

CSC 220: Computer Organization

Unit 10 Arithmetic-Logic Units

Prepared by: Md Saiful Islam, PhE

Department of Computer Science

College of Computer and Information Sciences

Overview

- Arithmetic Unit Design
 - Primitive gates base implementation
 - MUX-based implementation
- Logic Unit Design
- Arithmetic-logic Unit Design
- Function Unit Design
 - Combinational Shifter

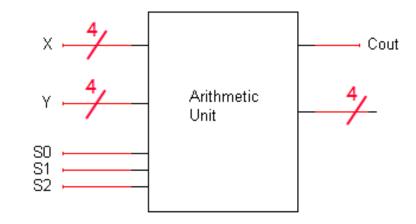
Chapter-8

M. Morris Mano, Charles R. Kime and Tom Martin, **Logic and Computer Design Fundamentals**, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Arithmetic Unit Design

Designing a simple 4-bit AU

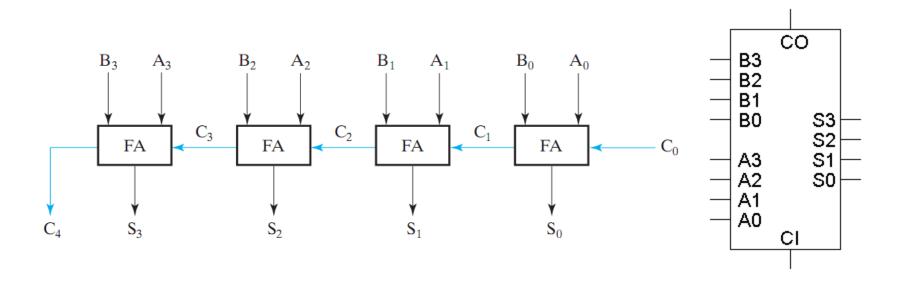
- 8 arithmetic operations
- Inputs:
 - X (4 bits)
 - Y (4 bits)
 - S (3 bits)
- Outputs:
 - G (4 bits)
 - C_{out} (final carry)
- The / and 4 on a line indicate that it's actually four lines



S ₂	S ₁	S ₀	Operation
0	0	0	G = X
0	0	1	G = X + 1
0	1	0	G = X + Y
0	1	1	G = X + Y + 1
1	0	0	G = X + Y'
1	0	1	G = X + Y' + 1
1	1	0	G = X - 1
1	1	1	G = X

The four-bit parallel adder

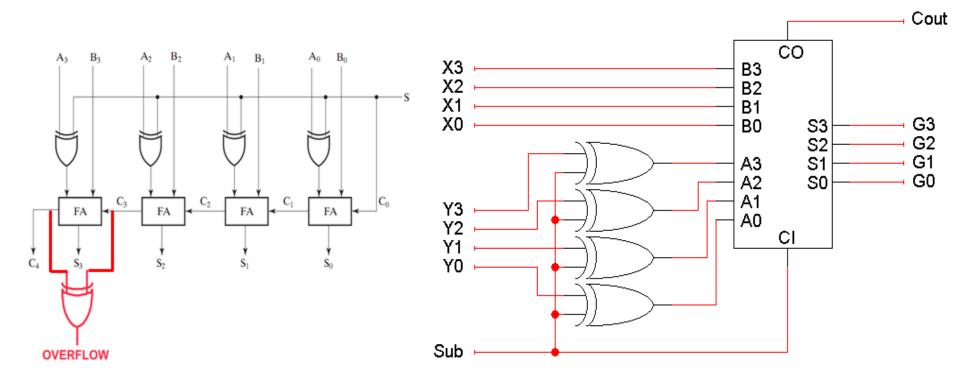
• The basic four-bit adder *always* computes S = A + B + CI.



- But by changing what goes into the adder inputs A, B and CI, we can change the adder output S.
- This is also what we did to build the combined adder-subtractor circuit.

