Third Midterm Exam
 Year 1440-1441 H First Semester

Course name \& code	441	اسم ورمز المقرر
Date and Time	Wed. 4 - Dec.-2019 (12:00 pm 2 Hours)	الوقت والتاريخ
Instructor's Name	د.	أستاذ المادة

Student's Name		اسم الطالب(ه) الرقم الجاميي
Student's Uni.ID.		رقم الشعبة
Section No.		
Serial No.		

Question \#1:

A car repair workshop manager wants to develop a simulation model. For one particular repair, the times to completion can be represented by the following distribution (x in days):

$$
f(x)= \begin{cases}\frac{x}{8}-\frac{1}{4} ; & 2 \leq x \leq 4 \\ \frac{10}{24}-\frac{x}{24} ; & 4 \leq x \leq 10\end{cases}
$$

(a) Compute the CDF of the function $f(x)$.
(b) Give the inverse transform to generate random numbers for repair time.
(c) Using $\mathrm{U}[0,1]$ random number in the following table, using the inverse transform in part (b) to determine the time of each car repair.

Q\#1: $f(x)= \begin{cases}\frac{x}{8}-\frac{1}{4} ; & 2 \leq x \leq 4 \\ \frac{1}{24}(10-x) ; & 4 \leq x \leq 10\end{cases}$
(a) CDF: $2 \leq x \leq 4$
$F(x)=\int_{2}^{x} \frac{y}{8}-\frac{1}{4} d y$
$=\left[\frac{y^{2}}{16}-\frac{y}{4}\right]_{2}^{x}$
$=\frac{x^{2}}{16}-\frac{x}{4}+\frac{1}{4} ; \quad 2 \leq x \leq 4$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { CDF: } \\
F(x)=\int_{2}^{4} \leq x \leq 10 x \\
4 \\
f
\end{array}\right) d y+\int_{4}^{x} \frac{1}{24}(10-y) d y \\
& =1 / 4+\frac{1}{24}\left[10 y-\frac{1}{2} y^{2}\right]_{4}^{x} \\
& =2 \frac{10}{2} x-\frac{1}{48} x^{2}-\frac{52}{48} \\
& \text { for } 4 \leq x \leq 4
\end{aligned}
$$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\boldsymbol{U}[\mathbf{0}, \mathbf{1}]$	0.138	0.776	0.911	0.259	0.458	0.343	0.105	0.940	0.188	0.343
Repair Time	3.486	6.721	7.933	4.036	4.899	4.384	3.296	8.303	3.734	4.384

$$
\begin{aligned}
& \text { (b). Inverse } F(x)=u \text { uvU[0,1) } \text { Inverse } F(x)=u \\
& \begin{array}{l}
\frac{x^{2}}{16}-\frac{x}{4}+\frac{1}{4}=u \\
\Rightarrow \frac{x^{2}}{16}-\frac{10}{4}+\left(\frac{1}{4}-4\right)=0
\end{array} \quad \Leftrightarrow \frac{1}{48} x^{2}-\frac{1}{48} x^{2}-\frac{52}{48}=4 x+\left(\frac{52}{48}+4\right)=0 \\
& \begin{array}{l}
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}=\frac{-(-1) \pm \sqrt{1-4(1-4 u)(1 / 4)}}{2(1 / 4} \quad \therefore x=\frac{\left(\frac{10}{24}\right) \pm \sqrt{\left(\frac{10}{24}\right)^{2}-4\left(\frac{1}{48}\right)\left(\frac{52}{48}+4\right)}}{(2 / 48)}
\end{array} \\
& \begin{array}{l}
\Rightarrow x=2 \pm 2 \sqrt{4 u} \\
\text { take } \\
\frac{x}{2}=2+4 \sqrt{u}
\end{array} \\
& 2 \leq 2+4 \sqrt{u} \leq 4 \\
& 0 \leq 4 \sqrt{u} \leq 2 \\
& \Rightarrow 0 \leq u \leq 1 / 4 \\
& \therefore \quad x=10 \pm 24 \sqrt{\left(\frac{5}{12}\right)^{2}-\frac{4}{48}\left(\frac{13}{12}+4\right)} \\
& \begin{array}{l}
\text { since } 4 \leqslant x \leqslant 10 \\
\Rightarrow \text { Take } \begin{array}{l}
x=10-24 / \sqrt{\left(\frac{5}{12}\right)^{2}-\frac{4}{48}\left(\frac{13}{12}+\right.}
\end{array},
\end{array} \\
& \text { and } 1 / 4 \leqslant u \leqslant 1
\end{aligned}
$$

