Chapter 5

The Laws of Motion

Force

- Forces are what cause any change in the velocity of an object
- A force is that which causes an acceleration
- The net force is the vector sum of all the forces acting on an object
- Also called total force, resultant force, or unbalanced force

Zero Net Force

- When the net force is equal to zero:
- The acceleration is equal to zero
- The velocity is constant
- Equilibrium occurs when the net force is equal to zero
- The object, if at rest, will remain at rest
- If the object is moving, it will continue to move at a constant velocity

Classes of Forces

- Contact forces involve physical contact between two objects
- Field forces act through empty space
- No physical contact is required

Fundamental Forces

- Gravitational force
- Between two objects
- Electromagnetic forces
- Between two charges
- Nuclear force
- Between subatomic particles
- Weak forces
- Arise in certain radioactive decay processes

More About Forces

- A spring can be used to calibrate the magnitude of a force
- Forces are vectors, so you must use the rules for vector addition to find the
 net force acting on an object

Newton's First Law

- If an object does not interact with other objects, it is possible to identify a reference frame in which the object has zero acceleration
- This is also called the law of inertia
- It defines a special set of reference frames called inertial frames,
- We call this an inertial frame of reference

Inertial Frames

- Any reference frame that moves with constant velocity relative to an inertial frame is itself an inertial frame
- A reference frame that moves with constant velocity relative to the distant stars is the best approximation of an inertial frame
- We can consider the Earth to be such an inertial frame although it has a small centripetal acceleration associated with its motion

Newton's First Law Alternative Statement

- In the absence of external forces, when viewed from an inertial reference frame, an object at rest remains at rest and an object in motion continues in motion with a constant velocity
- Newton's First Law describes what happens in the absence of a force
- Also tells us that when no force acts on an object, the acceleration of the object is zero

Inertia and Mass

- The tendency of an object to resist any attempt to change its velocity is called inertia
- Mass is that property of an object that specifies how much resistance an object exhibits to changes in its velocity

More About Mass

- Mass is an inherent property of an object
- Mass is independent of the object's surroundings
- Mass is independent of the method used to measure it
- Mass is a scalar quantity
- The SI unit of mass is kg

Mass vs. Weight

- Mass and weight are two different quantities
- Weight is equal to the magnitude of the gravitational force exerted on the object
- Weight will vary with location

Newton's Second Law

- When viewed from an inertial frame, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass
- Force is the cause of change in motion, as measured by the acceleration
- Algebraically, $\Sigma \mathbf{F}=m \mathbf{a}$

More About Newton's Second Law

- $\Sigma \mathbf{F}$ is the net force
- This is the vector sum of all the forces acting on the object
- Newton's Second Law can be expressed in terms of components:
- $\Sigma F_{x}=m a_{x}$
- $\Sigma F_{y}=m a_{y}$
$-\Sigma F_{z}=m a_{z}$

Units of Force

Table 5.1

Units of Mass, Acceleration, and Force ${ }^{\text {a }}$

System of Units Mass Acceleration Force

SI	kg	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{~N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
U.S. customary	slug	$\mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{lb}=\operatorname{slug} \cdot \mathrm{ft} / \mathrm{s}^{2}$

a $\quad 1 \mathrm{~N}=0.225 \mathrm{lb}$.

Gravitational Force

- The gravitational force, \mathbf{F}_{g}, is the force that the earth exerts on an object
- This force is directed toward the center of the earth
- Its magnitude is called the weight of the object
- Weight $=\left|\mathbf{F}_{g}\right|=m g$

More About Weight

- Because it is dependent on g, the weight varies with location
- g, and therefore the weight, is less at higher altitudes
- Weight is not an inherent property of the object

Gravitational Mass vs. Inertial Mass

- In Newton's Laws, the mass is the inertial mass and measures the resistance to a change in the object's motion
- In the gravitational force, the mass is determining the gravitational attraction between the object and the Earth
- Experiments show that gravitational mass and inertial mass have the same value

Newton's Third Law

- If two objects interact, the force \mathbf{F}_{12} exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force \mathbf{F}_{21} exerted by object 2 on object 1
- $F_{12}=-F_{21}$
- Note on notation: $F_{A B}$ is the force exerted by A on B