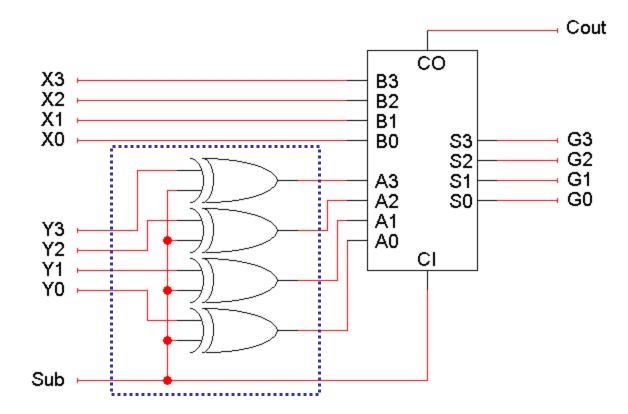
The adder-subtractor

- Here the signal Sub and some XOR gates alter the adder inputs.
 - When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder produces G = X + Y + 0, or just X + Y.
 - When Sub = 1, the adder inputs are Y', X and 1, so the adder output is G = X + Y' + 1, or the two's complement operation X Y.



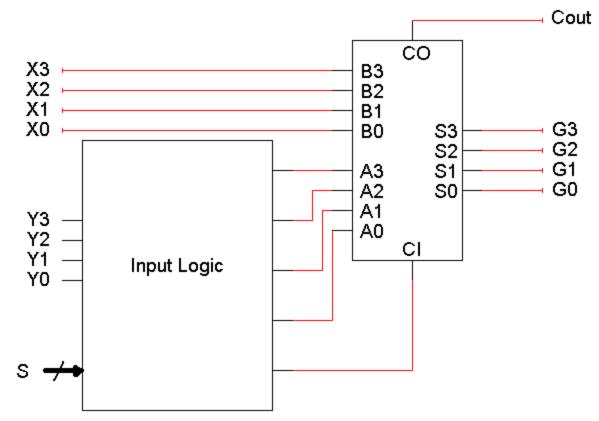
The multi-talented adder

- So we have one adder performing two separate functions.
- "Sub" acts like a function select input which determines whether the circuit performs addition or subtraction.
- "Sub" modifies the adder's inputs A and CI.



Modifying the adder inputs

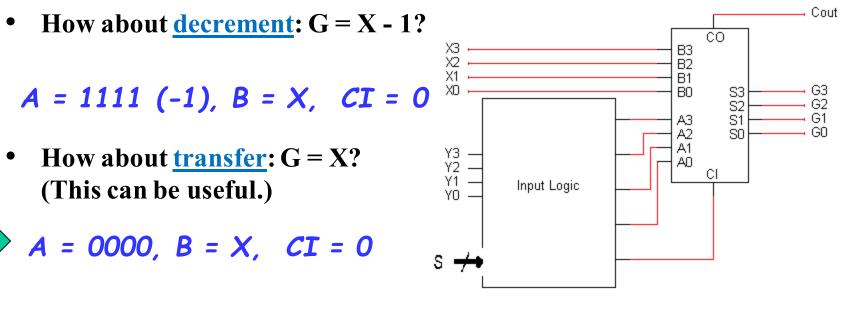
- By following the same approach, we can use an adder to compute *other* functions as well.
- We just have to figure out which functions we want, and then put the right circuitry into the "Input Logic" box .



Some more possible functions

- We already saw how to set adder inputs A, B and CI to compute either X + Y or X Y.
- How can we produce the <u>increment function</u> G = X + 1?

One way: Set A = 0000, B = X, and CI = 1



This is almost the same as the increment function!

The role of CI

- The transfer and increment operations have the same A and B inputs, and differ only in the CI input.
- In general we can get additional functions (not all of them useful) by using both CI = 0 and CI = 1.
- Another example:
 - <u>Two's-complement subtraction</u> is obtained by setting A = Y', B = X, and CI = 1, so G = X + Y' + 1.
 - If we keep A = Y' and B = X, but set CI to 0, we get G = X + Y'.
 This turns out to be a ones' complement subtraction operation.

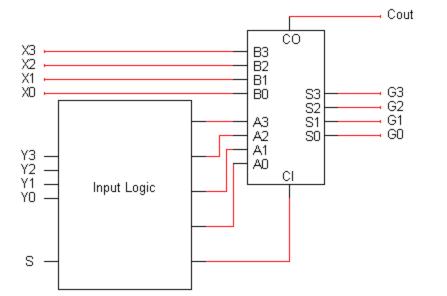


Table of arithmetic functions

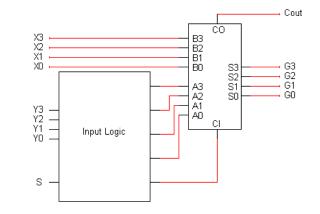
- Here are some of the different possible arithmetic operations.
- We'll need some way to specify which function we're interested in, so we've *randomly assigned* a selection code to each operation.

