$3^{\text {rd }}$ Assignment (Apr. 2020)
 Year 1440-1441 H $2^{\text {nd }}$ Semester

Course name \& code	441	اسم ورمز المقرر
Instructor's Name	Dr. Khalid Alnowibet د.	أستاذ المادة

Instruction and guides for the assignment:

1. This assignment is designed to guide you to understand fully the topics and practice covered in the $1^{\text {st }}$ month of the course.
2. To give you plenty of time to review and apply the materials for the answer, the assignment duration is from 2:00pm Thursday April 16 until Saturday Apr. 18 @ 11:00 before midnight
3. You can use the lecture notes, the textbook, Excel for your answer.
4. You are the guardian of your behavior in this assignment. This assignment is totally for your independent effort. Do not attempt to collaboration or communication with anyone about the questions of the assignment, it is totally not allowed by any means.
5. Write all your answers on an Excel file. The file must contain both active work sheet and fixed worksheet. Put all the fixed answers in single worksheet and name it as (Fixed Ans.). Make sure to clearly indicate the number of the question answered.
6. Email you files to the address knowibet@ksu.edu.sa . Write the subject of the email as:

OPER-441-Assignment\#3 <<Section Number>> , << your name>> , <<your KSU ID >>
7. Make sure to make your document as organized as possible.

وفقكم الله ويسر لكم .. وحفظكم ورعاكم

Application \#1:

ABC Department store sells modern style clothing. The cost per unit of the new style clothing is random following the distribution:

Price (SR)	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Prob.	0.0168	0.0896	0.2090	0.2787	0.2322	0.1239	0.0413	0.0079	0.0007

Also, the selling price (per unit) is a random variable. The clothing style is seasonal. Meaning, if the style is sold during the season, then they will have a high value. If the clothing is sold out of season then the store must announce special offers to sell the leftovers. The special offer prices is considered random variable. Model this system using simulation under the following cases.

Case-I

- The demand on the clothing is a random variable that follows the shifted Bionomial distribution with shift $\delta=100$ and parameters ($n=50, p=0.6$).
- Selling price during the season follows discrete integer value between 10 and 20 and shifted by the unit cost. For example, if ABC store buy the unit for 12 SR, then the selling price is shifted discrete uniform with shift $\delta=12$.
- The leftover is sold at a fixed discount of 60% from the selling price. For example, if the selling price per unit is 25 SR during the season then the special offer price by the end of season is 10 SR .

ABC store wants to decide whether to order $\mathrm{Q}=100$ units, $\mathrm{Q}=150$ units or $\mathrm{Q}=200$ units for the next season. Using simulation on Excel, find the best decision using the net profit function of the demand and the order quantity. Perform the following:
a. Using data table (fixed data) for 500 simulation runs, give the average of net profits, standard deviation, 95% confidence interval.
b. Make a histogram for the simulation output in the data table using excel

Case-II

- The demand on clothings is a random variable that follows the positive integer normal distribution with $\mu=120$ and $\sigma=20$ (use abs(int(...)) function in excel)
- Selling price during the season follows shifted Bionomial distribution with shift $\delta=$ unit cost and parameters ($n=10, p=0.35$).
- The leftover is sold at a random discount follows discrete uniform $D U[40 \%, 65 \%]$ from the selling price.
ABC store wants to decide whether to order $\mathrm{Q}=80$ units, $\mathrm{Q}=120$ units or $\mathrm{Q}=160$ units for the next season. Using simulation on Excel, find the best decision using the net profit function of the demand and the order quantity. Perform the following:
a. Using data table (fixed data) for 500 simulation runs, give the average of net profits, standard deviation, 95% confidence interval.
b. Make a histogram for the simulation output in the data table using excel

Application \#2:

Patients arrive to a dental clinic according to a random process. The patients are served as first come first served bases. If the patient arrive and find the dentist busy he waits for his turn. Assume that the waiting room is infinite. Simulate this application under the following cases.

