استعن بالله أولا.. وكن على يقين بأن كل ما ورد في هذه الورقة تعرفه جيدا وقد تدربت عليه بما فيه الكفاية، فكن مطمئناً

College of Science. Department of Statistics & Operations Research

كلية العثرم قسم الإحصاء ويحوث العبليات

Second Midterm Exam Academic Year 1443-1444 Hijri- First Semester

	تحان Exam Information	معقومات الامة	
Course name	Modeling and Simulation	التبقحة والمحاكاة	ابيم العقرن
Course Code	OPER 441	441 يحث	بينم ب <u>صرر</u> رمز المقرر
Exam Date	2021-11-24	1443-04-19	ربير المقرر تاريخ الامتحان
Exam Time	12: 30 P		تازيخ «ومنتان وقت الامتحان
Exam Duration	2 hours	ساعتان	ويت الاستحان مدة الاستحان
Classroom No.			مدة الامتحال رقِم قاعة الاختيار
Instructor Name			رعم فاعه الاحتيار

Stud	ent Information مطهمات الطالب	· ·
Student's Name	في مالد القريشي	ابيد الطائب
ID number	435201023	البرقم الجامعي
Section No.	13780146-	
Serial Number	1	رقم الشعبة
General Instructions:		الرقم التسلسلي

 Your Exam consists of (except this paper)

PAGES

 Keep your mobile and smart watch out of the classroom.

يجب إبقاء الهواتف والساعات النكبة خارج قاعة الامتحان.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	To know the basics of pseudo random generation and apply different methods of random generation techniques			Score
2	Chose and fit theoretical distribution on collected data			
3	Define and compute performance measures from simulation models		-	
4	Recognize and analyze simple models and its main elements for simulation		11.53	
\perp	simulation models			
6	use appropriate statistical techniques to analyze and evaluate outputs of simulation models			
7	Generate random variates from different probability functions and directly from collected data			
8	build simple simulation models of real-life problems	N. C.		

OR 441 – Modeling and Simulation Dr. Khalid Alnowibet

Question #1:

Given the *LCG* with a = 5, c = 1 and m = 19. Answer the following:

- Does this generator have a full cycle? Prove your answer?
- Using this LCG and a seed value $R_0 = 13$, simulate tossing an unfair coin with $P\{H\} = 0.6$ until head appear twice.

1. Cond 1 m and c most have no commun deviser other than 1

2. if 2 is a prime number that devider in then it should devide (a-1)

pime numbers in
$$m = \{1, 19\}$$
 then $a-1 = \frac{4}{1} = 4$

of (a-1) then cond #2 does not hold which mean not all three conditions $=\frac{4}{19} =$ Since 19 is not a devider were satisfied so this LGG does not have a full period.

$$2$$
 $R_0 = 13$, $\alpha = 9$, $C = 1$, $m = 19$

$$R_1 = (qR_0 + c) \mod m = (5(13) + 1) \mod 19 = 66 - 19(3) = 9$$

$$V_1 = \frac{R_1}{m} = \frac{q}{19} = 0.473$$

$$R_2 = (5(9) + 1) \mod 19 = 46 - 19(2) = 8$$
, $U_2 = \frac{8}{19} = 0.421$

$$R_3 = (5(8)+1) \mod 19 = 41 - 19(2) = 3$$
, $U_3 = \frac{3}{19} = 0.157$
 $R_4 = (5(3)+1) \mod 19 = 10$

$$R_{+} = (5(3)+1) \mod 19 = 16-19(0) = 16$$
, $V_{4} = \frac{3}{19} = 0.15$
 $R_{5}(5(16)+1) \mod 19 = 81-19(4)$ [5]

$$R_{5}(5(16)+1) \mod 19 = 81 - 19(4) = 511$$

$$R_{5}(5(16)+1) \mod 19 = 16-19(0) = 16, \ U_{4} = \frac{16}{19} = 0.84$$

$$R_{5}(5(16)+1) \mod 19 = 81-19(4) = 5$$

$$R_{6}(5(5) \text{rage}^{\frac{1}{2}} \text{ or } 6) \mod 19 = 26-19(1) = 7$$

$$R_{6}(5(5) \text{rage}^{\frac{1}{2}} \text{ or } 6) \mod 19 = 26-19(1) = 7$$

$$R_{6}(5(5)_{\text{nage}} \frac{1}{2} \text{ or } 6) \text{ mod } 19 = 26 - 19(1) = 7$$

$$R_{7}(5(7) + 1) \text{ mod } 19 = 36 - 19(1) = 7$$

$$R_{8}(5(17) + 1) \text{ mod } 19 = 86 - 19(4) = 10$$

$$R_{8}(5(17) + 1) \text{ mod } 19 = 86 - 19(4) = 10$$

$$R_{8}(5(17) + 1) \text{ mod } 19 = 86 - 19(4) = 10$$

$$R_8(5(17)+1) \mod 19 = 36 - 19(1) = 17$$

$$V_7 = \frac{17}{19} = 0.894$$

12

كليه العلوم العليات العمليات

Question #2:

The period of time (in months) between rainfalls in Abha city is modeled using the following pdf:

$$f(x) = 1.06 e^{\frac{-x}{2}}$$
 ; $1 \le x \le 4$

Where random variable X is time between rainfalls in months.

