Recommended Book: "Elementary Linear Algebra (Applications Version)" by Howard Anton and Chris Rorres, 11th Edition, Wiley, USA, 2014.

## Exercises (from the recommended book):

## Exercise Set 1.3

## True-False Exercises

TF. In parts (a)–(o) determine whether the statement is true or false, and justify your answer.

(a) The matrix  $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$  has no main diagonal.

True, it is not a square matrix.

(b) An  $m \times n$  matrix has m column vectors and n row vectors.

False, an mxn matrix has m row vectors and n column vectors.

(c) If A and B are  $2 \times 2$  matrices, then AB = BA.

False, AB#BA in general.

(d) The *i*th row vector of a matrix product *AB* can be computed by multiplying *A* by the *i*th row vector of *B*.

False, the ith row vector of AB is computed by multiplying the ith row vector of A by B.

(e) For every matrix A, it is true that  $(A^T)^T = A$ .

True

(f) If A and B are square matrices of the same order, then

$$tr(AB) = tr(A)tr(B)$$

**False** 

(g) If A and B are square matrices of the same order, then

$$(AB)^T = A^T B^T$$

False

(h) For every square matrix A, it is true that  $tr(A^T) = tr(A)$ .

True

(i) If A is a  $6 \times 4$  matrix and B is an  $m \times n$  matrix such that  $B^T A^T$  is a  $2 \times 6$  matrix, then m = 4 and n = 2.

True

(j) If A is an  $n \times n$  matrix and c is a scalar, then tr(cA) = c tr(A).

True

(k) If A, B, and C are matrices of the same size such that A - C = B - C, then A = B.

True

(1) If A, B, and C are square matrices of the same order such that AC = BC, then A = B.

False

(m) If AB + BA is defined, then A and B are square matrices of the same size.

True

(n) If B has a column of zeros, then so does AB if this product is defined.

True

(o) If B has a column of zeros, then so does BA if this product is defined.

False