Question 1: [Marks: 3+3+3]:
a) Find λ that satisfies the matrix equation $\mathbf{X}^{\mathbf{8}}-\mathbf{8} \boldsymbol{I} \mathbf{I}=\mathbf{0}$ where $\mathbf{X}=\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$.

Solution: $\mathbf{X}^{\mathbf{2}}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \Rightarrow 2^{4}-8 \lambda=0 \Rightarrow \lambda=2$.
b) Let \mathbf{A}, \mathbf{B} and \mathbf{C} be $\mathbf{3} \times \mathbf{3}$ matrices such that $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 4 & 1 \\ 0 & 1 & 1\end{array}\right],|\mathbf{B}|=1$ and $|\mathbf{C}|=2$.

Then evaluate the determinant $\left|\left(\mathbf{A}^{-2} \mathbf{C}\right)^{\mathbf{- 1}} \mathbf{A}^{\mathbf{- 1}} \mathbf{B}-\mathbf{2} \mathbf{C}^{-\mathbf{1}} \mathbf{B}\right|$.
Solution: $\left|\left(\mathbf{A}^{-2} \mathbf{C}\right)^{-1} \mathbf{A}^{-1} \mathbf{B}-\mathbf{2} \mathbf{C}^{-1} \mathbf{B}\right|=\left|\mathbf{C}^{-1} \mathbf{A B}-\mathbf{2} \mathbf{C}^{-1} \mathbf{B}\right|=|\mathbf{C}|^{-1}\left(|\mathbf{A}-\mathbf{2}||\mathbf{B}|=\frac{|\mathbf{B}|}{|\mathbf{C C}|}\left|\begin{array}{rrr}-1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right|=\frac{1}{2}(5)=\frac{5}{2}\right.$.
c) Find the matrix \mathbf{B} such that $(\mathbf{2 A}-\mathbf{B})^{\mathbf{- 1}}=\operatorname{adj}(\mathbf{A})$ where $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.

Solution: $(2 \mathbf{A}-\mathbf{B})^{-\mathbf{1}}=\operatorname{adj}(\mathbf{A})=|\mathbf{A}| \mathbf{A}^{\mathbf{- 1}}=\mathbf{A}^{\mathbf{- 1}} \Rightarrow 2 \mathbf{A}-\mathbf{B}=-\mathbf{A} \Rightarrow \mathbf{B}=3 \mathbf{A}=\left[\begin{array}{lll}3 & 3 & 3 \\ 3 & 0 & 3 \\ 0 & 3 & 3\end{array}\right]$.
Question 2: [Marks: 3+3+3]:
a) Solve the following system of linear equations:

$$
\begin{aligned}
2 x+y+z= & 1 \\
x+2 y+z= & -1 \\
x+y+2 z= & 0
\end{aligned}
$$

Solution: $|\mathbf{A}|=4,\left|\boldsymbol{A}_{\boldsymbol{x}}\right|=4,\left|\boldsymbol{A}_{\boldsymbol{y}}\right|=-4$ and $\left|\boldsymbol{A}_{\boldsymbol{z}}\right|=0$. Hence, $x=\frac{\left|\boldsymbol{A}_{x}\right|}{|\mathbf{A}|}=1$. Similarly, $y=-1$ and $z=0$.
b) Find the value of δ for which the following system is inconsistent:

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=1 \\
x_{1}+\delta x_{2}+x_{3}=2 \\
3 x_{1}+3 x_{2}+\delta x_{3}=3 .
\end{array}
$$

Solution: $[A \mid B] \sim\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 0 & \delta-1 & 0 & 1 \\ 0 & 0 & \delta-3 & 0\end{array}\right] \Rightarrow \delta=1$ for @Consistency of the given system.
c) Find a condition on α and β sufficient for the following system to be consistent:

$$
\begin{aligned}
& 3 w+x+2 y+z=\alpha \\
& 2 w+2 x+y+3 z=\beta \\
& 9 w-x+7 y-4 z=1 .
\end{aligned}
$$

Solution: $[\boldsymbol{A} \mid \boldsymbol{B}] \sim\left[\left.\begin{array}{rrrr|}1 & 2 & 1 & 3 \\ 0 & -3 & 1 & -4 \\ 0 & 0 & 0 & 0\end{array} \right\rvert\, \begin{array}{c}\boldsymbol{\beta}-2 \alpha \\ 3 \boldsymbol{\beta}-5 \alpha+1\end{array}\right]$ So, for consistency of the given system $3 \boldsymbol{\beta}-5 \alpha+1=0$.

Question 3: [Marks: 3+4+5]

a) Show that $\left\{\left[\begin{array}{cc}x & y \\ 0 & 2 x-y\end{array}\right]: x, y \in \mathbb{R}\right\}$ is a 2-dimensional vector subspace of $\boldsymbol{M}_{2}(\mathbb{R})$.

Solution: The given set is a vector subspace of $\boldsymbol{M}_{2}(\mathbb{R})$ because $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & 2(0)-0\end{array}\right]$ and $\boldsymbol{\alpha}\left[\begin{array}{cc}a & b \\ 0 & 2 a-b\end{array}\right]+\left[\begin{array}{cc}c & d \\ 0 & 2 c-d\end{array}\right]=\left[\begin{array}{cc}\alpha \mathrm{a}+\mathrm{c} & \alpha \mathrm{b}+d \\ 0 & 2(\alpha a+c)-(\alpha \mathrm{b}+d)\end{array}\right]$. Further, it has $\begin{aligned} & \text { a basis }\end{aligned}$ $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{rr}0 & 1 \\ 0 & -1\end{array}\right]\right\}$, and so it's dimension is 2 .
b) Let $\boldsymbol{P}_{\mathbf{2}}$ denote the vector space of all real polynomials in x with degree ≤ 2 under usual addition and scalar multiplication. Show that $\boldsymbol{B}=\left\{1+x+x^{2}, 1-x, 1-x^{2}\right\}$ is a basis of \boldsymbol{P}_{2}. Also find the coordinate vector $\left[x^{2}-x\right]_{\boldsymbol{B}}$.
Solution: Clearly, $\alpha\left(1+x+x^{2}\right)+\beta(1-x)+\gamma\left(1-x^{2}\right)=0 \Rightarrow \alpha=\beta=\gamma=0$. So, \boldsymbol{B} is linearly independent. However, $\operatorname{dim}\left(\boldsymbol{P}_{2}\right)=3$ Therefore, \boldsymbol{B} is a basis of \boldsymbol{P}_{2}. Further, $x^{2}-x=$ $0\left(1+x+x^{2}\right)+1(1-x)-1\left(1-x^{2}\right)$ gives $\left[x^{2}-x\right]_{\boldsymbol{B}}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$.
c) Find a basis of $\operatorname{col}(\mathrm{A})$, rank and nullity of the matrix $\left[\begin{array}{rrrr}1 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & -2 & 0 & -1 \\ 1 & 2 & -1 & 0\end{array}\right]$. Solution: Since $\left[\begin{array}{rrrr}1 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & -2 & 0 & -1 \\ 1 & 2 & -1 & 0\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right](R E F),\{(1,0,-1,1),(-1,1,0,-1)\}$ is a basis of $\operatorname{col}(\mathrm{A})$ and so $\operatorname{rank}(\mathrm{A})=\operatorname{dim}(\operatorname{col}(\mathrm{A}))=2$. Hence, $\operatorname{nullity}(\mathrm{A})=4-\operatorname{rank}(\mathrm{A})=2$.

