King Saud University / College of Sciences / Department of Mathematics Semester 441 / MATH-244 / Quiz-2

Max. Marks: 10

Max. Time: $\mathbf{3 5}$ Min.
Name: \qquad ID: \qquad Signature: \qquad
Note: Choose the correct answers to all the 6 questions. Calculators are not allowed!
Question 1 [Marks: 1.5]: Let P_{2} denote the vector space of polynomials with degree ≤ 2. Given the ordered basis $\mathbf{S}=\left\{2+3 t, 1-t+t^{2}, 1+t+3 t^{2}\right\}$ of P_{2}. If $p \in P_{2}$ with coordinate vector $[p]_{\mathbf{S}}=\left[\begin{array}{lll}3 & 2 & -2\end{array}\right]^{T}$, then the polynomial p is equal to:
(a) $p=6+5 t-4 t^{2}$
(b) $p=4-5 t-4 t^{2}$
(c) $p=3+2 t-4 t^{2}$
(d) $p=3+3 t-4 t^{2}$

Question 2 [Marks: 2]: Let $\boldsymbol{E}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\boldsymbol{F}=\{(1,0,0,1),(-1,1,0,1),(0,0,1,1)\}$ be two ordered bases for a vector subspace for the Euclidean space \mathbb{R}^{4}. If ${ }_{F} \boldsymbol{P}_{\boldsymbol{E}}=\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ is the transition matrix from \boldsymbol{E} to \boldsymbol{F}, then the vector u_{3} is equal to:
(a) $(4,1,1,-1)$
(b) $(4,1,2,-1)$
(c) $(-1,2,1,4)$
(d) $(-1,1,1,4)$.

Question 3 [Marks: 1.5]: For the matrix $\boldsymbol{A}=\left[\begin{array}{rrrrr}1 & -2 & 2 & 3 & -4 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & -2 & 3\end{array}\right]$, which of the following statements is true?
(a) $\operatorname{nullity}(\boldsymbol{A})=3$
(b) $\operatorname{nullity}(\boldsymbol{A})=2$
(c) $\operatorname{rank}(\boldsymbol{A})=0$
(d) $\operatorname{rank}(\boldsymbol{A})=3$.

Question 4 [Marks: 1.5]: If u and v are linearly independent vectors in a real inner product space $(\boldsymbol{V},<,>)$ with $\|u\|=3$ and $\|v\|=2$, then which of the following statements is true?
(a) The number $\langle u, v\rangle$ is less than 5 .
(b) The number $|<u, v\rangle \mid$ less than 6 .
(c) The number $|\langle u, v\rangle|$ is equal to 6 .
(d) The number $|\langle u, v\rangle|$ is equal to 5 .

Question 5 [Marks: 2]: If $\boldsymbol{G}=\{u, v, w\}$ is an orthogonal set of non-zero vectors in the Euclidean space \mathbb{R}^{3}, then which of the following statements is true?
(a) $\operatorname{span}(\boldsymbol{G})$ is a proper subset of \mathbb{R}^{3}.
(b) \boldsymbol{G} is an orthogonal basis for \mathbb{R}^{3}.
(c) The set \boldsymbol{G} is normal in the space \mathbb{R}^{3}.
(d) The set \boldsymbol{G} is linearly dependent in the space \mathbb{R}^{3}.

Question 6 [Marks: 1.5]: If the Gram-Schmidt orthogonalization algorithm is applied on the set $\{(0,1,1,0),(1,0,0,1)\}$ of vectors in the Euclidean space \mathbb{R}^{4}, then which of the following orthogonal sets is obtained?
(a) $\{(1,0,0,0),(0,1,0,0)\}$
(b) $\{(0,1,1,0),(1,0,0,0)\}$
(c) $\{(1,0,0,1),(0,1,1,0)\}$
(d) $\{(1,0,0,1),(0,0,1,0)\}$.

===...===