(d) Let the time between car arrival is shifted binomial distribution with parameters $n=3$ and $p=$ 0.45 with shift value δ where the shift value is uniform [1,3]. Write the algorithm for generating the arrival time of job (n).
Let T be the time between cars: $T=\delta+N$

1. Get $u_{1} \sim \mathbf{U}[0,1]$
2. Generate $\delta \sim \mathbf{U}[1,3]: \delta=1+2 \mathbf{u}_{1}$

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\boldsymbol{p}\{\boldsymbol{n}\}$	0.166	0.408	0.334	0.091
$\boldsymbol{C D F}\{\boldsymbol{N}\}$	0.166	0.575	0.909	1.000

3. Get $\mathbf{u}_{2} \sim \mathbf{U}[0,1]$
4. Generate N from inverse Binomal (3, $\mathrm{p}=0.45$)
5. Compute $T=\delta+N$
(e) Using $U[0,1]$ random number in the following table and using the answer in part (d), determine the arrival time of each car for repair.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\boldsymbol{U}_{1}[\mathbf{0 , 1}]$	0.301	0.120	0.491	0.145	0.448	0.048	0.049	0.846	0.590	0.509
$\boldsymbol{U}_{2}[\mathbf{0 , 1}]$	0.138	0.776	0.911	0.259	0.458	0.343	0.105	0.940	0.188	0.343
$\boldsymbol{\delta}$	1.60	1.24	1.98	1.29	1.90	1.10	1.10	2.69	2.18	2.02
Bin	0.00	2.00	3.00	1.00	1.00	1.00	0.00	3.00	1.00	1.00
Time bet. cars	1.60	3.24	4.98	2.29	2.90	2.10	1.10	5.69	3.18	3.02
Arr. Time	$\mathbf{1 . 6 0}$	4.84	9.82	$\mathbf{1 2 . 1 1}$	$\mathbf{1 5 . 0 1}$	$\mathbf{1 7 . 1 1}$	$\mathbf{1 8 . 2 0}$	23.90	27.08	30.09

(f) From you answers, compute the average rate of car arrival to the repair shop per week.

Total number of cars arrived in simulation = $\mathbf{1 0}$ cars
Total time for arrival $=\mathbf{3 0 . 0 9}$ days
Average number of cars per week $=(10$ cars $)(7$ days $) /(30.09)=2.33$ cars $/$ week
(g) From you answers, compute the average repair time.

Average repair time $=5.12$ days

Question \#2:
Busses arrive to a bus station at random. It is assumed that time between bus arrival is Erlang with parameters $k=2$ and $\lambda=4$ busses/hour. Each bus has a maximum of 5 seats. Any bus arrives to the station carries a random number of passengers. Past data shows that the distribution of number of passengers is binomial distribution with mean 3.5 passengers.
(a) Write the steps and required functions for simulation of bus arrival.
(b) Write the steps and functions for simulation of number of passengers in the bus.
(c) Using the following random $U[0,1]$, do simulation for bus arrivals during the first 1:30 hours and number of passenger in each bus.

BUS $\#$	$u_{1} \sim$ $U[0,1]$	$u_{2} \sim$ $U[0,1]$	$u_{3} \sim$ $U[0,1]$	$u_{4} \sim$ $U[0.1]$	$T(i)$	$A T(i)$	$N(i)$	
1	0.150	0.130	0.176	0.614	0.075	0.075	3	
2	0.339	0.180	0.453	0.301	0.153	0.229	3	
3	0.220	0.306	0.484	0.139	0.153	0.382	4	
4	0.516	0.603	0.949	0.666	0.412	0.792	5	
5	0.188	0.213	0.504	0.324	$0.1 / 2$	0.906	4	
6	0.804	0.755	0.465	0.237	0.759	4.665	3	
7	0.795	0.347	0.548	0.072	0.503	2.168	4	
8	0.918	0.355	0.206	0.118	0.735	2.903	3	
9	0.742	0.050	0.873	0.463	0.352	3.254	5	
10	0.385	0.196	0.517	0.011	0.176	$3.43)$	4	