Newton's Third Law, Alternative Statements

- Forces always occur in pairs
- A single isolated force cannot exist
- The action force is equal in magnitude to the reaction force and opposite in direction
- One of the forces is the action force, the other is the reaction force
- It doesn't matter which is considered the action and which the reaction
- The action and reaction forces must act on different objects and be of the same type

Action-Reaction Examples, 1

- The force \mathbf{F}_{12} exerted by object 1 on object 2 is equal in magnitude and opposite in direction

Action-Reaction Examples, 2

- The normal force (table on monitor) is the reaction of the force the monitor exerts on the table
- Normal means perpendicular, in this case
- The action ($\mathbf{F}_{\mathbf{g}}$, Earth on monitor) force is equal in magnitude and opposite in direction to the reaction force, the force the monitor exerts on the Earth

Free Body Diagram

- In a free body diagram, you want the forces acting on a particular object
- The normal force and the force of gravity are the forces that act on
 the monitor

Applications of Newton's Law

- Assumptions
- Objects can be modeled as particles
- Masses of strings or ropes are negligible
- When a rope attached to an object is pulling it, the magnitude of that force, \mathbf{T}, is the tension in the rope
- Interested only in the external forces acting on the object
- can neglect reaction forces
- Initially dealing with frictionless surfaces

Objects in Equilibrium

- If the acceleration of an object that can be modeled as a particle is zero, the object is said to be in equilibrium
- Mathematically, the net force acting on the object is zero

$$
\begin{aligned}
& \sum F=0 \\
& \sum F_{x}=0 \text { and } \sum F_{y}=0
\end{aligned}
$$

Equilibrium, Example 1a

- A lamp is suspended from a chain of negligible mass
- The forces acting on the lamp are
- the force of gravity (\mathbf{F}_{g})
- the tension in the chain (\mathbf{T})
- Equilibrium gives
$\sum F_{y}=0 \rightarrow T-F_{g}=0 \quad T=F_{g}$

Equilibrium, Example 1b

- The forces acting on the chain are \mathbf{T}^{\prime} and $\mathbf{T}^{\prime \prime}$
- $\mathbf{T}^{\prime \prime}$ is the force exerted by the ceiling
- \mathbf{T}^{\prime} is the force exerted by the lamp
- \mathbf{T}^{\prime} is the reaction force to \mathbf{T}
- Only \mathbf{T} is in the free body diagram of the lamp, since \mathbf{T}^{\prime} and $\mathbf{T}^{\prime \prime}$

$$
\mathbf{T}^{\prime \prime}=\mathbf{T}
$$

 do not act on the lamp

Equilibrium, Example 2a

- Example 5.4
- Conceptualize the traffic light
- Categorize as an equilibrium problem
- No movement, so acceleration is zero

(a)

Equilibrium, Example 2b

- Analyze
- Need two free-body diagrams
- Apply equilibrium equation to the light and find \mathbf{T}_{3}
- Apply equilibrium equations to the knot and find \mathbf{T}_{1} and \mathbf{T}_{2}

Objects Experiencing a Net Force

- If an object that can be modeled as a particle experiences an acceleration, there must be a nonzero net force acting on it.
- Draw a free-body diagram
- Apply Newton's Second Law in component form

Newton's Second Law, Example 1a

- Forces acting on the crate:
- A tension, the magnitude of force \mathbf{T}
- The gravitational force, \mathbf{F}_{g}
- The normal force, \mathbf{n}, exerted by the floor

(a)

(b)

Newton's Second Law, Example 1b

- Apply Newton's Second Law in component form:

$$
\begin{aligned}
& \sum F_{x}=T=m a_{x} \\
& \sum F_{y}=n-F_{g}=0 \rightarrow n=F_{g}
\end{aligned}
$$

- Solve for the unknown(s)
- If \mathbf{T} is constant, then a is constant and the kinematic equations can be used to more fully describe the motion of the crate

Note About the Normal Force

- The normal force is not always equal to the gravitational force of the object
- For example, in this case

$$
\begin{aligned}
& \sum F_{y}=n-F_{g}-F=0 \\
& \text { and } n=F_{g}+F
\end{aligned}
$$

- n may also be less than \mathbf{F}_{g}

Inclined Planes

- Forces acting on the object:
- The normal force, \mathbf{n}, acts perpendicular to the plane
- The gravitational force, \mathbf{F}_{g} acts straight down
- Choose the coordinate system with x along the incline and y perpendicular to the incline
- Replace the force of gravity with its components

