Question 1:[7pts]

- 1. Let A, B, C and D be matrices of order 3 such that AB + AC D = 0, |D| = 6, $B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ -1 & 1 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & -1 \\ 1 & -1 & 3 \end{pmatrix}$. Find |A|.
- 2. Let R and S be matrices of order 3 such that RS + R 2I = 0. Find R^{-1} if $S = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 3 & 4 \\ 0 & 2 & 5 \end{pmatrix}$.

Question 1:[6 pts]

a) Let A be a matrix of order 3 such that |A|=3 and $|A^2+I|=2$. Find $|A+A^{-1}|$.

- a) If $A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, then find adj(adj(A)).
- b) Find the values of k that makes the matrix $\begin{bmatrix} 2 & 3k-2 \\ k^2 & -1 \end{bmatrix}$ symmetric.
- c) Let $B = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -5 & 4 \\ 0 & 0 & 6 \end{bmatrix}$. Explain! Why the matrix B can be expressed as a product of elementary matrices?

(c) Find $3(adjA)^{-1} + A$ where A is a matrix of size 4×4 such that |A| = 3.

- 1. Let A,B be matrices of size (3,3) such that A is not invertible and |B|=2. Find $|A{\rm adj}(A)+2B^{-1}|$.
- $\text{2. Compute the following determinant} \begin{vmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}.$
- 3. Compute the inverse matrix of the matrix A, where $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$.

- 1. Consider the matrices A and B such that $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix}$ and $AB = A + 2I_3$. Find the matrices A^{-1} and B.
- 2. Consider the matrices $C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ and $D = \begin{pmatrix} -2 & 1 & -1 & 2 \\ 1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$. If E is a 4×4 matrix such that $EC^2 + ED = 2I_4$, then find E^{-1} .

- 1. a) Find the matrix adj(A) if $A = \begin{pmatrix} 1 & 2 & -3 \\ 3 & -1 & 2 \\ -2 & 4 & -2 \end{pmatrix}$.
 - b) Find adj(A).A.

a) Find the values of
$$\lambda$$
 for which the matrix $\begin{bmatrix} 1 & 0 & \lambda \\ 2 & 1 & 2 + \lambda \\ 2 & 3 & \lambda^2 \end{bmatrix}$ is invertible.

b) By using properties of the determinants, show that:

$$\begin{vmatrix} a+b+c & b & a \\ d+e+f & e & d \\ g+h+i & h & g \end{vmatrix} = \begin{vmatrix} c & b & a \\ f & e & d \\ i & h & g \end{vmatrix}.$$

c) Let
$$A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
. Find $adj(A)$ and A^{-1} .