S ₂	S_1	S ₀	Arithmetic operation		Cout
0	0	0	х	(transfer)	X3
0	0	1	X + 1	(increment)	X0
0	1	0	Х+У	(add)	
0	1	1	X + y + 1		Y1 Input Logic
1	0	0	X + Y'	(1C subtraction)	s 🕂
1	0	1	X + Y ' + 1	(2C subtraction)	
1	1	0	X - 1	(decrement)	
1	1	1	x	(transfer)	

 This second table shows what the adder's inputs should be for each of our eight desired arithmetic operations.

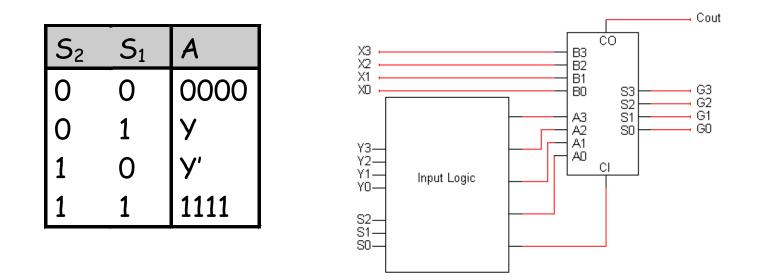
Selection code		Desired arithmetic operation		Requir	Required adder inputs		
S ₂	S ₁	S ₀	G	(A + B + CI)	A	В	CI
0	0	0	Х	(transfer)	0000	Х	0
0	0	1	X + 1	(increment)	0000	Х	1
0	1	0	X + Y	(add)	У	Х	0
0	1	1	X + Y + 1		У	X	1
1	0	0	X + Y'	(1C subtraction)	У′	Х	0
1	0	1	X + Y' + 1	(2C subtraction)	У'	X	1
1	1	0	X - 1	(decrement)	1111	X	0
1	1	1	Х	(transfer)	1111	Х	1

- Adder input CI is always the same as selection code bit S₀.
- <u>B is always set to X.</u>
- <u>A depends only on S₂ and S₁.</u>
- These equations depend on both the desired operations and the assignment of selection codes.



Building the input logic

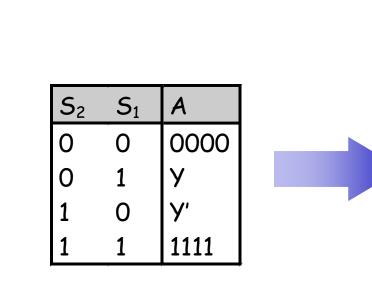
- All we need to do is compute the adder input A, given the arithmetic unit input Y and the function select code S (actually just S₂ and S₁).
- Here is an abbreviated truth table:

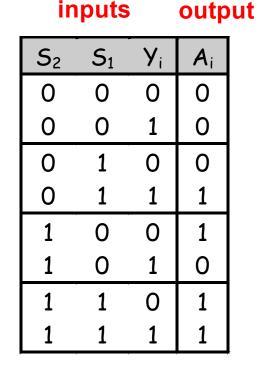


• We want to pick one of these four possible values for A, depending on S₂ and S₁.

Primitive gate-based input logic

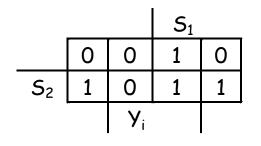
- We could build this circuit using primitive gates.
- If we want to use K-maps for simplification, then we should first expand out the abbreviated truth table.
 - The Y that appears in the output column (A) is actually an input.
 - We make that explicit in the table on the right.
- Remember A and Y are each 4 bits long!





