c) Show that  $B := \{t^2 + 2, -t + 1, 2t - 1\}$  is a basis of the real vector space  $P_2(t)$  of all polynomials in real variable t having degree  $\leq 2$ . Then find the coordinate vector of the polynomial  $t^2 + 3t + 3$  with respect to the basis B.

(b) Let 
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 2 & 4 & -1 & 1 & 0 & 2 \end{pmatrix}$$
.

- (i) Find a basis B for the column space of the matrix A.
- (ii) Show that B is a basis for  $\mathbb{R}^3$ .

# Question 3: [7 pts]

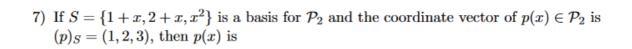
Consider the following inner product on  $\mathbb{R}^3$ :

$$\langle (\mathbf{x}, \mathbf{y}, \mathbf{z}), (\mathbf{x}', \mathbf{y}', \mathbf{z}') \rangle = 2\mathbf{x}\mathbf{x}' + \mathbf{y}\mathbf{y}' + \mathbf{z}\mathbf{z}' + \mathbf{x}\mathbf{y}' + \mathbf{x}'\mathbf{y}.$$
  
Let  $u_1 = (-1, 1, x), u_2 = (-1, y, 2)$  and  $u_3 = (z, 1, -2).$ 

- (a) Find the values of x so that  $||u_1|| = 1$ .
- (b) Find the values of x, y so that  $\cos(\theta) = 0$ , where  $\theta$  the angle between  $u_1$  and  $u_2$ .
- (c) Find the values of x, y, z so that the set  $K = \{u_1, u_2, u_3\}$  is orthogonal.

### Question 5: [5pts]

- 1. Let F be the subspace of the Euclidean inner product space  $\mathbb{R}^3$  spanned by  $\{v_1=(1,1,0),v_2=(1,1,1)\}$ . Use Gram-Schmidt process to get an orthonormal basis of F.
- 2. Let  $\mathbb{R}^3$  be the Euclidean inner product space and u=(1,-1,1), v=(2,0,-2) in  $\mathbb{R}^3$ .
  - (a) Find  $||u+v||^2$ .
  - (b) Find  $\cos \theta$ , if  $\theta$  is the angle between the vectors u and v.



(a) 
$$1 + 2x + 3x^2$$

(b) 
$$3 + 2x + 3x^2$$

(c) 
$$5 + 3x + 3x^2$$

- (d) None of the previous
- 8) If B is a  $5 \times 7$  matrix and null (B) = 3, then null  $(B^T)$  equals

(a) 2

(b) 5

(c) 3

(d) 1

9) If  $v_1 = (a, 1, 2, 6)$  and  $v_2 = (2, 2a, 1, -1)$  are two orthogonal vectors, then

(a) a = 1

(b) a = -1

(c) a = 0

(d) None of the previous

10) If B is a  $3 \times 3$  matrix with det B = 2, then

(a) nullity (B) = 2, rank (B) = 1

(b) nullity (B) = 0, rank (B) = 3

(c) nullity (B) = 3, rank (B) = 3

(d) None of the previous

- II) A) Let  $S = \{v_1 = (1, 2, 2, 1), v_2 = (3, 6, 6, 3), v_3 = (4, 9, 9, 4), v_4 = (5, 8, 9, 5)\}.$ 
  - i) Find a subset of S that forms a basis for  $\mathrm{span}(S).$
  - ii) What is the dimension of span(S)?

B) Let 
$$B = \{v_1 = (1,0,0), v_2 = (1,1,0), v_3 = (1,1,1,)\}$$

- i) Prove that B is a basis of  $\mathbb{R}^3$ .
- ii) If  $v = (0, -1, -1) \in \mathbb{R}^3$ , find the coordinate vector  $(v)_B$ . iii) Find the vector  $w \in \mathbb{R}^3$ , if its coordinate vector is  $(w)_B = (2, 1, -2)$ .

