CSC 220: Computer Organization

Unit 10 Arithmetic-Logic Units

Department of Computer Science
College of Computer and Information Sciences

Overview

- Arithmetic Unit Design
- Primitive gates base implementation
- MUX-based implementation
- Logic Unit Design
- Arithmetic-logic Unit Design
- Function Unit Design
- Combinational Shifter

Chapter-8

M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design

Fundamentals, Global ($5^{\text {th }}$) Edition, Pearson Education Limited, 2016. ISBN:
9781292096124

Arithmetic Unit Design

Designing a simple 4-bit AU

- 8 arithmetic operations
- Inputs:
- X (4 bits)
- Y (4 bits)
- S (3 bits)
- Outputs:
- G (4 bits)
- $\mathrm{C}_{\text {out }}$ (final carry)
- The / and 4 on a line indicate that it's actually four lines

The four-bit parallel adder

- The basic four-bit adder always computes $\mathrm{S}=\mathrm{A}+\mathrm{B}+\mathrm{CI}$.

- But by changing what goes into the adder inputs A, B and $C I$, we can change the adder output S.
- This is also what we did to build the combined adder-subtractor circuit.

The adder-subtractor

- Here the signal Sub and some XOR gates alter the adder inputs.
- When Sub $=0$, the adder inputs $A, B, C I$ are $Y, X, 0$, so the adder produces $\mathbf{G}=\mathbf{X}+\mathbf{Y}+\mathbf{0}$, or just $\mathbf{X}+\mathbf{Y}$.
- When $S u b=1$, the adder inputs are Y^{\prime}, X and 1 , so the adder output is G $=X+Y^{\prime}+1$, or the two's complement operation $X-Y$.

The multi-talented adder

- So we have one adder performing two separate functions.
- "Sub" acts like a function select input which determines whether the circuit performs addition or subtraction.
- "Sub" modifies the adder's inputs A and CI.

Modifying the adder inputs

- By following the same approach, we can use an adder to compute other functions as well.
- We just have to figure out which functions we want, and then put the right circuitry into the "Input Logic" box .

Some more possible functions

- We already saw how to set adder inputs A, B and CI to compute either $X+Y$ or $X-Y$.
- How can we produce the increment function $\mathbf{G}=\mathbf{X}+\mathbf{1}$?

One way: Set $A=0000, B=X$, and $C I=1$

- How about decrement: $\mathbf{G}=\mathbf{X - 1}$ -

$$
A=1111(-1), B=X, C I=0
$$

- How about transfer: $\mathbf{G}=\mathbf{X}$? (This can be useful.)
$A=0000, B=X, C I=0$

This is almost the same as the increment function!

The role of CI

- The transfer and increment operations have the same A and B inputs, and differ only in the CI input.
- In general we can get additional functions (not all of them useful) by using both $\mathrm{CI}=0$ and $\mathrm{CI}=1$.
- Another example:
- Two's-complement subtraction is obtained by setting $A=Y^{\prime}, B=$ X, and $C I=1$, so $G=X+Y^{\prime}+1$.
- If we keep $A=Y^{\prime}$ and $B=X$, but set $C I$ to 0 , we get $G=X+Y^{\prime}$. This turns out to be a ones' complement subtraction operation.

Table of arithmetic functions

- Here are some of the different possible arithmetic operations.
- We'll need some way to specify which function we're interested in, so we've randomly assigned a selection code to each operation.

S_{2}	S_{1}	S_{0}	Arithmetic operation	
0	0	0	x	(transfer)
0	0	1	$x+1$	(increment)
0	1	0	$x+y$	(add)
0	1	1	$x+y+1$	
1	0	0	$x+y^{\prime}$	(1C subtraction)
1	0	1	$x+y^{\prime}+1$	(2C subtraction)
1	1	0	$x-1$	(decrement)
1	1	1	x	(transfer)

Mapping the table to an adder

- This second table shows what the adder's inputs should be for each of our eight desired arithmetic operations.

Selection code			Desired arithmetic operation$G(A+B+C I)$		Required adder inputs		
S_{2}	S_{1}	So			A	B	CI
0	0	0	x	(transfer)	0000	X	0
0	0	1	$x+1$	(increment)	0000	X	1
0	1	0	$x+y$	(add)	Y	X	0
0	1	1	$x+y+1$		y	X	1
1	0	0	$X+Y^{\prime}$	(1C subtraction)	y^{\prime}	X	0
1	0	1	$x+y^{\prime}+1$	(2C subtraction)	y^{\prime}	x	1
1	1	0	$x-1$	(decrement)	1111	X	0
1	1	1	X	(transfer)	1111	X	1

- ${\text { Adder input } C I \text { is always the same as selection code bit } \mathbf{S}_{0} \text {. }}_{\text {. }}$
- B is always set to X.