Case-I

- All patients request the same service which takes a random amount of time (in minutes) that follows integer exponential with mean $=15$ minutes and shift parameter $\delta=5$ minutes.(use integer function int(...))
- The time between arrivals is assumed to follow exponential with mean = 10 and shift parameter δ where $\delta \sim$ discrete uniform between 8 minutes and 15 minutes
a. Using simulation on Excel to evaluate the performance of the clinic by using data table (fixed data) for 100 simulation runs, each run has 100 arrivals and give the values of (i), (ii) and(iii), standard deviation and 95\% confidence interval.
i. The average waiting time for a patient if he wait.
ii. The percentage that there is no patients in the clinic.
iii. The average number of patients served per hour.

b. Using your simulation output for 100 arrival, fixed the data and find the distribution of number of patients in the system $N(t)$ for $N=0,1,2,3,4,5,6,7,8,9,10$ only.

Case-II

- Patients request one of three same service which takes a random amount of time

Service Type	Percentage Patients	Service time
Service 1	45% of the patients	Discrete uniform [10, 20]
Service 2	35% of the patients	integer exponential with mean = 15 minutes and shift parameter $\delta=5$ (use int(..))
Service 3	20% 0f the patients	Integer Gamma dist. With $\alpha=5$ and $\beta=4$

- The time between arrivals is assumed to follow exponential with mean = 10 and shift parameter δ where $\delta \sim$ discrete uniform between 8 minutes and 15 minutes

Using simulation on Excel to evaluate the performance of the clinic by using data table (fixed data) for 100 simulation runs, each run has 100 arrivals and give the values of (i), (ii) and(iii), standard deviation and 95\% confidence interval.
i. The average waiting time for a patient if he wait.
ii. The percentage that there is no patients in the clinic.
iii. The average number of patients served per hour.

Patient \#	Time between Patients	Arrival Time	Service Type	Service Time	Starting service	Patient Wait??	Waiting Time	Dep Time	Clinic Idle Time
1									
2									
3									
4									
5									
6									
7									
8									
9									

Application \#1:

Unit cost

Price (SR)	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Prob.	0.0168	0.0896	0.2090	0.2787	0.2322	0.1239	0.0413	0.0079	0.0006

Case-I

- Demand: shifted Bionomial $(n=50, p=0.6)$ with shift $\delta=100$
- Selling Price: Discrete Integer (10 and 20) and shifted by the $\delta=$ unit cost.
- The Leftover Value: discount of 60% from the selling price.

Order quantities: $\mathrm{Q}=100$ units, $\mathrm{Q}=150$ units or $\mathrm{Q}=200$. Perform the following:
a. Data Table for 500 simulation runs: give the average of net profits, standard deviation, 95\% confidence interval.
b. Make a histogram for $\mathrm{G}(\mathrm{Q}, \mathrm{D})$ of the best Q only

Q	100	150	200
Average	1505.4	1947.73	2058.1
STDV	315.769	442.457	487.954
LB-95\%	1477.65	1908.85	2015.22
UB-95\%	1533.15	1986.6	2100.97

Q $100 \quad 150 \quad 200$

averge	1493.4	1961.208	2011.777
STDEV	317.5817	452.9802	485.1641
LB-95\%	1465.496	1921.407	1969.148
UB-95\%	1521.304	2001.009	2054.406

Case-II

- Demand: positive integer normal distribution with $\mu=120$ and $\sigma=20$ (use abs(int(...)) function in excel)
- Selling Price: Bionomial $(n=10, p=0.35)$ with shift $\delta=$ unit cost.
- The Leftover Value: discount DU[40\%,65\%] from the selling price

Q	$\mathbf{8 0}$	$\mathbf{1 2 0}$	$\mathbf{1 6 0}$
Average	276.601	379.302	320.221
STDV	116.885	191.297	259.569
LB-95\%	266.33	362.493	297.414
UB-95\%	286.871	396.11	343.028

	$\mathrm{q}=80$	$\mathrm{q}=120$	$\mathrm{q}=160$
Average of net profit	261.23	355.38	306.34
standard diviation	122.97	193.70	243.22
LB- 95\%	250.43	338.36	284.97
UB- 95\%	272.04	372.40	327.71

