Second Semester 1442 (without calculators)	Second Exam Time: 8 - 9:30 am	King Saud University College of Science

Q1: Let W={(2x+3,0):x \in R} be a subset of the Euclidean vector space \mathbb{R}^2 . Show that W is **a subspace** of \mathbb{R}^2 . (4 marks)

Q2: Let $S=\{(1,1,0),(1,2,0),(3,4,5)\}$.

- (i) Show that the set S forms a basis for the vector space \mathbb{R}^3 . (3 marks)
- (ii) Find the vector $v \in \mathbb{R}^3$, where $(v)_s = (2,2,1)$. (1 mark)

Q3: Let B= $\{(1,2,1),(3,0,3),(5,4,5)\}$ be a subset of the vector space \mathbb{R}^3 . Find a subset of B that forms a basis for span(B). (3 marks)

Q4: Use the Wronskian to show that the set $\{x, \sin(x), \cos(x)\}\$ is linearly independent. (2 marks)

Q5: Let $S=\{(1,2),(3,7)\}$ and $B=\{(2,1),(1,3)\}$ be two bases for the vector space \mathbb{R}^2 . Find the transition matrix from B to S. (3 marks)

Q6: Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

- (i) Find bases for col(A) and row(A). (4 marks)
- (ii) Deduce nullity(A^T) without solving any equations. (2 marks)

Q7:(i) If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then prove that every vector v in V can be expressed in the form $v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ in exactly one way. (1 mark)

- (ii) For any matrix A, prove that rank(A)=rank(A^T). (1 mark)
- (iii) Let $S=\{p_1,p_2,p_3\}$ be a linearly independent set in the vector space P_3 . Is S a basis for P_3 ? Why? (1 mark)