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4.1 The Position, Velocity, and
Acceleration Vectors

Position and Displacement

The position of an object s
described by its position

vector, r. The displacement of the
The displacement of the Y particle is the vector Ar,
objectis defined as the \®

. . "y m \ 4
change in its position. NS L

\\\ Path of
particle

A?z_)f—'l_")i




4.1 The Position, Velocity, and
Acceleration Vectors

Average Velocity

The average velocity is the ratio of the displacement to the time
interval for the displacement.

Ar

Eavg = At

The direction of the average velocity is the direction of the
displacement vector.

The average velocity between points is independent of the path
taken.

The average velocity between points is independent of the path taken .




4.1 The Position, Velocity, and
Acceleration Vectors

Instantaneous Velocity

The instantaneous velocity is the
limit of the average velocity as At
approaches zero.

A7 _dF

VT AS0Ar  dt

As the time interval becomes
smaller, the direction of the
displacement approaches that of
the line tangent to the curve.

* The speed is a scalar quantity.

(0]

As the end point approaches @), At
approaches zero and the direction
of A¥ approaches that of the green
line tangent to the curve at @).

Direction of Vv at @

The direction of the
instantaneous
velocity vector at any
point in a particle’s
path is along a line
tangent to the path at
that point and in the
direction of motion.
The magnitude of the
instantaneous
velocity vector is the
speed.

As the end point of the path is
moved from @) to ®'to B, the
respective displacements and
corresponding time intervals
become smaller and smaller.




4.1 The Position, Velocity, and
Acceleration Vectors

=
2

Average Acceleration

The average acceleration of a
particle as it moves is defined as
the change in the instantaneous
velocity vector divided by the
time interval during which that
change occurs.

O

As a particle moves, the direction
of the change in velocity is found
by vector subtraction.

AV = B — B,
The average acceleration is a

vector quantity directed along
Av. °

AV Uy —
At tp—t




4.1 The Position, Velocity, and
Acceleration Vectors

Instantaneous Acceleration

The instantaneous acceleration (acceleration as a function of time)
is the limiting value of the ratio as At approaches zero.

AV _dv
a=lim —=—
At-0 At dt
The instantaneous equals the derivative of the velocity vector with

respect to time.

Note: the magnitude of the velocity vector (the speed) may change
with time as in straight-line (one-dimensional) motion.

* the direction of the velocity vector may change with time even if
its magnitude (speed) remains constant, as in curved-path (2-d)
motion.




4.1 The Position, Velocity, and
Acceleration Vectors

Producing An Acceleration

Various changes in a particle’s motion may produce an
acceleration.

The magnitude of the velocity vector may change.

The direction of the velocity vector may change.
Even if the magnitude remains constant

Both may change simultaneously



4.2 Two-D Motion with Cons.
Acceleration

Kinematic Equations for Two-Dimensional Motion

The Let us consider 2-D motion during which the acceleration
remains constant in both magnitude and direction.

The position vector for a particle moving in the yy plane can be
written:

r=xi+yj
* The velocity vector can be found from the position vector.
,_dr
V= di = Uyl + vy

Since acceleration is constant, we can also find an expression for
the velocity as a function of time:

1_7)f :§i+at

Because a is assumed constant, its components a, and a,, also are also constants.




4.2 Two-D Motion with Cons.
Acceleration

Kinematic Equations for Two-Dimensional Motion

For constant acceleration

a, = Consand At =t
_x Xl 2 X

For 2-D motion we will have 2 sets of Equations; one for each
direction.

 For x-direction; we have:
Vyr = VUyi +a,t
1

Xp=X;+ vyt + Eaxt2

Usf? = Uy + 20, (X — x;)
For y-direction; we have:
Vyr = Vy; + ayt
1
_ 2
Y=Y tvy,t+ ant
nyz = vyiz + Zay(yf — i)




4.2 Two-D Motion with Cons.
Acceleration

Kinematic Equations for Two-Dimensional Motion

vectors of velocity v and position r are.
U = vl + ]
Uxf = Uxj T Ayt
Vyfr = Uy + Ayt
U_f = vxfE + vyfj
Vp = (Uyi + axt) i + (vy; + ayt)j
W = (vxii + vyij) + (ayl+ ayij)
Because a is assumed constant, its components a, and a,, also are also constants.
A=A, = a

vF =v; +at




4.2 Two-D Motion with Cons.
Acceleration

Kinematic Equations for Two-Dimensional Motion

vectors of velocity v and position r are.

vF =v; +at

1)\~ 1)\~
Tf: vxit‘l‘zaxt 1+ vyit‘l‘zayt i

~ ~ 1 ~ ~
= (vl + vy J)t+ > (ayi+a,j)t?