Get Sxternal Data		Connections	Sort \& Filter		\cdots	Data Tools		
H1	$v: \times \vee f_{x}$							
A		в	c	D	E	F	G	H
1	ABC Store							
2	Case 2							
3								
4				Vlookup Table				
5	cost per unit	7		prob.	LB	CDF	Cost (SR)	
6	Demand	83		0.0168	0	0.0168	5	
7	Selling price	8		0.0896	0.0168	0.1064	6	
8	leftover price	3.36		0.209	0.1064	0.3154	7	
9				0.2787	0.3154	0.5941	8	
10	Q	120		0.2322	0.5941	0.8263	9	
11				0.1239	0.8263	0.9502	10	
12	Total Slaes	664		0.0413	0.9502	0.9915	11	
13	Left over vlaue	124.32		0.0079	0.9915	0.9994	12	
14	Total production cost	840		0.0007	0.9994	1	13	
15	Net profit							
16								
17								

Order quantities: $\mathrm{Q}=80$ units, $\mathrm{Q}=120$ units or $\mathrm{Q}=160$. Perform the following:
a. Data Table for 500 simulation runs: give the average of net profits, standard deviation, 95\% confidence interval.
b. Make a histogram for $G(Q, D)$ of the best Q only

Application \#2:

Patients arrive to a dental clinic according to a random process. The patients are served as first come first served bases. If the patient arrive and find the dentist busy he waits for his turn. Assume that the waiting room is infinite. Simulate this application under the following cases.

G5	$\cdots:$	$\checkmark f_{x} \\|$ Patie	Wait??						
4	B	c	D	E	F	G	H	1	J
1	Dental clinic								
2	Case 1 (a\&b)								
3									
4									
5	Patient \#	Time Between Patients	Arrival Time	Service Time	Service Start Time	Patient Wait??	Waiting Time	Dep Time	Clinic Idle Time
6	1	11.399	11.399	12	11.399	0	0	23.399	11.399
7	2	27.443	38.842	23	38.842	0	0.0000	61.842	15.443
8	3	19.728	58.570	11	61.842	1	3.2720	72.842	0.000
9	4	19.655	78.225	17	78.225	0	0.0000	95.225	5.383
10	5	13.537	91.762	13	95.225	1	3.4629	108.225	0.000
11	6	14.002	105.765	18	108.225	1	2.4605	126.225	0.000
12	7	13.708	119.473	14	126.225	1	6.7520	140.225	0.000
13	8	13.828	133.301	10	140.225	1	6.9238	150.225	0.000
14	9	15.175	148.476	38	150.225	1	1.7488	188.225	0.000
15	10	23.838	172.314	15	188.225	1	15.9108	203.225	0.000
16	11	13.569	185.884	18	203.225	1	17.3415	221.225	0.000
17	12	23.839	209.723	9	221.225	1	11.5024	230.225	0.000
18	13	14.768	224.491	9	230.225	1	5.7341	239.225	0.000
19	14	22.426	246.917	10	246.917	0	0.0000	256.917	7.692
20	15	11.109	258.026	32	258.026	0	0.0000	290.026	1.109
21	16	15.122	273.148	14	290.026	1	16.8785	304.026	0.000
22	17	27.222	300.370	15	304.026	1	3.6561	319.026	0.000
23	18	8.933	309.303	25	319.026	1	9.7235	344.026	0.000
24	19	17.862	327.165	8	344.026	1	16.8614	352.026	0.000
25	20	22.632	349.797	37	352.026	1	2.2296	389.026	0.000

