Third Midterm Exam						
	Year 1440-1441 H First Semester					
Course name & code	441 بحث – النمذجة والمحاكاة OPER 441 – Modeling and Simulation	اسم ورمز المقرر				
Date and Time	Wed. 4 – Dec.–2019 (12:00 pm 2 Hours)	الوقت والتاريخ				
Instructor's Name	د. خالد النويبت Dr. Khalid Alnowibet	أستاذ المادة				

Student's Name	اسم الطالب(ـه)
Student's Uni.ID.	الرقم الجامعي
Section No.	رقم الشعبة
Serial No.	الرقم التسلسلي

Question #1:

A car repair workshop manager wants to develop a simulation model. For one particular repair, the times to completion can be represented by the following distribution (*x* in days):

$$f(x) = \begin{cases} \frac{x}{8} - \frac{1}{4} & ; \quad 2 \le x \le 4 \\ \frac{10}{24} - \frac{x}{24} & ; \quad 4 \le x \le 10 \end{cases}$$

- (a) Compute the CDF of the function f(x).
- **(b)** Give the inverse transform to generate random numbers for repair time.
- **(c)** Using U[0,1] random number in the following table, using the inverse transform in part (b) to determine the time of each car repair.

	1	2	3	4	5	6	7	8	9	10
U[0,1]	0.138	0.776	0.911	0.259	0.458	0.343	0.105	0.940	0.188	0.343
Repair Time										

- (d) Let the time between car arrival is shifted binomial distribution with parameters n = 3 and p = 0.45 with shift value δ where the shift value is uniform [1,3]. Write the algorithm for generating the arrival time of job (n).
- **(e)** Using U[0,1] random number in the following table and using the answer in part (d), determine the arrival time of each car for repair.

	1	2	3	4	5	6	7	8	9	10
U ₁ [0,1]	0.301	0.120	0.491	0.145	0.448	0.048	0.049	0.846	0.590	0.509
U ₂ [0,1]	0.138	0.776	0.911	0.259	0.458	0.343	0.105	0.940	0.188	0.343
Time bet.										
cars										
Arr. Time										

- **(f)** From you answers, compute the average rate of car arrival to the repair shop per week.
- **(g)** From you answers, compute the average repair time.

Question #2:

Busses arrive to a bus station at random. It is assumed that time between bus arrival is Erlang with parameters k=2 and $\lambda=4$ busses/hour. Each bus has a maximum of 5 seats. Any bus arrives to the station carries a random number of passengers. Past data shows that the distribution of number of passengers is binomial distribution with mean 3.5 passengers.

- **(a)** Write the steps and required functions for simulation of bus arrival.
- **(b)** Write the steps and functions for simulation of number of passengers in the bus.
- **(c)** Using the following random U[0,1], do simulation for bus arrivals during the first 1:30 hours and number of passenger in each bus.

BUS #	<i>u</i> ₁ ~ U[0,1]	<i>u</i> ₂ ~ U[0,1]	<i>u</i> ₃ ~ U[0,1]	u ₄ ~ U[0,1]		
1	0.150	0.130	0.176	0.614		
2	0.339	0.180	0.453	0.301		
3	0.220	0.306	0.484	0.139		
4	0.516	0.603	0.949	0.666		
5	0.188	0.213	0.504	0.324		
6	0.804	0.755	0.465	0.237		
7	0.795	0.347	0.548	0.072		
8	0.918	0.355	0.206	0.118		
9	0.742	0.050	0.873	0.463		
10	0.385	0.196	0.517	0.011		

NOTE: Use u_1 , u_2 , u_3 , u_4 , as needed for each bus.

Question #3:

Consider the following probability density function:

$$f(x) = \frac{4}{80}x^3; \quad 1 \le x \le 3$$

Assume that there are two types of breakdowns happen on a machine: BKD-1 and BKD-2. BKD-1 needs a random amount to repair and it follows the pdf in (a). BKD-2 needs a random amount to repair and it follows the exponential distribution with mean 2 hours. From past data 40% of the time BKD-1 happens.

- (a) and the time Let Y be the repair time. Write the CDF of Y(F(y))
- (b) Write the steps to generate observations for the repair time.
- **(c)** Use the following table for simulation of 5 breakdowns in the machine.

	1	2	3	4	5
U ₁ [0,1]	0.0129	0.1164	0.6804	0.9513	0.2017
U ₂ [0,1]	0.804	0.755	0.465	0.237	0.1105
Type of breakdown					
Repair Time of BKD					

Question #4:

1. If time between event is integer random uniform between 5 min and 10 min. Write the Excel function in the screen shot for generating the time for 1^{st} and 2^{nd} events.

	0.112.00			
0	32	T : X <	f _x	
4	Α	В	С	D
1				
2		u~U(0,1)	Time Between	Event Time
3	Event 1			
4	Evant 2			
5	Evant 3			
6				
6 7 8				
8				

2. If time between events is continuous random uniform between 5 min and 10 min. Write the Excel function in the screen shot for generating the time for 1^{st} , 2^{nd} events and 3^{rd} event.

3. If time between events is random with integer values from Normal distribution with positive values only and with parameters μ = 3 , σ =9. Write the Excel function in the screen shot for generating the time for 1^{st} , 2^{nd} events and 3^{rd} event.