NOTE: Use $u_{1}, u_{2}, u_{3}, u_{4}$, as needed for each bus.
(a) Process $\# 1:$ Buss Arrival. Time:

Let $T(i)$ time between buses $\Rightarrow T(i) \sim \operatorname{Er}[k=2, \lambda=4]$

$\pi(i)=-\frac{1}{4}\left(\operatorname{th}\left(1-u_{1}\right)+\ln \left(1-u_{2}\right)\right)$
2-get $T(i)$ $T(c)=-\frac{1}{4}\left(\ln \left(1-u_{1}\right)+\ln \left(1+u_{i}\right)\right)$
(b) Pracepge \#nos: \# of passengers in Buy il:
3. Ref $A T(i)=A(i-i)+T(i)$ Let $N(i)) \sim$ Binomial $\left(\right.$ mean $\left.=3.5^{\circ}\right) \quad$ max - seats $=15$
$\therefore n=5$ and kp =3.5 $\Rightarrow p=\frac{3.5}{5}=0.7$
$\therefore \operatorname{Pr}\{N=n\}=\binom{5}{n}(0.7)^{n}(0.3)^{5-n}$

n	0		2	3	4	5
$\operatorname{Pr}\{n\}$	0.00243	0.0284	0.1323	0.3087	0.3602	0.1681
Pinnsn	0.00243	0.0308	0.163	0.4718	0.8319	1.0

Question \#3:

Consider the following probability density function:

$$
f(x)=\frac{4}{80} x^{3} ; \quad 1 \leq x \leq 3
$$

Assume that there are two types of breakdowns happen on a machine: BKD-1 and BKD-2. BKD-1 needs a random amount to repair and it follows the pdf in (a). BKD-2 needs a random amount to repair and it follows the exponential distribution with mean 2 hours. From past data 40% of the time BKD-1 happens.
(a) and the time Let Y be the repair time. Write the CDF of $Y(F(y))$
(b) Write the steps to generate observations for the repair time.
(c) Use the following table for simulation of 5 breakdowns in the machine.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{U}_{1}[0,1]$	0.0129	0.1164	0.6804	0.9513	0.2017
$\mathbf{U}_{2}[\mathbf{0}, 1]$	0.804	0.755	0.465	0.237	0.1105
Type of breakdown	$B K D 1$	$B K D 1$	$B K D 2$	$B K D 2$	$B K D 1$
Repair Time of BKD	2.8429	2.799	$0.3 / 274$	0.1353	1.771

(a) y : repair time $\Rightarrow C D F Y$

Step)
1 get $u_{1} \sim U$
2. Test u_{1}

$$
\begin{aligned}
& \text { if } u_{1} \leq 0.4 \Rightarrow B K D 1 \\
& \text { if } u_{1}>0.4 \Rightarrow B K D 2
\end{aligned}
$$

$\begin{aligned} & \text { 3. get } u_{2} \\ & \text { if } B K D I\end{aligned} \rightarrow Y=\sqrt[4]{80 u+1}$

Page 4 of 5

Question \#4:

1. If time between event is integer random uniform between 5 min and 10 min . Write the Excel function in the screen shot for generating the time for $1^{\text {st }}$ and $2^{\text {nd }}$ events.

		$\cdots \times \times$ fx		
1	A	B	c	D
1				
2		$u^{\sim} \cup(0,1)$	Time Between	Event Time
3	Event 1	RAND()	$=5+\operatorname{INT}(6$ * B3)	C3
4	Evant 2	RAND()	$=5+\operatorname{INT}\left(6{ }^{*} \mathrm{~B} 4\right)$	C4 + D3
5	Evant 3	RAND()	$=5+\operatorname{INT}(6$ * B5)	C5 + D4
6				
7				
8				

2. If time between events is continuous random uniform between 5 min and 10 min . Write the Excel function in the screen shot for generating the time for $1^{\text {st }}, 2^{\text {nd }}$ events and $3^{\text {rd }}$ event.

3. If time between events is random with integer values from Normal distribution with positive values only and with parameters $\mu=3, \sigma=9$. Write the Excel function in the screen shot for generating the time for $1^{\text {st }}, 2^{\text {nd }}$ events and $3^{\text {rd }}$ event.