1 2
=v£t+zat




Summary

Displacement of a particle in 2-D is:

A? —_ ?f — ?i
The average velocity is defined as:
. A7
vavg — E
Instantaneous velocity:
L AF_d7
v = lim =
At—-0 At  dt

The average acceleration is defined as:
AT By -

Aore = =
WITAt tr— ¢y
The instantaneous acceleration:
AV dv
a = lim =

A_—n At A+




Summary

Constant Acceleration motion of a particle in 2-D:

U= vl + vyj
Ur = (Uyi + axt) i + (Vy; + ayt)]
Vr = (vxii + vyij) + (ayl + ayij)
vF=v;t+at

14




Example 4.1 Motion in a Plane

A particle starts from the origin at { = 0 with an initial veloc-
ity having an x component of 20 m/s and a y component
of —15 m/s. The particle moves in the xy plane with an x
component of acceleration only, given by a, = 4.0 m,/ 52,

(A) Determine the components of the velocity vector at any

time and the total tfclc-citj.' vector at any ume.
¥

Equations 4.8a give

(1) U = Uy T Ayl = (20 + 4.0f) m/s
(2) Uy = Uy T ayd = —15m/s + 0= —15m/s
Therefore

vi= vl + uj = [(20 + 4.00i — 15 m/s



(B) Calculate the velocity and speed of the particle at

f= 5.0 s.

vi=[(20 + 40(5.0))i — 15)]m/s = (40i — 15j) m/s

_ af By _ - —lﬁmfsj
(3) # = tan ("—"x_,l’j tan (-:H:I'm,f's

—21°

v = |'i-:|r| = "-,II:r.-'J,;IrE + :r.-'_.ﬁllr2 = "-.,'IL’.-*I-IE]}E + (—15)" m/s

= 43 m/s



(C) Determine the x and y coordinates of the particle at any
time {and the position vector at this time.

xi=yi=0at =0,

Xp= gt + %EIEE = (20¢+ 2.0¢%) m

V= vyl = (— 15&) m

Therefore, the position vector at any time { is

(4)  r=xd +y) = [(206+209i — 15t ]m

= |r)r| = "'-.II{IEI-EI'}E + (—75)°m = 170m



4.3 Projectile Motion

Projectile Motion

An object may move In both the x and y
directions simultaneously. The form of two-
dimensional motion we will deal with is called
projectile motion.




4.3 Projectile Motion

Projectile Motion Diagram
Anyone Who haS Observed a The y component of

velocity is zero at the (" The x component of

baseball in motion has observed =~ | Pt hern 1 vlociy remains
projectile motion. The ball moves N L‘v‘“; /:i:? * I
in a curved path, and its motion is ], 7 © 0 wA direction.
simple to analyze if we make two Al o
assumptions: (1) the free-fall Ol |
acceleration g is constant over the I\

range of motion and is directed . L
. The parabolic path of a projectile that
downward, and (2) the effect of air leaves the origin with a velocity vi. The x

resistance is negligible. component of v remains constant in
We find that the path of a time. The y component of velocity is

i i : - h k of th h.
projectile, which we call its zero at the peak of the pat
trajectory, is always a parabola .



4.3 Projectile Motion

Acceleration at the Highest Point

The vertical velocity is zero at the top. The

acceleration is not zero anywhere along the
trajectory.

The horizontal and vertical components of a
projectile’s motion are completely independent of
each other and can be handled separately, with
time t as the common variable for both
components.




Assumptions of projectile motion :

1. The velocity in the x-direction is always constant,
therefore the acceleration in x-direction is always
zero over the range of motion,

2. The velocity in the y -direction varies throughout

the projectile motion. The acceleration in the y-

direction is the free-fall acceleration (-g) which is
constant throughout the whole motion and is
directed downward. .

3. The time t as the common variable for the motion
In the x & y-directions

4. The effect of air resistance is negligible.




4.3 Projectile Motion

Analyzing Projectile Motion

Consider the motion as the superposition of the motions in the x-

and y-directions. The actual position at any time is given by:

- - - 1—) 2
rfzri+vit+§at

The initial velocity can be expressed in terms of its components.
Vyi = V; COs b, and vy; = v; sin b,
1

X = Uyt and yr = vyt + antz

The x-direction has constant velocity.
a, =0
The y-direction is free fall.

° ay:_g




4.3 Projectile Motion

Analyzing Projectile Motion
We will be having 2 sets of equations: 1 for x and 1 for y directions:

Xf = Dyl
t = Y
v; cos 0,

1

yf: int + Eiyt
' Xf Xf

— v:sin 0. __ 2
Y= st cos 0, 2 (vi cos Gi)
g
=t 0. — 2

Y=t Ay 2v;2% cos 0,2 *f

Or
y = ax — bx?