- a) Write the inverse transform for measuring the time between rainfalls.
- b) Simulate the next 4 rainfalls (in months) in Abha city.
- c) If the we want to simulate the rainfall that is at least 8 months from now. Write the simulated values.

$0.507 \qquad 0.103 \qquad 0.362 \qquad 0.029 \qquad 0.584$ $0.068 \qquad 0.420 \qquad 0.742 \qquad 0.653 \qquad 0.021$ $0.432 \qquad 0.714 \qquad 0.259 \qquad 0.799 \qquad 0.207$ $0.896 \qquad 0.237 \qquad 0.929 \qquad 0.270 \qquad 0.524$ $0.108 \qquad 0.183 \qquad 0.466 \qquad 0.721 \qquad 0.793$ $0.108 \qquad 0.131 \qquad 0.321 \qquad 0.868 \qquad 0.428 \qquad 0.160$ $1 \cdot C \cdot df = \int \cdot of e^{-\frac{x^2}{2}} dx = \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} = \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + \frac{1 \cdot of e^{-\frac{1}{2}}}{\frac{1}{2}}$ $= \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + 1 \cdot 285 = u = F(x)$ $u = \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + 1 \cdot 285 = 1 \cdot of e^{-\frac{x^2}{2}}$ $= \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + \frac{1 \cdot 285}{\frac{1}{2}} = \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}}$ $= \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}}$ $= \frac{1 \cdot of e^{-\frac{x^2}{2}}}{\frac{1}{2}} + 1 \cdot of e$	31	mulated values.					
$0.432 0.714 0.259 0.799 0.207$ $0.896 0.237 0.929 0.270 0.524$ $0.108 0.183 0.466 0.721 0.793$ $0.131 0.321 0.868 0.428 0.160$ $1 \cdot C df = \int \cdot \cdot$		0.507	0.103	0.362	0.029	0.584	
$0.896 \qquad 0.237 \qquad 0.929 \qquad 0.270 \qquad 0.524$ $0.108 \qquad 0.183 \qquad 0.466 \qquad 0.721 \qquad 0.793$ $0.131 \qquad 0.321 \qquad 0.868 \qquad 0.428 \qquad 0.160$ $1 \cdot C df = \int .06e^{-\frac{x}{2}} dx = \frac{1.06e^{-\frac{x}{2}}}{-\frac{1}{2}} = \frac{1.06e^{-\frac{x}{2}}}{\frac{1}{2}} + \frac{1.06e^{-\frac{1}{2}}}{\frac{1}{2}}$ $= \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + 1.285 = u = F(x)$ $u = \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + 1.285 = u - 1.285 = \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}}$ $= \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + 1.285 = \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + \frac{1.06e^{-\frac{x}{2}}}{\frac{1}{2}}$ $= \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + \frac{1.285}{\frac{1}{2}} = \frac{1.06e^{-\frac{x}{2}}}{\frac{1}{2}} + \frac{1.06e^{-\frac{x}{2}}}{\frac{1}{2}} = \frac{1.06e^{-\frac{x}{2}}}{\frac{1}{2}} + \frac{1.285}{\frac{1}{2}} = \frac{1.06e^{-\frac{x}{2}}}{\frac{1}{2}} = \frac{1.06e^{-\frac{x}{2}}}{\frac{1}{2}}$	`	0.068	0.420	0.742	0.653	0.021	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.432	0.714	0.259	0.799	0.207	
$u = \frac{1}{2} + 1.285 = u = F(x)$ $u = \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + 1.285 = u - 1.285 = \frac{-1.06e^{\frac{x}{2}}}{\frac{1}{2}}$ $= y \frac{1}{2}(u - 1.285) = -1.06e^{-\frac{x}{2}}$ $= y - \frac{(u - 1.285)}{2(1.06)} = e^{-\frac{x}{2}} = \ln(\frac{-(u - 1.285)}{2(1.06)}) = \frac{x}{2}$							
$u = \frac{1}{2} + 1.285 = u = F(x)$ $u = \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + 1.285 = u - 1.285 = \frac{-1.06e^{\frac{x}{2}}}{\frac{1}{2}}$ $= y \frac{1}{2}(u - 1.285) = -1.06e^{-\frac{x}{2}}$ $= y - \frac{(u - 1.285)}{2(1.06)} = e^{-\frac{x}{2}} = \ln(\frac{-(u - 1.285)}{2(1.06)}) = \frac{x}{2}$		0.108	0.183	0.466	0.721	0.793	
$u = \frac{1}{2} + 1.285 = u = F(x)$ $u = \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + 1.285 = u - 1.285 = \frac{-1.06e^{\frac{x}{2}}}{\frac{1}{2}}$ $= y \frac{1}{2}(u - 1.285) = -1.06e^{-\frac{x}{2}}$ $= y - \frac{(u - 1.285)}{2(1.06)} = e^{-\frac{x}{2}} = \ln(\frac{-(u - 1.285)}{2(1.06)}) = \frac{x}{2}$	2	0.131	0.321	0.868	0.428	0.160	
$u = \frac{1}{2} + 1.285 = u = F(x)$ $u = \frac{1.06e^{\frac{x}{2}}}{\frac{1}{2}} + 1.285 = u - 1.285 = \frac{-1.06e^{\frac{x}{2}}}{\frac{1}{2}}$ $= y \frac{1}{2}(u - 1.285) = -1.06e^{-\frac{x}{2}}$ $= y - \frac{(u - 1.285)}{2(1.06)} = e^{-\frac{x}{2}} = \ln(\frac{-(u - 1.285)}{2(1.06)}) = \frac{x}{2}$	1. Cdf = 5	1.06 e 2 d	x =	·06e x	=-1.066	$-\frac{x}{2}$	6 e = 1
$= \frac{1}{2}(u-1.285) = -1.06e^{\frac{1}{2}} = \frac{1}{2}(u-1.285) = e^{\frac{1}{2}} \ln(\frac{-(u-1.285)}{2(1.06)}) = \frac{\chi}{2}$ $-2\ln(\frac{-(u-1.285)}{2(1.06)}) = \chi$	= -1.060 = +	1.285 = (1 = F (x) 1	2		1 2
$= \frac{1}{2}(u-1.285) = -1.06e^{\frac{1}{2}} = \frac{1}{2}(u-1.285) = e^{\frac{1}{2}} \ln(\frac{-(u-1.285)}{2(1.06)}) = \frac{\chi}{2}$ $-2\ln(\frac{-(u-1.285)}{2(1.06)}) = \chi$	$u = \frac{-1.06e^{\frac{2}{2}}}{\frac{1}{2}}$	-1.285 =>	u _ 1. ?	185 = -1.06	$\frac{-x}{2}$		
	$= \frac{1}{2}(u-1.2)$	85)= -1.	06e =	-y-(u-1.2)	85) ₌ e	$\frac{x}{2} = \ln(-(u)$	-1,285))=-2
$0 = 0.507, \chi = -2 \ln \left(\frac{-(0.507 - 1.285)}{2(1.06)} \right) = 2.004$	20					1341	(.06)
	V = 0.507	$, \chi = -2 \ln x$	(-(0.50	7-1.285)	2.004		

