King Saud University / College of Sciences / Department of Mathematics Semester 441 / MATH-244 / Quiz-2

Max. Marks: 10 Max. Time: 35 Min.

Name:	ID:	Signature:

Note: Choose the correct answers to all the 6 questions. Calculators are not allowed!

Question 1 [Marks: 1.5]: Let P_2 denote the vector space of polynomials with degree ≤ 2 . Given the ordered basis $S = \{2 + 3t, 1 - t + t^2, 1 + t + 3t^2\}$ of P_2 . If $p \in P_2$ with coordinate vector $[p]_{s} = [3]$ $2 - 2]^T$, then the polynomial p is equal to:

(a) $p = 6 + 5t - 4t^2$ (b) $p = 4 - 5t - 4t^2$ (c) $p = 3 + 2t - 4t^2$ (d) $p = 3 + 3t - 4t^2$

Question 2 [Marks: 2]: Let $E = \{u_1, u_2, u_3\}$ and $F = \{(1,0,0,1), (-1,1,0,1), (0,0,1,1)\}$ be two

transition matrix from E to F, then the vector u_3 is equal to:

(a) (4, 1, 1, -1)(c) (-1, 2, 1, 4) (d) (-1, 1, 1, 4). (b) (4, 1, 2, −1)

Question 3 [Marks: 1.5]: For the matrix $A = \begin{bmatrix} 1 - 2 & 2 & 3 & -4 \\ 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & -2 & 3 \end{bmatrix}$, which of the following statements is true?

(a) $nullity(\mathbf{A}) = 3$ (b) $nullity(\mathbf{A}) = 2$ (c) $rank(\mathbf{A}) = 0$ (d) rank(A) = 3.

Question 4 [Marks: 1.5]: If u and v are linearly independent vectors in a real inner product space (V, <, >) with ||u|| = 3 and ||v|| = 2, then which of the following statements is true?

- (a) The number $\langle u, v \rangle$ is less than 5.
- (b) The number $| \langle u, v \rangle |$ less than 6.
- (c) The number | < u, v > | is equal to 6.
- (d) The number $| \langle u, v \rangle |$ is equal to 5.

Question 5 [Marks: 2]: If $G = \{u, v, w\}$ is an orthogonal set of non-zero vectors in the Euclidean space \mathbb{R}^3 , then which of the following statements is true?

- (a) span(**G**) is a proper subset of \mathbb{R}^3 .
- (b) **G** is an orthogonal basis for \mathbb{R}^3 .
- (c) The set **G** is normal in the space \mathbb{R}^3 .
- (d) The set **G** is linearly dependent in the space \mathbb{R}^3 .

Ouestion 6 [Marks: 1.5]: If the Gram-Schmidt orthogonalization algorithm is applied on the set $\{(0, 1, 1, 0), (1, 0, 0, 1)\}$ of vectors in the Euclidean space \mathbb{R}^4 , then which of the following orthogonal sets is obtained?

(a) $\{(1,0,0,0), (0,1,0,0)\}$		(b) $\{(0, 1, 1, 0), (1, 0, 0, 0)\}$
(c) $\{(1,0,0,1), (0,1,1,0)\}$		(d) $\{(1,0,0,1), (0,0,1,0)\}.$
	======	