4.3 Projectile Motion

Projectile Motion Vectors
1 y
Pe =7 + Uit + —a t*

f l l 2

* The final position is the
vector sum of the initial
position, the position

O
resulting from the initial

velocity and the position
resulting from the
acceleration.




4.3 Projectile Motion

Time of Flight of a Projectile
We will consider the maximum height reached by a projectile:

T o o _
1%t time of flight: at maxi. height v, =0 ,

Vyr= Vyit ayt =0 B ®/U}‘®_O
0 =v;sin0; — gtmax e /’/-T‘\\
_ v;sin@; // ) \\
tmax = g A4 0, l \\\
2v;sin@; o “”"
Lrlight = - R ~

g
Time of flight is twice the time required to reach to the maximum
point. We call this Time-of —flight and is true only if the projecile
final destination is on the same level as its starting point.




4.3 Projectile Motion

Range and Maximum Height of a Projectile
When analyzing projectile motion, two

characteristics are of special interes.t The range,

R, is the horizontal distance of the projectile.

The maximum height the projectile reaches is h.

The maximum height of the projectile can be ,
found in terms of the initial velocity vector:
v?; sin?0;
29
The range of a projectile can be expressed in
terms of the initial velocity vector:

v2; sin220;

R =
g

This eauation is valid onlv for svmmetric

26




4.3 Projectile Motion

More About the Range of a Projectile

y (m)
150
v: = b0m/s
75% =~ ’ f Complementary
/ N . .
7 \ values of the initial
100 / \ W

angle 60 result in the
same value of R.

\ \,/\
$. N
\\c‘p | N




4.3 Projectile Motion

More About the Range of a Projectile

Range of a Projectile, final The maximum range
occurs at 0, = 45°. Complementary angles will
produce the same range.

The maximum height will be different for the two
angles.

The times of the flight will be different for the two
angles.




4.3 Projectile Motion

Projectile Motion - Problem Solving Hints
Conceptualize

Establish the mental representation of the projectile
moving along its trajectory. Categorize

Confirm air resistance is neglected.

Select a coordinate system with x in the horizontal
and y in the vertical direction. Analyze

[f the initial velocity is given, resolve it into x and y
components.

Treat the horizontal and vertical motions
independently.




4.3 Projectile Motion

Projectile Motion - Problem Solving Hints, cont.
Analysis, cont.

Analyze the horizontal motion with the particle-under-
constant-velocity model.

Analyze the vertical motion with the particle-under-
constant-acceleration model.

Remember that both directions share the same time.
Finalize

Check to see if your answers are consistent with the
mental and pictorial representations.

Check to see if your results are realistic.



Example 4.2 the long jump page 87

A long jumper leaves the ground at an angle of 20” above the
horizontal and at a speed of 11 m/s.

(a) How far does he jump in the horizontal direction?

(b) What is the maximum height reached?

Vv = 11 In_f‘ﬂ
9, = 20°

(a) How far does he jump in the horizontal direction?

vi? sin 28; _ (11)%sin 40

Horizontal range : R = . — =7.94m
(b) What is the maximum height reached? ¥
2 oind . 2 g 2
Maximum height: h = 2E30 % — QD G200 _ g 799 1y

2g (2)(9.8)



Example 4.5 The End of the Ski Jump

A ski jumper leaves the ski track moving in the horizontal direction with a
speed of 25 m/s as shown in Figure 4.14. The landing incline below him
falls off with a slope of 35°. Where does he land on the incline?

vy; =0m/s & v, =25m/s @; = 35°

0 m/s

Ax = vyt e (1)

Uy =Vyi — 8L e, (2)
1

Ay = vyt —-8 R ()

Uyt = vy® — 28(4y) ..... (4) L ,




d cos
X;=vyt=dcosg [T > t= L.
p.‘l’[

] 1 dcosg 2 2
dsing =29 (—, 07 D dsing =g T og?)
X

g - 2 vy*sing  2(25)° (sin35) 109
3 ~ g(cos@)® (9.8)(cos35)% m

x; =dcose = (109)(cos35) = 89.3 m

yr=—-3gt*=—dsing = —(109) (sin35") = —62.5m



4.3 Projectile Motion

Non-Symmetric Projectile Motion Y 4= 20.0m/s
Follow the general rules for projectile < =
motion.

Break the y-direction into parts.

up and down or

symmetrical back to initial height
and then the rest of the height Apply
the problem solving process to
determine and solve the necessary
equations. May be non-symmetric in
other ways

34



That's Quite an Arm!

A stone is thrown from the top of a building upward at an angle of 30.0° to the horizontal with an initial speed of
20.0 m/s as shown in Figure 4.13. The height from which the stone is thrown is 45.0 m above the ground.

