INTRODUCTION TO BIOPHYSICS 2 BPH 112

PROBLEMS-A

PROBLEMS

Note:

- The equilibrium density of air at 20°C is $\rho = 1.20 \text{ kg/m}^3$.
- *The speed of sound in air is* v = 340 m/s. *Pressure variations*
- *P* are measured relative to atmospheric pressure, 1.013×10^5 N/m².

1. Suppose that you hear a clap of thunder 25 s after seeing the associated lightning stroke. The speed of sound waves in air is 340 m/s. How far are you from the lightning stroke?

- 2. When a workman strikes a steel pipeline with a hammer, he generates both longitudinal and transverse waves. The two types of reflected waves return 2.4 s apart.
- How far away is the reflection point?
- [For steel, u = 6.2 km/s, u = 3.2 km/s]

3. A bat can detect very small objects, such as an insect whose length is approximately equal to one wavelength of the sound the bat makes. If a bat emits chirps at a frequency of 60.0 kHz, and if the speed of sound in air is 340 m/s, what is the smallest insect the bat can detect?

 $\mathcal{U} = \lambda f \qquad (\mathcal{P} = \lambda | f = 60 \times 10^3 \text{ Hz})$ $\mathcal{U} = \lambda f \qquad (\mathcal{P} = \lambda | f = 60 \times 10^3 \text{ Hz})$ $\mathcal{U} = \lambda f = \frac{340}{60 \times 10^3} = 5.7 \times 10^3 \text{ m}$ = 5.7 Mm

4. A sound wave in air has a pressure amplitude equal to 4.00×10^{-3} N/m². Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.

=>

Example sound	Sound Intensity I (W/m ²)	Intensity Ratio (I/I _o)	Intensity Level (dB)
Loud rock concert	1	10 ¹²	120
Underground train	10 ⁻²	10 ¹⁰	100
Shouting person	10 ⁻⁴	10 ⁸	80
Normal conversation	10-6	10 ⁶	60
Quiet room	10 ⁻⁸	10 ⁴	40
Rustling leaves	10 ⁻¹⁰	10 ²	20
Reference level (Io)	10 ⁻¹²	1	0

4. A sound wave in air has a pressure amplitude equal to 4.00×10^{-3} N/m². Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.

- **5.** The area of a typical eardrum is about $5 \times 10^{-5} \text{ m}^2$. Calculate the sound power incident on an eardrum at: $I = Power/A (W/m^2)$
 - (a) the threshold of hearing (and(b) the threshold of pain.
 - Sound intensity (I) = $\frac{1}{2} \rho v Y^2 (2\pi f)^2 = \frac{P_o^2}{2Z} (W/m^2)$ P_o is the maximum acoustic pressure= Z Y ω . (N/m²)

- I_{th} (hearing) = 10⁻¹² W/m² I_{th} (pain) = 1 W/m²
- $I = Power/A (W/m^2) 10^{-12} x5 x10^{-5} = 50x10^{-18} W$ Power = I A= (W) 1 x5 x10^{-5} = 50x10^{-6} W

6. Calculate the sound level in decibels of a sound wave that has an intensity of 4.00 W/m².

 $T_{o} = 10^{12} W/m^2$

SL = 10 log I

7. A vacuum cleaner produces sound with a measured sound level of 70 dB. (a) What is the intensity of this sound in W/m^2 ? (b) What is the pressure amplitude of the sound? $SL = 10 \log \frac{F}{F}$ $F\phi = 10 \log \frac{F}{F}$ $F\phi = 10 \log \frac{F}{F}$

 $\begin{array}{l} \text{omtilog } \mathcal{F} = \overline{f_2} \xrightarrow{\mathcal{F}} \mathcal{F} = 10^{-12} \text{ antilog } \mathcal{F} \\ = 10^{-12} \times 10^{-12} \text{ m} \\ = 10^{-5} \text{ m}/\text{m} \end{array}$

- 8. The intensity of a sound wave at a fixed distance from a speaker vibrating at 1.00 kHz is 0.600 W/m².
- (a) Determine the intensity if the frequency is increased to 2.50 kHz while a constant $f_2 = 6.25$ displacement amplitude is maintained. (b) Calculate the intensity if the frequency is reduced to half and the displacement amplitude is doubled. $(3, 1)^2 = 4(12/1)^2 - 4$ (Result Index) (c) Calculate the intensity if the frequency is maintained constant and the displacement maintained constant and amplitude is reduced to half $\left(\frac{y_1}{y_2}\right)^2 + \frac{1}{4}$ I Reduced to 1

9. If sound waves fall from air to fat tissues, calculate the sound wave relative transmitted intensity (Zair = 430, Ztissue = 1.33×10^6 kg/m²s).

