3 Chapter 9

Linear Momentum and Collisions




i Linear Momentum

= The linear momentum of a particle or
an object that can be modeled as a
particle of mass /m moving with a
velocity v is defined to be the product
of the mass and velocity:
s P=mvV

=« The terms momentum and linear momentum
will be used interchangeably in the text




i Linear Momentum, cont

= Linear momentum is a vector quantity
= Its direction is the same as the direction of v

= The dimensions of momentum are ML/T
= The SI units of momentumare kg *m/s

= Momentum can be expressed in component
form:
Py =M Vy Py=my, Pr=mYVy,



i Newton and Momentum

= Newton called the product v the
guantity of motion of the particle

= Newton’s Second Law can be used to
relate the momentum of a particle to
the resultant force acting on it
dv _d(mv) _dp

>F=ma=m—=
dt dt dt

with constant mass




Conservation of Linear
i Momentum

= Whenever two or more particles in an
isolated system interact, the total
momentum of the system remains
constant
= The momentum of the systemis

conserved, not necessarily the momentum
of an individual particle

= T his also tells us that the total momentum
of an isolated system equals its initial
momentum




i Conservation of Momentum, 2

= Conservation of momentum can be expressed
mathematically in various ways
* Prota = P1 + P, = constant
= Py + P2i= Pir + Por

= In component form, the total momenta in
each direction are independently conserved

= Dix= Px p/'y = pfy Pz = Pr
= Conservation of momentum can be applied to
systems with any number of particles




Conservation of Momentum,
i Kaon Example

= The kaon decays into a
positive 7 and a

negative r particle .
= Total momentum before 7 (atresy
decay is zero
= Therefore, the total P |
momentum after the ~— -
decay must equal zero 4 4
After decay

= pt+p =0o0rpt=-p




i Impulse and Momentum

= From Newton’s Second Law, F = ap/at
= Solving for ap gives ap = Fdat

= Integrating to find the change in
momentum over some time interval

Ap=p,—p, :J‘:det:I

= The integral is called the /impulse, I, of
the force F acting on an object over At



i Impulse, Final

= The impulse can
also be found by
using the time
averaged force

s I =FAt

= This would give the
same impulse as the
time-varying force
does

|
I

Area = FA(
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(b)



i Impulse Approximation

= In many cases, one force acting on a particle
will be much greater than any other force
acting on the particle

= When using the Impulse Approximation, we
will assume this is true

= The force will be called the impulse force

= Prand p,represent the momenta immediately
before and after the collision

= The particle is assumed to move very little
during the collision



Impulse-Momentum: Crash
i Test Example

= The momenta
before and after the
collision between

iy
R
UL
[ HEN

Before

the car and the wall
can be determined

(p = mv)
= Find the impulse:

I
tl

H

After

= I =Ap =p:—p :
IF=Ap/At (a)



i Collisions — Characteristics

= We use the term collision to represent an
event during which two particles come close
to each other and interact by means of forces

= The time interval during which the velocity
changes from its initial to final values is
assumed to be short

= The interaction force is assumed to be much
greater than any external forces present

= This means the impulse approximation can be
used



i Collisions — Example 1

= Collisions may be
the result of direct
contact

= The impulsive forces Q(
may vary in timein * \

complicated ways

= This force is internal
to the system S

= Momentum Is
conserved



i Types of Collisions

= In an elastic collision, momentum and
kinetic energy are conserved

= Perfectly elastic collisions occur on a microscopic
level

= In macroscopic collisions, only approximately
elastic collisions actually occur
= In an /nelastic collision, kinetic energy is not
conserved although momentum is still
conserved

= If the objects stick together after the collision, it is
a perfectly inelastic collision



i Collisions, cont

= In an inelastic collision, some kinetic
energy is lost, but the objects do not
stick together

= Elastic and perfectly inelastic collisions
are limiting cases, most actual collisions
fall in between these two types

= Momentum is conserved in all collisions



i Perfectly Inelastic Collisions

= Since the Ob_]eC g Betore collision

stick together, they @ @

share the same

velocity after the
collision

= MV + MV =

(s + ) Q-

m1+m2

(a)

After collision

(b)
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Elastic Collisions

= Both momentum Before collision
and kinetic energy - s
are conserved @_’ ‘—@
myv,, +m,v,, = W

myv, . +m,V ..
o1y 2721 After collision

_ / 2f
SV TV, = 4—@
2 2
15 1 (b)
- mlvlf + - m2V2f 2P Topince o
2 2



i Elastic Collisions, cont

= Typically, there are two unknowns to solve for and
SO you need two equations

= The kinetic energy equation can be difficult to use

= With some algebraic manipulation, a different
equation can be used
i—Vai= Vet Vor

= This equation, along with conservation of
momentum, can be used to solve for the two
unknowns

« It can only be used with a one-dimensional, elastic
collision between two objects




Collision Example — Ballistic

i Pendulum

= Perfectly inelastic
collision — the bullet is

embedded in the block
of wood

= Momentum equation
will have two unknowns

= Use conservation of

energy from the L

pendulum to find the
velocity just after the i
collision

= Then you can find the
speed of the bullet



i Two-Dimensional Collisions

= The momentum is conserved in all directions

= Use subscripts for
= identifying the object
=« indicating initial or final values
» the velocity components
= If the collision is elastic, use conservation of

kinetic energy as a second equation

« Remember, the simpler equation can only be used
for one-dimensional situations



Two-Dimensional Collision,

i example

= Particle 1 is moving
at velocity v,;and

particle 2 is at rest Ovl_» _______

= In the x-direction, Q
the initial
momentum is my v;;

= In the )~direction, (a) Betore the collision
the initial T

momentum is 0



Two-Dimensional Collision,
i example cont

= After the collision,

the momentum in 8 S0 "‘lvu
the x-direction is ! [%
My V4 rCOS 0+ M V5 r el v ,cos 0
cos ¢ e

= After the collision, V"
the momentum in \u\%}%cow
the y~direction is i sin 0V N
My Vi SN O+ Mh Vs M e

Sin @ ___(b) Atfter the collision



Problem-Solving Strategies —
i Two-Dimensional Collisions

= Set up a coordinate system and define
your velocities with respect to that
system

» It is usually convenient to have the x-axis
coincide with one of the initial velocities

= In your sketch of the coordinate
system, draw and label all velocity
vectors and include all the given
information



Problem-Solving Strategies —
i Two-Dimensional Collisions, 2

= Write expressions for the x- and )~
components of the momentum of each object
before and after the collision
= Remember to include the appropriate signs for the
components of the velocity vectors
= Write expressions for the total momentum of
the system in the x-direction before and after
the collision and equate the two. Repeat for
the total momentum in the y~direction.




Problem-Solving Strategies —
i Two-Dimensional Collisions, 3

= If the collision is inelastic, kinetic
energy of the system is not conserved,
and additional information is probably

needed

= If the collision is perfectly inelastic, the

final velocities of the two objec

(S dre

equal. Solve the momentum equations

for the unknowns.



Two-Dimensional Collision

i Example

= Before the collision,
the car has the total
momentum in the x-
direction and the
van has the total
momentum in the p~
direction

= After the collision,
both have x- and )~
components
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