- These equations depend on both the desired operations and the assignment of selection codes.

Building the input logic

- All we need to do is compute the adder input A, given the arithmetic unit input Y and the function select code S (actually just $S_{\mathbf{2}}$ and S_{1}).
- Here is an abbreviated truth table:

S_{2}	S_{1}	A
0	0	0000
0	1	y
1	0	y^{\prime}
1	1	1111

- We want to pick one of these four possible values for A, depending on S_{2} and S_{1}.

Primitive gate-based input logic

- We could build this circuit using primitive gates.
- If we want to use K-maps for simplification, then we should first expand out the abbreviated truth table.
- The Y that appears in the output column (A) is actually an input.
- We make that explicit in the table on the right.
- Remember A and Y are each 4 bits long!
inputs output

S_{2}	S_{1}	A
0	0	0000
0	1	y
1	0	y^{\prime}
1	1	1111

S_{2}	S_{1}	Y_{i}	A_{i}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Primitive gate implementation

- From the truth table, we can find an MSP:

- Again, we have to repeat this once for each bit Y3-Y0, connecting to the adder inputs A3-A0.
- This completes our arithmetic unit.

Multiplexer-based implementation

Alternative Implementation using 4 bit adder circuit and multiplexers

Multiplexer-based implementation

Logic Unit Design

- Most computers also support logical operations like AND, OR, XOR and NOT, but extended to multi-bit words instead of just single bits.

- Inputs:
$-\quad X(4$ bits $)$
$-\quad Y(4$ bits $)$
$-\quad \mathbf{S}(2$ bits)
- Outputs:
- G (4 bits)
- Bitwise operations: To apply a logical operation to two words \mathbf{X} and \mathbf{Y}, apply the operation on each pair of bits X_{i} and Y_{i} :

$$
\begin{array}{lllll}
1 & 1 & 1 & 1 \\
\text { AND } & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array} \quad O R \quad \begin{array}{lllll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array} \quad X O R \quad \begin{array}{lllll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
\hline 0 & 1 & 0 & 1
\end{array}
$$

- Single operand logical operation: "complementing" all the bits in a number.

$$
\text { NOT } \frac{1011}{0100}
$$

Defining a logic unit

- A logic unit supports different logical functions on two multi-bit inputs X and \mathbf{Y}, producing an output \mathbf{G}.
- This abbreviated table shows four possible functions and assigns a selection code S to each.

S_{1}	S_{0}	Output
0	0	$G_{i}=X_{i} Y_{i}$
0	1	$G_{i}=X_{i}+Y_{i}$
1	0	$G_{i}=X_{i} \oplus Y_{i}$
1	1	$G_{i}=X_{i}^{\prime}$

- We'll just use multiplexers and some primitive gates to implement this.
- Again, we need one multiplexer for each bit of X and Y.

Our simple logic unit

The arithmetic and logic units

- Now we have two pieces of the puzzle:
- An arithmetic unit that can compute eight functions on 4-bit inputs.

- A logic unit that can perform four functions on 4-bit inputs.
- We can combine these together into a single circuit, an arithmetic-logic unit (ALU).

Our ALU function table

- This table shows a sample function table for an ALU.
- All of the arithmetic operations have $S_{3}=0$, and all of the logical operations have $S_{3}=1$.
- These are the same functions we saw when we built our arithmetic and logic units a few minutes ago.
- Since our ALU only has 4 logical operations, we don't need S_{2}. The operation done by the logic unit depends only on S_{1} and S_{0}.

S_{3}	S_{2}	S_{1}	S_{0}	Operation
0	0	0	0	$G=X$
0	0	0	1	$G=X+1$
0	0	1	0	$G=X+Y$
0	0	1	1	$G=X+Y+1$
0	1	0	0	$G=X+Y^{\prime}$
0	1	0	1	$G=X+Y^{\prime}+1$
0	1	1	0	$G=X-1$
0	1	1	1	$G=X$
1	X	0	0	$G=X$ and Y
1	X	0	1	$G=X$ or Y
1	X	1	0	$G=X \oplus Y$
1	X	1	1	$G=X^{\prime}$

A complete ALU circuit

G is the final ALU output.

- When $S 3=0$, the final output comes from the arithmetic unit.
- When $S 3=1$, the output comes from the logic unit.