	в	c	D	E	F	g	H		
		Dental clinic							
		Case 1 (a\&b)							
	Patient $\#$	Time Between Patients	Arrival Time	Service Time	Service Start Time	Patient Wait??	Waiting Time	Dep Time	Clinic Idle Time
6	1	$=-10^{*}$ LN(1-RAND())+RANDBETWEEN(8,15)	=C6	$=1 \mathrm{NT}\left(-15^{*}\right.$ L $\left.\operatorname{(1-RAND}()\right)+5$	=D6	0	0	=D6+E6+H6	=D6
7	2	$=-10 *$ LN(1-RAND() $)$ +RANDBETWEEN(8,15)	=C7+D6	$=1$ TT(-15*L $(1-\operatorname{RAND}())+5$	$=1 F(16<=D 7, D 7,16)$	$=1 F(D 7>16,0,1)$	$=1 / F(G 7,16-\mathrm{D}, 0)$	= D7+E7+H7	$=1 F(D 7>16,07-16,0)$
8	3	$=-10 *$ LN(1-RAND() $)$ +RANDBETWEEN(8,15)	$=C 8+D 7$	$=1$ NT(-15*L $(1-\operatorname{RAND}())+5$	$=1 F(17<=D 8,08,77)$	$=1 F(D 8 \gg 17,0,1)$	$=1 F(G 8,17-\mathrm{D}, 00$	=D8+E8+H8	$=1 F(08>17,08-17,0)$
9	4	$=-10 *$ LN(1-RAND() $)+$ RANDBETWEEN(8,15)	=C9+D8	$=1 \mathrm{NT}\left(-15^{*}\right.$ L $(1$ (1-RAND ())) +5	$=1 F(18<=D 9,09,18)$	$=1 F(D 9>18,0,1)$	$=1 F(G 9,18-\mathrm{Dq}, 0)$	= D9+E9+H9	$=1 \mathrm{~F}(\mathrm{D9} 78, \mathrm{D} 9-18,0)$
0	5	$=-10^{*}$ LN(1-RAND() $)+$ RANDBETWEEN(8,15)	$=C 10+D 9$	$=1 \mathrm{NT}\left(-15^{*}\right.$ L $(1$ (1-RAND ()) $)+5$	$=I F(19<=D 10, D 10,19)$	$=1 F(\operatorname{D10}>19,0,1)$	=IF(G10,19-D10,0)	=D10+E10+H10	$=1 F($ D10 19, D10-19,0)
1	6	$=-10^{*}$ LN(1-RAND() $)$ +RANDBETWEEN(8,15)	= C11+D10	$=1 N T\left(-15^{*}\right.$ L $(1-$ RAND ()) $)+5$	$=I F(110<=D 11, D 11,110)$	$=1 F(\mathrm{D} 11>10,0,1)$	$=1 F(611,110-\mathrm{D} 11,0)$	= D11+E11+H11	$=1 F(\mathrm{D} 11>110, \mathrm{D} 11-110,0)$
2	7	$=-10^{*}$ LN(1-RAND() $)$ +RANDBETWEEN(8,15)	$=C 12+$ D11	$=1$ NT $\left(-15^{*}\right.$ L $(1-\operatorname{RAND}())+5$	$=\mid F(111<=D 12, D 12,111)$	$=1 F(\mathrm{D} 12>111,0,1)$	$=\mid F(G 12,111-\mathrm{D} 12,0)$	$=\mathrm{D} 12+$ E12+H12	$=1 \mathrm{~F}(\mathrm{D} 12>111, \mathrm{D} 12-111,0)$
3	8	$=-10^{*}$ LN(1-RAND() $)+$ RANDBETWEEN(8,15)	$=C 13+D 12$	$=1 \mathrm{NT}\left(-15^{*}\right.$ L $(1$ (1-RAND ()) $)+5$	$=I F(12<=D 13, D 13,112)$	$=\mathrm{IF}(\mathrm{D} 13>122,0,1)$	$=1 F(G 13,112-\mathrm{D} 13,0)$	$=\mathrm{D} 13+$ E13+H13	$=I F(\mathrm{D} 13>112, \mathrm{D} 13-112,0)$
4	9	$=-10 *$ LN(1-RAND() $)+$ RANDBETWEEN(8,15)	= C14+D13	$=1 \mathrm{NT}\left(-15^{*}\right.$ L $(1-$ RAND ()$)+5$	$=1 F(133<=D 14, D 14,113)$	$=1 F(\mathrm{D} 14>13,0,1)$	$=1 F(G 14,113-\mathrm{D} 14,0)$	= D14+E14+H14	$=I F(D 14>113, D 14-113,0)$
5	10	$=-10 *$ LN(1-RAND() $)$ +RANDBETWEEN(8,15)	$=C 15+D 14$	$=1 \mathrm{NT}\left(-15^{*} \operatorname{LN}(1-\mathrm{RAND}())+5\right.$	$=1 F(14<=D 15, D 15,114)$	$=1 F(\mathrm{D} 15>114,0,1)$	$=1 F(G 15,114-D 15,0)$	$=$ D15+E15+H15	$=1 F(\mathrm{D} 15>114, \mathrm{D} 15-114,0)$