[V] A. For 
$$A = \begin{bmatrix} -1 & 1 & -2 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$
, evaluate

- (i) rank(A)
- (ii)  $nullity(A^T)$

## Question 2 [Marks: 2.5]:

Let  $B = \{(1,0,0), (0,1,0), (0,0,1)\}$  and  $C = \{(1,0,0), (0,1,0), (0,0,1)\}$  be bases of Euclidean space  $\mathbb{R}^3$  and u = (3,2,1). Find the transition matrix  ${}_{C}P_{B}$  and the coordinate vector  $[u]_{C}$ .

## Question 3 [Marks: 2]:

Let A be  $4 \times 3$  matrix with rank (A) = 3. Find mullity  $(A^T)$ .

#### Question 4 [Marks: 2]:

**Explain!** why the function  $<(x_1, y_1, z_1), (x_2, y_2, z_2)> = 2x_1y_1 + y_2 + 2z_1z_2$  is not an inner product on  $\mathbb{R}^3$ .

**Which** one of the following vectors in Euclidean space  $\mathbb{R}^3$ :

$$u_1 = (0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), u_2 = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), u_3 = (0, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}) \text{ and } u_4 = (0, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

is orthogonal to both vectors  $\mathbf{v_1} = (\mathbf{1}, -\mathbf{1}, \mathbf{1})$  and  $\mathbf{v_2} = (\mathbf{1}, \mathbf{0}, \mathbf{0})$ ?

- If  $\theta$  is the angle between the matrices  $A = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix}$  and  $B = \begin{bmatrix} -3 & 1 \\ 4 & 2 \end{bmatrix}$  with respect to the (iii) inner product  $\langle A, B \rangle = trace (AB^{T})$ , then  $cos \theta$  is:

- d) 0.
- The value of k for which the vectors  $\mathbf{u} := (u_1 = 2, u_2 = -4)$  and  $\mathbf{v} := (v_1 = 1, v_2 = 3)$  in  $\mathbb{R}^2$  are orthogonal with respect to the inner product  $\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + ku_2v_2$  is: (iv)

- If  $B = \{(2,1), (-3,4)\}$  and  $C = \{(1,1), (0,3)\}$  are bases of  $\mathbb{R}^2$ , then the transition (v) matrix  ${}_{B}P_{C}$  from C to B is:

  - $a)\begin{bmatrix} 7/_{11} & 1/_{11} \\ 9/_{11} & 6/_{11} \end{bmatrix} \qquad b)\begin{bmatrix} 7/_{11} & 9/_{11} \\ 1/_{11} & 6/_{11} \end{bmatrix} \qquad c)\begin{bmatrix} 7/_{11} & 9/_{11} \\ 6/_{11} & 1/_{11} \end{bmatrix} \qquad d)\begin{bmatrix} 9/_{11} & 7/_{11} \\ 1/_{11} & 6/_{11} \end{bmatrix}.$

- II. Determine whether the following statements are true or false; justify your answer.
- (iv) If u, v and w are vectors in an inner product space such that  $\langle u, v \rangle = 3$ ,  $\langle v, w \rangle = -5$ ,  $\langle u, w \rangle = -1$  and ||u|| = 2, then  $\langle u 2w, 3u + v \rangle = 25$ .

**Question 2** [Marks: 2+2+2]: Consider the matrices 
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & -2 \end{bmatrix}$ . Then:

- b) Show that  $nullity(A) \neq nullity(B)$ .
- c) Find a basis for the null space N(B).

#### Question 4: [Marks: 2+4]

a) Let u and v be any two vectors in an inner product space. Show that:

$$2(||u||^2 + ||v||^2) = ||u + v||^2 + ||u - v||^2.$$

b) Let the set  $B := \{u_1 = (1,0,0), u_2 = (3,1,-1), u_3 = (0,3,1)\}$  be linearly independent in the Euclidean inner product space  $\mathbb{R}^3$ . Construct an orthonormal basis for  $\mathbb{R}^3$  by applying the Gram-Schmidt algorithm on B.