c) Show that $B:=\left\{\boldsymbol{t}^{2}+\mathbf{2},-\boldsymbol{t}+\mathbf{1}, \mathbf{2} \boldsymbol{t}-\mathbf{1}\right\}$ is a basis of the real vector space $\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{t})$ of all polynomials in real variable \boldsymbol{t} having degree $\leq \mathbf{2}$. Then find the coordinate vector of the polynomial $\boldsymbol{t}^{2}+\mathbf{3} \boldsymbol{t}+\mathbf{3}$ with respect to the basis \boldsymbol{B}.
(b) Let $A=\left(\begin{array}{cccccc}1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 2 & 4 & -1 & 1 & 0 & 2\end{array}\right)$.
(i) Find a basis B for the column space of the matrix A.
(ii) Show that B is a basis for \mathbb{R}^{3}.

Question 3 : [7 pts]

Consider the following inner product on \mathbb{R}^{3} :

$$
\left\langle(\mathrm{x}, \mathrm{y}, \mathrm{z}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right)\right\rangle=2 \mathrm{xx}^{\prime}+\mathrm{yy}^{\prime}+\mathrm{zz}^{\prime}+\mathrm{xy}^{\prime}+\mathrm{x}^{\prime} \mathrm{y} .
$$

Let $u_{1}=(-1,1, x), u_{2}=(-1, y, 2)$ and $u_{3}=(z, 1,-2)$.
(a) Find the values of x so that $\left\|u_{1}\right\|=1$.
(b) Find the values of x, y so that $\cos (\theta)=0$, where θ the angle between u_{1} and u_{2}.
(c) Find the values of x, y, z so that the set $K=\left\{u_{1}, u_{2}, u_{3}\right\}$ is orthogonal.

Question 5 : [5pts]

1. Let F be the subspace of the Euclidean inner product space \mathbb{R}^{3} spanned by $\left\{v_{1}=(1,1,0), v_{2}=(1,1,1)\right\}$.
Use Gram-Schmidt process to get an orthonormal basis of F.
2. Let \mathbb{R}^{3} be the Euclidean inner product space and $u=(1,-1,1), v=(2,0,-2)$ in \mathbb{R}^{3}.
(a) Find $\|u+v\|^{2}$.
(b) Find $\cos \theta$, if θ is the angle between the vectors u and v.
7) If $S=\left\{1+x, 2+x, x^{2}\right\}$ is a basis for \mathcal{P}_{2} and the coordinate vector of $p(x) \in \mathcal{P}_{2}$ is $(p)_{S}=(1,2,3)$, then $p(x)$ is
(a) $1+2 x+3 x^{2}$
(b) $3+2 x+3 x^{2}$
(c) $5+3 x+3 x^{2}$
(d) None of the previous
8) If B is a 5×7 matrix and null $(B)=3$, then null $\left(B^{T}\right)$ equals

(a) 2	(b) 5	(d) 1

9) If $v_{1}=(a, 1,2,6)$ and $v_{2}=(2,2 a, 1,-1)$ are two orthogonal vectors, then
(a) $a=1$
(b) $a=-1$
(c) $a=0$
(d) None of the previous
10) If B is a 3×3 matrix with $\operatorname{det} B=2$, then

| (a) nullity $(B)=2$, |
| :---: | :---: | :---: |
| $\operatorname{rank}(B)=1$ |\quad| (b) nullity $(B)=0$, |
| :---: |
| $\operatorname{rank}(B)=3$ |\quad| (c) nullity $(B)=3$, |
| :---: |
| $\operatorname{rank}(B)=3$ |\quad| (d) None of |
| :---: |
| the |
| previous |

II) A) Let $S=\left\{v_{1}=(1,2,2,1), v_{2}=(3,6,6,3), v_{3}=(4,9,9,4), v_{4}=(5,8,9,5)\right\}$.
i) Find a subset of S that forms a basis for $\operatorname{span}(S)$.
ii) What is the dimension of $\operatorname{span}(S)$?
B) Let $B=\left\{v_{1}=(1,0,0), v_{2}=(1,1,0), v_{3}=(1,1,1),\right\}$
i) Prove that B is a basis of \mathbb{R}^{3}.
ii) If $v=(0,-1,-1) \in \mathbb{R}^{3}$, find the coordinate vector $(v)_{B}$.
iii) Find the vector $w \in \mathbb{R}^{3}$, if its coordinate vector is $(w)_{B}=(2,1,-2)$.
[V] A. For $A=\left[\begin{array}{cccc}-1 & 1 & -2 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1\end{array}\right]$, evaluate
(i) $\operatorname{rank}(A)$
(ii) $\operatorname{nullity}\left(A^{T}\right)$

Question 2 [Marks: 2.5]:

Let $B=\{(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{0}, \mathbf{0}, \mathbf{1})\}$ and $\boldsymbol{C}=\{(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{0}, \mathbf{0}, \mathbf{1})\}$ be bases of Euclidean space \mathbb{R}^{3} and $\boldsymbol{u}=(\mathbf{3}, \mathbf{2}, \mathbf{1})$. Find the transition matrix ${ }_{C} \boldsymbol{P}_{\boldsymbol{B}}$ and the coordinate vector $[\boldsymbol{u}]_{C}$.

