
Chapter 9

Linear Momentum and Collisions



Linear Momentum
n The linear momentum of a particle or 

an object that can be modeled as a 
particle of mass m moving with a 
velocity v is defined to be the product 
of the mass and velocity:
n p = m v

n The terms momentum and linear momentum 
will be used interchangeably in the text



Linear Momentum, cont
n Linear momentum is a vector quantity

n Its direction is the same as the direction of v
n The dimensions of momentum are ML/T
n The SI units of momentum are kg · m / s
n Momentum can be expressed in component 

form:
n px = m vx py = m vy pz = m vz



Newton and Momentum
n Newton called the product mv the 

quantity of motion of the particle
n Newton’s Second Law can be used to 

relate the momentum of a particle to 
the resultant force acting on it

with constant mass
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Conservation of Linear 
Momentum
n Whenever two or more particles in an 

isolated system interact, the total 
momentum of the system remains 
constant
n The momentum of the system is 

conserved, not necessarily the momentum 
of an individual particle

n This also tells us that the total momentum 
of an isolated system equals its initial 
momentum



Conservation of Momentum, 2
n Conservation of momentum can be expressed 

mathematically in various ways
n ptotal = p1 + p2 =  constant
n p1i + p2i= p1f + p2f

n In component form, the total momenta in 
each direction are independently conserved
n pix = pfx piy = pfy piz = pfz

n Conservation of momentum can be applied to 
systems with any number of particles



Conservation of Momentum, 
Kaon Example
n The kaon decays into a 

positive p and a 
negative p particle

n Total momentum before 
decay is zero

n Therefore, the total 
momentum after the 
decay must equal zero
n p+ + p- = 0 or p+ = -p-



Impulse and Momentum
n From Newton’s Second Law, F = dp/dt
n Solving for dp gives dp = Fdt
n Integrating to find the change in 

momentum over some time interval

n The integral is called the impulse, I, of 
the force F acting on an object over Dt
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Impulse, Final
n The impulse can 

also be found by 
using the time 
averaged force

n I =   Dt
n This would give the 

same impulse as the 
time-varying force 
does

F



Impulse Approximation
n In many cases, one force acting on a particle 

will be much greater than any other force 
acting on the particle

n When using the Impulse Approximation, we 
will assume this is true

n The force will be called the impulse force
n pf and pi represent the momenta immediately 

before and after the collision
n The particle is assumed to move very little 

during the collision



Impulse-Momentum: Crash 
Test Example
n The momenta 

before and after the 
collision between 
the car and the wall 
can be determined 
(p = m v)

n Find the impulse:  
n I = Dp = pf – pi
n F = Dp / Dt



Collisions – Characteristics 
n We use the term collision to represent an 

event during which two particles come close 
to each other and interact by means of forces

n The time interval during which the velocity 
changes from its initial to final values is 
assumed to be short

n The interaction force is assumed to be much 
greater than any external forces present
n This means the impulse approximation can be 

used



Collisions – Example 1 
n Collisions may be 

the result of direct 
contact

n The impulsive forces 
may vary in time in 
complicated ways
n This force is internal 

to the system
n Momentum is 

conserved



Types of Collisions
n In an elastic collision, momentum and 

kinetic energy are conserved
n Perfectly elastic collisions occur on a microscopic 

level
n In macroscopic collisions, only approximately 

elastic collisions actually occur
n In an inelastic collision, kinetic energy is not 

conserved although momentum is still 
conserved
n If the objects stick together after the collision, it is 

a perfectly inelastic collision



Collisions, cont
n In an inelastic collision, some kinetic 

energy is lost, but the objects do not 
stick together

n Elastic and perfectly inelastic collisions 
are limiting cases, most actual collisions 
fall in between these two types 

n Momentum is conserved in all collisions



Perfectly Inelastic Collisions
n Since the objects 

stick together, they 
share the same 
velocity after the 
collision

n m1v1i + m2v2i =
(m1 + m2) vf



Elastic Collisions
n Both momentum 

and kinetic energy 
are conserved
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Elastic Collisions, cont
n Typically, there are two unknowns to solve for and 

so you need two equations
n The kinetic energy equation can be difficult to use
n With some algebraic manipulation, a different 

equation can be used
v1i – v2i = v1f + v2f

n This equation, along with conservation of 
momentum, can be used to solve for the two 
unknowns
n It can only be used with a one-dimensional, elastic 

collision between two objects



Collision Example – Ballistic 
Pendulum
n Perfectly inelastic 

collision – the bullet is 
embedded in the block 
of wood

n Momentum equation 
will have two unknowns

n Use conservation of 
energy from the 
pendulum to find the 
velocity just after the 
collision

n Then you can find the 
speed of the bullet



Two-Dimensional Collisions
n The momentum is conserved in all directions
n Use subscripts for

n identifying the object
n indicating initial or final values
n the velocity components

n If the collision is elastic, use conservation of 
kinetic energy as a second equation
n Remember, the simpler equation can only be used 

for one-dimensional situations



Two-Dimensional Collision, 
example
n Particle 1 is moving 

at velocity v1i and 
particle 2 is at rest

n In the x-direction, 
the initial 
momentum is m1v1i

n In the y-direction, 
the initial 
momentum is 0



Two-Dimensional Collision, 
example cont
n After the collision, 

the momentum in 
the x-direction is 
m1v1f cos q + m2v2f
cos f

n After the collision, 
the momentum in 
the y-direction is 
m1v1f sin q + m2v2f
sin f



Problem-Solving Strategies –
Two-Dimensional Collisions
n Set up a coordinate system and define 

your velocities with respect to that 
system
n It is usually convenient to have the x-axis 

coincide with one of the initial velocities
n In your sketch of the coordinate 

system, draw and label all velocity 
vectors and include all the given 
information



Problem-Solving Strategies –
Two-Dimensional Collisions, 2
n Write expressions for the x- and y-

components of the momentum of each object 
before and after the collision
n Remember to include the appropriate signs for the 

components of the velocity vectors
n Write expressions for the total momentum of 

the system in the x-direction before and after 
the collision and equate the two.  Repeat for 
the total momentum in the y-direction.



Problem-Solving Strategies –
Two-Dimensional Collisions, 3
n If the collision is inelastic, kinetic 

energy of the system is not conserved, 
and additional information is probably 
needed

n If the collision is perfectly inelastic, the 
final velocities of the two objects are 
equal.  Solve the momentum equations 
for the unknowns.



Two-Dimensional Collision 
Example
n Before the collision, 

the car has the total 
momentum in the x-
direction and the 
van has the total 
momentum in the y-
direction

n After the collision, 
both have x- and y-
components