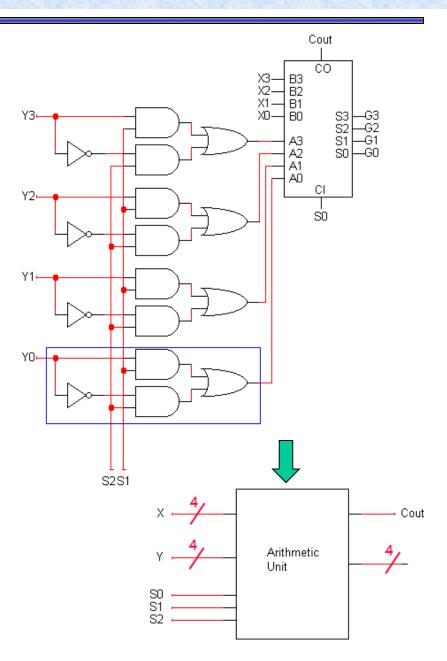
Primitive gate implementation

• From the truth table, we can find an MSP:



$$\mathbf{A}_{i} = \mathbf{S}_{2}\mathbf{Y}_{i}' + \mathbf{S}_{1}\mathbf{Y}_{i}$$

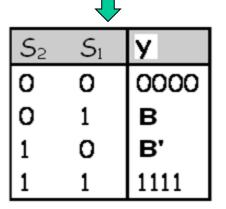
- Again, we have to repeat this once for each bit Y3-Y0, connecting to the adder inputs A3-A0.
- This completes our arithmetic unit.

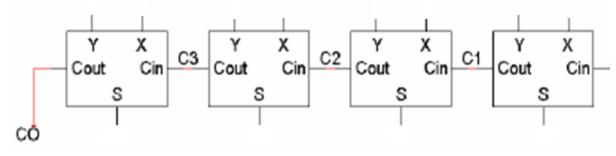


Multiplexer-based implementation

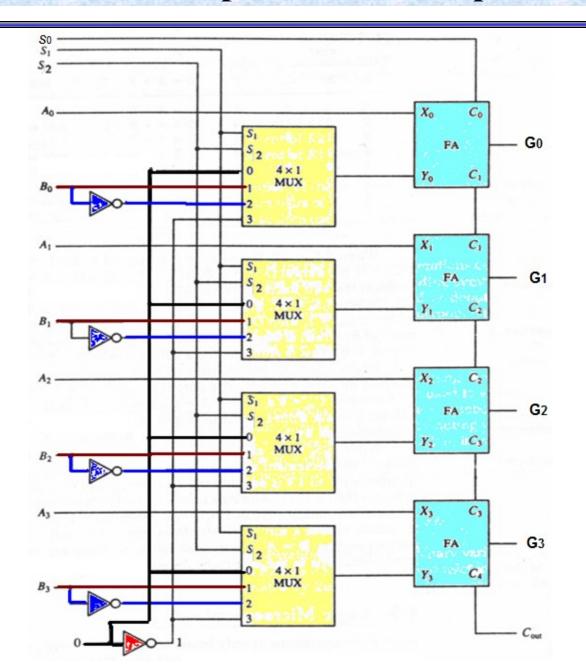
Alternative Implementation using 4 bit adder circuit and multiplexers

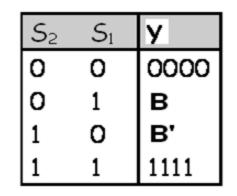
Selection code		Desired arithmetic operation		Require	Required adder inputs		
S ₂	S ₁	S ₀	G	G(X + Y + CI)			CI
0	0	0	A	(transfer)	0000	A	0
0	0	1	A + 1	(increment)	0000	А	1
0	1	0	A + B	(add)	В	А	0
0	1	1	A + B + 1		В	Α	1
1	0	0	A + B'	(1C subtraction)	Β'	А	0
1	0	1	A + B' + 1	(2C subtraction)	Β'	А	1
1	1	0	A - 1	(decrement)	1111	A	0
1	1	1	A	(transfer)	1111	А	1





Multiplexer-based implementation

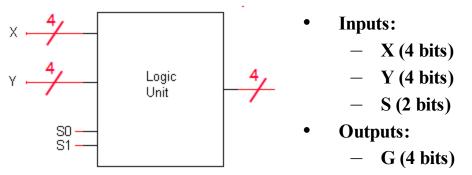




16

Logic Unit Design

• Most computers also support logical operations like AND, OR, XOR and NOT, but extended to multi-bit words instead of just single bits.