Multiple Objects

- When two or more objects are connected or in contact, Newton's laws may be applied to the system as a whole and/or to each individual object
- Whichever you use to solve the problem, the other approach can be used as a check

Multiple Objects, Example 1

- First treat the system as a whole:

$$
\sum_{r=m, m_{1}}
$$

(a)

- Apply Newton's Laws to the individual blocks
- Solve for unknown(s)
- Check: $\left|\mathbf{P}_{21}\right|=\left|\mathbf{P}_{12}\right|$

(b)

Multiple Objects, Example 2

- Forces acting on the objects:
- Tension (same for both objects, one string)
- Gravitational force
- Each object has the same acceleration since they are connected
- Draw the free-body diagrams
- Apply Newton's Laws
- Solve for the unknown(s)

Multiple Objects, Example 3

- Draw the free-body diagram for each object
- One cord, so tension is the same for both objects
- Connected, so acceleration is the same for both objects
- Apply Newton's Laws
- Solve for the unknown(s)

Problem-Solving Hints Newton's Laws

- Conceptualize the problem - draw a diagram
- Categorize the problem
- Equilibrium ($\Sigma \mathbf{F}=0$) or Newton's Second Law ($\Sigma \mathbf{F}=m \mathbf{a}$)
- Analyze
- Draw free-body diagrams for each object
- Include only forces acting on the object

Problem-Solving Hints Newton's Laws, cont

- Analyze, cont.
- Establish coordinate system
- Be sure units are consistent
- Apply the appropriate equation(s) in component form
- Solve for the unknown(s)
- Finalize
- Check your results for consistency with your freebody diagram
- Check extreme values

Forces of Friction

- When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion
- This is due to the interactions between the object and its environment
- This resistance is called the force of friction

Forces of Friction, cont.

- Friction is proportional to the normal force
- $f_{s} \leq \mu_{\mathrm{s}} n$ and $f_{k}=\mu_{k} n$
- These equations relate the magnitudes of the forces, they are not vector equations
- The force of static friction is generally greater than the force of kinetic friction
- The coefficient of friction (μ) depends on the surfaces in contact

Forces of Friction, final

- The direction of the frictional force is opposite the direction of motion and parallel to the surfaces in contact
- The coefficients of friction are nearly independent of the area of contact

Static Friction

- Static friction acts to keep the object from moving
- If \mathbf{F} increases, so does
$\boldsymbol{f}_{\mathrm{s}}$
- If \mathbf{F} decreases, so does $\boldsymbol{f}_{\mathrm{s}}$
- $f_{s} \leq \mu_{s} n$ where the equality holds when the surfaces are on the verge of slipping

- Called impending motion

Kinetic Friction

- The force of kinetic friction acts when the object is in motion
- Although μ_{k} can vary with speed, we shall neglect any such variations
- $f_{k}=\mu_{k} n$

(b)

Some Coefficients of Friction

Table 5.2

Coefficients of Friction		
	$\boldsymbol{\mu}_{\boldsymbol{s}}$	$\boldsymbol{\mu}_{\boldsymbol{k}}$
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Copper on steel	0.53	0.36
Rubber on concrete	1.0	0.8
Wood on wood	$0.25-0.5$	0.2
Glass on glass	0.94	0.4
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry snow	-	0.04
Metal on metal (lubricated)	0.15	0.06
Ice on ice	0.1	0.03
Teflon on Teflon	0.04	0.04
Synovial joints in humans	0.01	0.003

${ }^{\text {a }}$ All values are approximate. In some cases, the coefficient of friction can exceed 1.0.

Friction in Newton's Laws Problems

- Friction is a force, so it simply is included in the $\Sigma \mathbf{F}$ in Newton's Laws
- The rules of friction allow you to determine the direction and magnitude of the force of friction

Friction Example, 1

- The block is sliding down the plane, so friction acts up the plane
- This setup can be used to experimentally determine the coefficient of friction
- $\mu=\tan \theta$
- For $\mu_{s l}$ use the angle where the block just slips
- For μ_{k} use the angle where the block slides down at a constant speed

Friction, Example 2

- Draw the free-body diagram, including the force of kinetic friction
- Opposes the motion
- Is parallel to the surfaces in contact
- Continue with the solution as with any

Newton's Law problem

Friction, Example 3

- Friction acts only on the object in contact with another surface
- Draw the free-body diagrams
- Apply Newton's Laws as in any other multiple object system problem