Status bits: Additional outputs

- $C_{\text {out }}(C)$
- Over-flow (V)
- Zero (Z)
- Negative (N)
- The arithmetic and logic units share the select inputs $S 1$ and $S 0$, but only the arithmetic unit uses $\mathbf{S} 2$.
- Both the arithmetic unit and the logic unit are "active" and produce outputs.
- The mux determines whether the final result comes from the arithmetic or logic unit.
- The output of the other one is effectively ignored.
- Our hardware scheme may seem like wasted effort, but it's not really.
- "Deactivating" one or the other wouldn't save that much time.
- We have to build hardware for both units anyway, so we might as well run them together.

The all-important ALU

- We'll use the following general block symbol for the ALU.
$-A$ and B are two n-bit numeric inputs.
- FS is an m-bit function select code, which picks one of $\mathbf{2}^{\mathbf{m}}$ functions.
- The n-bit result is called G.
- Several status bits provide more information about the output G :
- $V=1$ in case of signed overflow.
- \mathbf{C} is the carry out.
- $\mathrm{N}=1$ if the result is negative.
- $Z=1$ if the result is 0 .

S_{3}	S_{2}	S_{1}	S_{0}	Operation
0	0	0	0	$G=X$
0	0	0	1	$G=X+1$
0	0	1	0	$G=X+Y$
0	0	1	1	$G=X+Y+1$
0	1	0	0	$G=X+Y^{\prime}$
0	1	0	1	$G=X+Y^{\prime}+1$
0	1	1	0	$G=X-1$
0	1	1	1	$G=X$
1	X	0	0	$G=X$ and Y
1	X	0	1	$G=X$ or Y
1	X	1	0	$G=X \oplus Y$
1	X	1	1	$G=X^{\prime}$

Combinational Shifter

- Bidirectional shift register with parallel load
- Disadvantage: 3 clock pulses required
$-\mathrm{Ex}: \mathrm{R} 1 \leftarrow \mathrm{sr}$ R2
- Combinational Shifter
- Transfer from a source to destination register
- One clock cycle
- Operations:
- Transfer
- Shift Left,
- Shift Right

4-Bit Basic Left/Right Shifter

- Serial Inputs:
$-I_{R}$ for right shift
$-I_{L}$ for left shift
- Logic Shift (zero) will be used
- Many options depending on instruction set
- Shift Functions:
$(\mathrm{S} 1, \mathrm{~S} 0)=00$ Pass B unchanged
01 Right shift
10 Left shift
11 Unused
- Serial Outputs (we will ignore)
-R for right shift (Same as MSB input)
- L for left shift (Same as LSB input)

Function Unit Design

Function Unit = ALU + Shifter

- The function select code FS is $\mathbf{4}$ bits long, but there are only 15 different functions here.

FS	Operation
0000	$F=A$
0001	$F=A+1$
0010	$F=A+B$
0011	$F=A+B+1$
0100	$F=A+B^{\prime}$
0101	$F=A+B^{\prime}+1$
0110	$F=A-1$
0111	$F=A$
1000	$F=A \wedge B(A N D)$
1001	$F=A \vee B$ (OR)
1010	$F=A \oplus B$ (XOR)
1011	$F=A^{\prime}$
1100	$F=B$
1101	$F=s r B$ (shift right)
1110	$F=s l B$ (shift left)

Definition of Function Unit Select (FS) Codes

(3:0)	MF Select	Select(3:0)	$\begin{aligned} & \text { H } \\ & \text { Selec } \end{aligned}$		
0000	0	0000	XX	$F \leftarrow A$	Boolean
0001	0	0001	xx	$F \leftarrow A+1$	
0010	0	0010	XX	$F \leftarrow A+B$	Equations:
0011	0	0011	XX	$F \leftarrow A+B+1$	
0100	0	0100	XX	$F \leftarrow A+\bar{B}$	$\mathrm{MF}=\mathrm{F}_{3} \mathrm{~F}_{2}$
0101	0	0101	XX	$F \leftarrow A+\bar{B}+1$	$\mathrm{G}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}$
0110	0	0110	XX	$F \leftarrow A-1$	
0111	0	0111	XX	$F \leftarrow A$	$\mathrm{H}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}$
1000	0	$1 \mathrm{X00}$	XX	$F \leftarrow A \wedge B$	
1001	0	1×01	XX	$F \leftarrow A \vee B$	
1010	0	1×10	XX	$F \leftarrow A \oplus B$	
1011	0	1×11	XX	$F \leftarrow \bar{A}$	
1100	1	XXXX	00	$F \leftarrow B$	
1101	1	XXXX	01	$F \leftarrow \operatorname{sr} B$	
1110	1	XXXX	(10)	$F \leftarrow \mathrm{sl} B$	

