0000 0 XX F<« A Boolean
0001 0 XX F<— A+ 1
0010 0 XX F«<A+B Equations:
0011 0 XX F<A+B+1
0100 0 XX F<A+ B ME=F, I,
0101 0 XX F<A+B+1 G;=F,
0110 0 XX F<—A-1
0111 0 XX F<A Hi - Fi
1000 0 XX F<~AAB
1001 0 XX F<~AvVB
1010 0 XX F<—A®B
1011 0 XX F«A
1100 1 00 F < B
1101 1 01 F <srB
1110 1 10 F <slB

27