Question 3 [Marks: 2]:

Let \boldsymbol{A} be 4×3 matrix with $\operatorname{rank}(\boldsymbol{A})=\mathbf{3}$. Find mullity $\left(\boldsymbol{A}^{T}\right)$.

Question 4 [Marks: 2]:
Explain! why the function $<\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}, \boldsymbol{z}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}, \boldsymbol{z}_{2}\right)>=\mathbf{2} \boldsymbol{x}_{1} \boldsymbol{y}_{\mathbf{1}}+\boldsymbol{y}_{\mathbf{2}}+\mathbf{2 z}_{\mathbf{1}} \boldsymbol{z}_{\mathbf{2}}$ is not an inner product on \mathbb{R}^{3}.

Which one of the following vectors in Euclidean space \mathbb{R}^{3} :

$$
u_{1}=\left(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), u_{2}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), u_{3}=\left(0, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right) \text { and } u_{4}=\left(0, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

is orthogonal to both vectors $\boldsymbol{v}_{\mathbf{1}}=(\mathbf{1},-\mathbf{1}, \mathbf{1})$ and $\boldsymbol{v}_{\mathbf{2}}=(\mathbf{1}, \mathbf{0}, \mathbf{0})$?
(iii) If θ is the angle between the matrices $A=\left[\begin{array}{cc}2 & 4 \\ -1 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & 1 \\ 4 & 2\end{array}\right]$ with respect to the inner product $\langle A, B\rangle=\operatorname{trace}\left(A B^{\mathrm{T}}\right)$, then $\cos \theta$ is:
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{15}{2 \sqrt{30}}$
d) 0 .
(iv) The value of k for which the vectors $\boldsymbol{u}:=\left(u_{1}=2, u_{2}=-4\right)$ and $\boldsymbol{v}:=\left(v_{1}=1, v_{2}=3\right)$ in \mathbb{R}^{2} are orthogonal with respect to the inner product $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=2 u_{1} v_{1}+k u_{2} v_{2}$ is:
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{15}{2 \sqrt{30}}$
d) $\frac{1}{3}$.
(v) If $B=\{(2,1),(-3,4)\}$ and $C=\{(1,1),(0,3)\}$ are bases of \mathbb{R}^{2}, then the transition matrix ${ }_{B} \boldsymbol{P}_{C}$ from C to B is:
a) $\left[\begin{array}{ll}7 / 11 & 1 / 11 \\ 9 / 11 & 6 / 11\end{array}\right]$
b) $\left[\begin{array}{ll}7 / 11 & 9 / 11 \\ 1 / 11 & 6 / 11\end{array}\right]$
c) $\left[\begin{array}{ll}7 / 11 & 9 / 11 \\ 6 / 11 & 1 / 11\end{array}\right]$
d) $\left[\begin{array}{ll}9 / 11 & 7 / 11 \\ 1 / 11 & 6 / 11\end{array}\right]$
II. Determine whether the following statements are true or false; justify your answer.
(iv) If u, v and w are vectors in an inner product space such that $\langle u, v\rangle=3,\langle v, w\rangle=-5$, $\langle u, w\rangle=-1$ and $\|u\|=2$, then $\langle u-2 w, 3 u+v\rangle=25$.

Question 2 [Marks: 2+2+2]: Consider the matrices $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & -2\end{array}\right]$. Then:
b) Show that nullity $(A) \neq \operatorname{nullity}(B)$.
c) Find a basis for the null space $N(B)$.

Question 4: [Marks: 2+4]
a) Let u and v be any two vectors in an inner product space. Show that:

$$
2\left(\|u\|^{2}+\|v\|^{2}\right)=\|u+v\|^{2}+\|u-v\|^{2} .
$$

b) Let the set $B:=\left\{\boldsymbol{u}_{1}=(1,0,0), \boldsymbol{u}_{2}=(3,1,-1), \boldsymbol{u}_{3}=(0,3,1)\right\}$ be linearly independent in the Euclidean inner product space \mathbb{R}^{3}. Construct an orthonormal basis for \mathbb{R}^{3} by applying the GramSchmidt algorithm on B.