(A) How Inng does it take the stone to reach the grnum:l?

x=5%=0,%=-450m, g = —g and v; = 20.0 m/s

v, = weosf; = (20,0 m/s) cos 30.0° = 173 m/s
v = vsinf; = (20.0 m/s) sin 30.0° = 10.0 m/s

JI_J'-= J:IJ' + 1"}'5! - %ﬂ'fﬂ
~450m = 0 + (10.0 m/s)t + 1(~9.80 m/s?)¢?

~45.0m = 0 + (10.0 m/s)t + 2(—9.80 m/s?)¢?
t=4.225



(B) What is the speed of the stone just before it strikes the ground?

U= Uy — ol

U= 10.0m/s + (—=9.80 m/s*)(4.22s) = —=31.3 m/s

v=Vuv/+o,2=V(173m/s)? + (-31.3m/s)’ = 358m/s



4.4 Uniform Circular Motion

Uniform circular motion occurs when an object
moves in a circular path with a constant speed. The
associated analysis model is a particle in uniform
circular motion. An acceleration exists since the
direction of the motion is changing.

This change in velocity is related to an
acceleration. The constant-magnitude velocity
vector is always tangent to the path of the object.




4.4 Uniform Circular Motion

Changing Velocity in Uniform Circular Motion

The change in the
velocity vector is due
to the change in
direction.

e The direction of the
change in velocity is
toward the center of
the circle.

* The vector diagram
shows vy = v; + Av;




4.4 Uniform Circular Motion

Centripetal Acceleration

The acceleration is always perpendicular to the path of the
motion. The acceleration always points toward the center
of the circle of motion. This acceleration is called the
centripetal acceleration.

The magnitude of the centripetal acceleration vector is
given by

V2
A, = 7
The direction of the centripetal acceleration vector is
always changing, to stay directed toward the center of the

circle of motion.




4.4 Uniform Circular Motion

Period

The period, T, is the time required for one
complete revolution. The speed of the particle
would be the circumference of the circle of motion
divided by the period. Therefore, the period is
defined as

T_an
Y

anQUIar Speed () measured in radians/s or s~

I
=

(o) =




4.5 Tangential and Radial Acceleration

Tangential Acceleration

The magnitude of the velocity could also be changing. In
this case, there would be a tangential acceleration. The
motion would be under the influence of both tangential
and centripetal accelerations.

Note the changing acceleration vectors

Path of
P T>_  particle g,
& ™

—_—

—
—

/
@ . 7 1 \




AUENSRNGGEE  Particle in Uniform Circular Motion

Imagine a moving object that can be modeled as a particle. If it moves
in a circular path of radius rat a constant speed v, the magnitude of its
centripetal acceleration is

]

a=— (419
r ’
/
and the period of the particle’s motion is given by lrJl
2
r=" (415)
U Y
The angular speed of the particle is e
2m

(4.16)

i =

T

Examples:

* arock twirled in a circle on a string
of constant length

* aplanet traveling around a per-
fectly circular orbit (Chapter 13)

* a charged particle moving in a uni-
form magnetic field (Chapter 29)

* an electron in orbit around a
nucleus in the Bohr model of the

hydrogen atom (Chapter 42)



Example 4.6 The Centripetal Acceleration of the Earth M

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun:

= 593 X 10  m/s

1

 4m%(1.496 x 10" m}( 1 yr )
‘ (1yr)* 3.156 X 10" s

(B) What is the angular speed of the Earth in its orbit around the Sun-

B ﬂﬂ'( Lyr

= )= 1.99 x 1077s™!
3.156 % 10's

B 1yr



4.5 Tangential and Radial Acceleration

Total Acceleration

The tangential acceleration causes the change in
the speed of the particle. The radial acceleration
comes from a change in the direction of the velocity
vector.




4.5 Tangential and Radial Acceleration

Total Acceleration, equations

The tangential acceleration:

dv
at:'%

The radial acceleration:

The total acceleration:
* Magnitude

a = Jazr + a?,




Over the Rise

A car leaves a stop sign and exhibits a constant acceleration of a, = 0.300 m/s”
0.300 m,/s* parallel to the roadway. The car passes over a rise
in the roadway such that the top of the rise is shaped like an
arc of a circle of radius 500 m. At the moment the car is at the
top of the rise, its velocity vector is horizontal and has a mag-
nitude of 6.00 m/s. What are the magnitude and direction of
the total acceleration vector for the car at this instant? la]

e 6.00 -
a,=——=—( m/s) 00720 m/s
r 500 m

al+ a’=V(-0.0720m/s2)? + (0.300 m/s?)?
0.309 m/s*

= —13.5°

L, _1( —0.072 0 mfsi)
an -
0.300 m /s