Case-I

- Service time: time (in minutes) that follows integer exponential with mean $=15$ minutes and shift parameter $\delta=5$ minutes.(use integer function int(...))
- Arrival Process: The time between arrivals is exponential with mean $=10$ and shift parameter δ where $\delta \sim \operatorname{DU}[8,15]$ minutes
a. Data Table for 100 simulation runs, each run has 100 arrivals: Give the Average of (i), (ii) and(iii), standard deviation and 95\% confidence interval.
i. The average waiting time for a patient if he wait.
ii. The percentage that there is no patients in the clinic.
iii. The average number of patients served per hour.

Avg WT

Average	55.737	0.1276	2.7246
STDV	33.214	0.0640	0.1454
LB-95\%	49.147	0.1149	2.6958
UB-95\%	62.327	0.1403	2.7535

Statistics and Operations Research Dep.			
	Avg WT	prob. no patient	avg \# patients served/h
Average	55.259	0.1273	2.7295
STDV	33.579	0.0618	0.1178
LB-95\%	48.596	0.1151	2.7062
UB-95\%	61.922	0.1396	2.7529

Avg WT prob. no patient avg \# patients served/h

Average	58.009	0.1222	2.7124
STDV	32.981	0.0611	0.1192
LB-95\%	51.465	0.1101	2.6887
UB-95\%	64.553	0.1343	2.7361

b. The distribution of number of patients in the system $N(t)$ for $N=0,1,2,3,4,5,6,7,8,9,10$ only.

$\mathbf{N}(\mathbf{t})$	$\mathbf{P}(\mathbf{N}(\mathrm{t}) \boldsymbol{)}$
$\mathbf{0}$	0.1821
$\mathbf{1}$	0.2820
$\mathbf{2}$	0.1822
$\mathbf{3}$	0.1255
$\mathbf{4}$	0.1063
$\mathbf{5}$	0.0639
$\mathbf{6}$	0.0448
$\mathbf{7}$	0.0128
$\mathbf{8}$	0
$\mathbf{9}$	0
$\mathbf{1 0}$	0

$\mathrm{N}(\mathrm{t})$	$\mathrm{P}(\mathrm{N}(\mathrm{t}) \mathrm{I}$
0	0.06
1	0.14
2	0.09
3	0.05
4	0.12
5	0.27
6	0.13
7	0.09
8	0.04
9	0.00
10	0.00
sum	$\mathbf{1 . 0 0}$

Case-II

- Service Time:

Service Type	Percentage Patients	Service time
Service 1	45% of the patients	Discrete uniform [10, 20]
Service 2	35% of the patients	integer exponential with mean $=15$ minutes and shift parameter $\delta=5$ (use int(..))
Service 3	20% 0f the patients	Integer Gamma dist. With $\alpha=5$ and $\beta=4$

- Arrival Process: The time between arrivals is exponential with mean $=10$ and shift parameter δ where $\delta \sim \operatorname{DU}[8,15]$ minutes

Data Table for 100 simulation runs, each run has 100 arrivals: Give the Average of (i), (ii) and(iii), standard deviation and 95\% confidence interval.
i. The average waiting time for a patient if he wait.
ii. The percentage that there is no patients in the clinic.
iii. The average number of patients served per hour.

Avg WT prob. no patient avg \# patients served/h

Average	24.774	0.197	2.776
STDV	14.810	0.056	0.125
LB-95\%	21.835	0.186	2.751
UB-95\%	27.713	0.208	2.801

Avg WT prob. no patient avg \# patients served/h

Average	24.683	0.197	2.758
STDV	13.250	0.047	0.127
LB-95\%	22.054	0.188	2.733
UB-95\%	27.312	0.207	2.783

Avg WT prob. no patient avg \# patients served/h

Average	24.958	0.206	2.754
STDV	14.846	0.060	0.139
LB-95\%	22.012	0.194	2.726
UB-95\%	27.903	0.218	2.782