• **Bitwise operations:** To apply a logical operation to two words X and Y, apply the operation on each pair of bits X_i and Y_i:

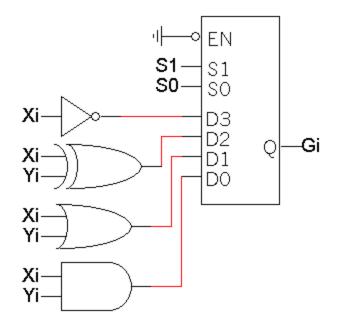
Single operand logical operation: "complementing" all the bits in a number.
 NOT 1 0 1 1

$$10 \frac{T 1 0 1 1}{0 1 0 0}$$

Defining a logic unit

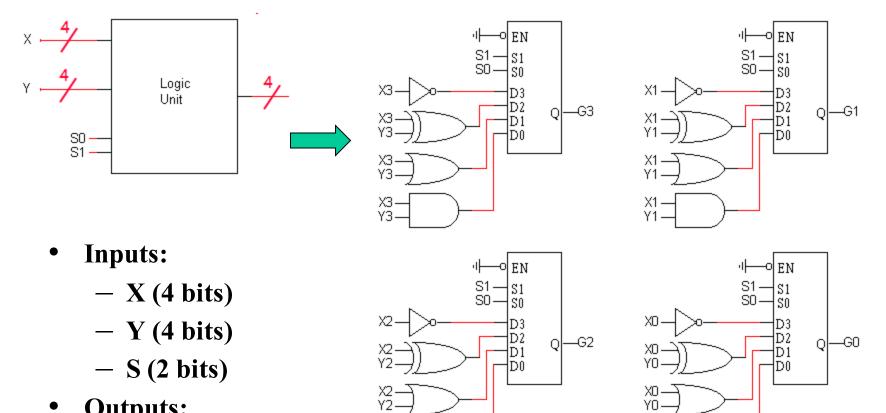
- A logic unit supports different logical functions on two multi-bit inputs X and Y, producing an output G.
- This abbreviated table shows four possible functions and assigns a selection code S to each.

S ₁	S ₀	Output
0	0	$G_i = X_i Y_i$
0	1	$G_i = X_i + Y_i$
1	0	$\boldsymbol{\mathcal{G}}_{i}$ = $\boldsymbol{X}_{i} \oplus \boldsymbol{Y}_{i}$
1	1	$G_i = X_i'$



- We'll just use multiplexers and some primitive gates to implement this.
- Again, we need one multiplexer for *each bit* of X and Y.

Our simple logic unit



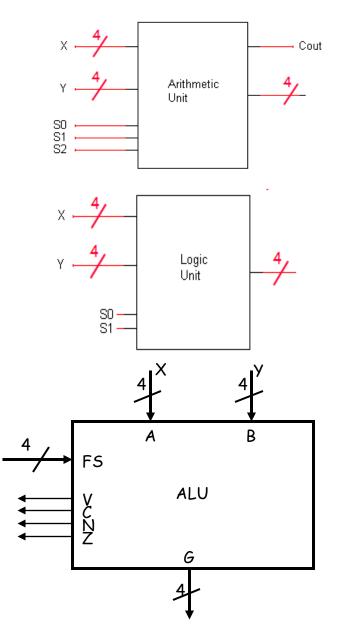
X2-Y2-

- **Outputs:** ullet
 - G (4 bits)

XD -YO -

The arithmetic and logic units

- Now we have two pieces of the puzzle:
 - An arithmetic unit that can compute eight functions on 4-bit inputs.
 - A logic unit that can perform four functions on 4-bit inputs.
- We can combine these together into a single circuit, an arithmetic-logic unit (ALU).

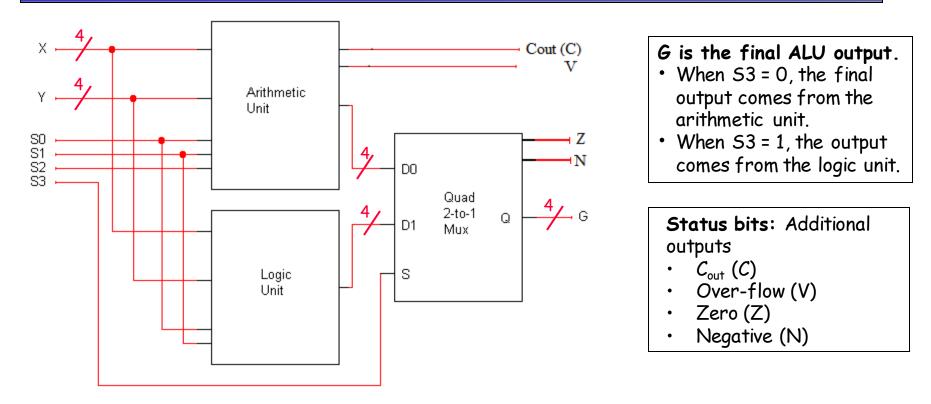


Our ALU function table

- This table shows a sample function table for an ALU.
- All of the arithmetic operations have $S_3=0$, and all of the logical operations have $S_3=1$.
- These are the same functions we saw when we built our arithmetic and logic units a few minutes ago.
- Since our ALU only has 4 logical operations, we don't need S₂.
 The operation done by the logic unit depends only on S₁ and S₀.

S ₃	S ₂	S ₁	S ₀	Operation
0	0	0	0	G = X
0	0	0	1	G = X + 1
0	0	1	0	G = X + Y
0	0	1	1	G = X + Y + 1
0	1	0	0	G = X + Y'
0	1	0	1	G = X + Y' + 1
0	1	1	0	G = X - 1
0	1	1	1	G = X
1	×	0	0	G = X and Y
1	X	0	1	G = X or Y
1	×	1	0	G = X ⊕ Y
1	×	1	1	G = X'

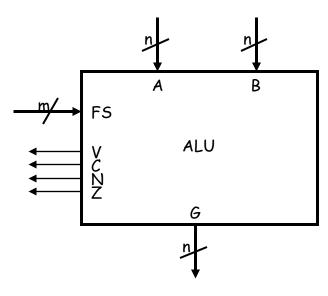
A complete ALU circuit



- The arithmetic and logic units share the select inputs S1 and S0, but only the arithmetic unit uses S2.
- *Both* the arithmetic unit and the logic unit are "active" and produce outputs.
 - The mux determines whether the final result comes from the arithmetic or logic unit.
 - The output of the other one is effectively ignored.
- Our hardware scheme may seem like wasted effort, but it's not really.
 - "Deactivating" one or the other wouldn't save that much time.
 - We have to build hardware for both units anyway, so we might as well run them together.
 22

The all-important ALU

- We'll use the following general block symbol for the ALU.
 - A and **B** are two n-bit numeric inputs.
 - FS is an m-bit function select code, which picks one of 2^m functions.
 - The n-bit result is called G.
 - Several status bits provide more information about the output G:
 - V = 1 in case of signed overflow.
 - C is the carry out.
 - N = 1 if the result is negative.
 - $\mathbf{Z} = \mathbf{1}$ if the result is 0.

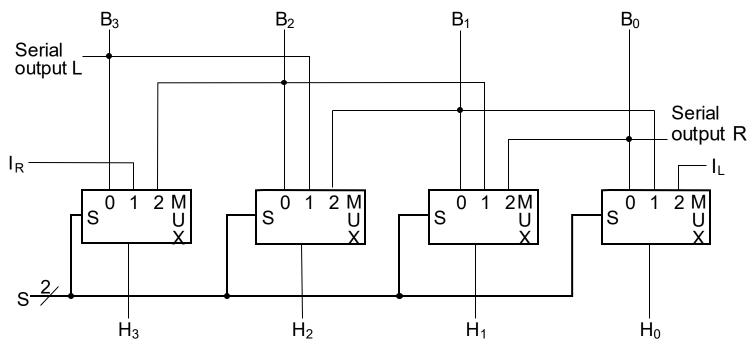


S ₃	S ₂	S ₁	S ₀	Operation
0	0	0	0	G = X
0	0	0	1	G = X + 1
0	0	1	0	G = X + Y
0	0	1	1	G = X + Y + 1
0	1	0	0	G = X + Y'
0	1	0	1	G = X + Y' + 1
0	1	1	0	G = X - 1
0	1	1	1	G = X
1	X	0	0	G = X and Y
1	X	0	1	G = X or Y
1	×	1	0	G = X ⊕ Y
1	X	1	1	G = X'

Combinational Shifter

- Bidirectional shift register with parallel load
 - Disadvantage: 3 clock pulses required
 - -Ex: R1 \leftarrow sr R2
- Combinational Shifter
 - Transfer from a source to destination register
 - One clock cycle
- Operations:
 - Transfer
 - Shift Left,
 - Shift Right

4-Bit Basic Left/Right Shifter



- Serial Inputs:
 - I_R for right shift
 - I_L for left shift
- Logic Shift (zero) will be used
- Many options depending on instruction set

- Shift Functions:
 (S1, S0) = 00 Pass B unchanged
 - 01 Right shift
 - 10 Left shift

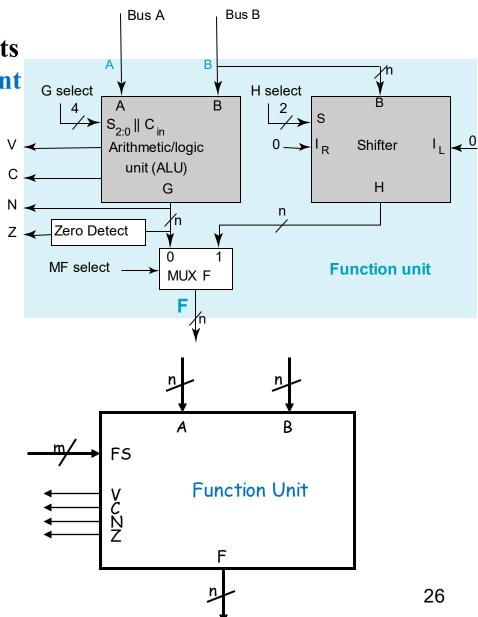
 - 11 Unused
- Serial Outputs (we will ignore)
 - R for right shift (Same as MSB input)
 - L for left shift (Same as LSB input)

Function Unit Design

Function Unit = ALU + Shifter

• The function select code FS is 4 bits long, but there are only 15 different functions here.

FS	Operation
0000	F = A
0001	F = A + 1
0010	F = A + B
0011	F = A + B + 1
0100	F = A + B'
0101	F = A + B' + 1
0110	F = A - 1
0111	F = A
1000	$F = A \land B (AND)$
1001	F = A ∨ B (OR)
1010	F = A ⊕ B (XOR)
1011	F = A'
1100	F = B
1101	F = sr B (shift right)
1110	F = sl B (shift left)



Definition of Function Unit Select (FS) Codes

FS(3:0)	MF Select	G Select(3:0)	H Select(3:0)	Microoperation	
0000	$\langle 0 \rangle$	0000	XX	$F \leftarrow A$	- Boolean
0001	/ 0 ∖	/ 0001 \	XX	<i>F</i> ← <i>A</i> + 1	Doordin
0010	0	/ 0010 \	XX	$F \leftarrow A + B$	Equations:
0011	0	0011	XX	$F \leftarrow A + B + 1$	
0100	0	0100	XX	$F \leftarrow A + \overline{B}$	$\mathbf{MF} = \mathbf{F}_3 \mathbf{F}_2$
0101	0	0101	XX	$F \leftarrow A + \overline{B} + 1$	$G_i = F_i$
0110	0	0110	XX	<i>F</i> ← <i>A</i> − 1	
0111	0	0111	XX	$F \leftarrow A$	$\mathbf{H}_{\mathbf{i}} = \mathbf{F}_{\mathbf{i}}$
1000	0	1 X 00	XX	$F \leftarrow A \land B$	
1001	\ O	\ 1 X01 /	XX	$F \leftarrow A \lor B$	
1010	\ 0 /	$\langle 1 X 10 \rangle$	XX	$F \leftarrow A \oplus B$	
1011	0	X11	XX	$F \leftarrow \overline{A}$	
1100		XXXX	00	$F \leftarrow B$	
1101	(1	XXXX	(01)	$F \leftarrow \operatorname{sr} B$	
1110	1) xxxx	10	F ← sl B	_