$$U = 0.507, \quad \chi = -2 \ln \left(\frac{-(0.507 - 1.285)}{2(1.06)} \right) = 2.004$$

$$U = 0.103, \quad \chi = -2 \ln \left(\frac{-(0.103 - 1.285)}{2(1.06)} \right) = 1.168$$

$$U = 0.362, \quad \chi = -2 \ln \left(\frac{-(0.362 - 1.285)}{2(1.06)} \right) = 1.663$$

$$U = 0.029, \quad \chi = -2 \ln \left(\frac{-(0.024 - 1.285)}{2(1.06)} \right) = 1.663$$
Page 3 of 6
$$\chi = -2 \ln \left(\frac{-(0.024 - 1.285)}{2(1.06)} \right) = 1.046$$

Question #3:

Students arrive at a self-service cafeteria at the rate of one every 30 ± 20 seconds. Is estimated that 40% of students go to the sandwich bar, where every student prepares has own sandwich in 60 ± 30 seconds. The rest go to the main counter, where one server spoons the prepared meal onto a plate in 45 ± 30 seconds. All students take their seats in the cafeteria and spend 20 ± 10 minutes eating. After eating, 10% of the students go back for dessert, and return to their table to spend an additional 10 ± 2 minutes in the cafeteria.

- 1. Simulate until $\frac{1}{20}$ people have left the cafeteria using the following table of U[0,1] numbers.
- 2. At the final simulation time, estimate the following from the simulation data:
 - a. How many students are still in the cafeteria
 - b. What percentage of students at the sandwich bar.
 - c. What percentage of students at the main course counter.
 - d. What percentage of students on tables
 - e. What percentage of students take dessert.
- 3. From the simulation data, what is the average time that a student who gets a sandwich spends in the cafeteria until he leaves after finishing his entire meal.

Std 1	0.454	0.516	0.922	0.405	0.965	0.686	0.623	0.327
Std 2	0.046	0.239	0.356	0.686	0.577	0.234	0.439	0.588
Std 3	0.024	0.034	0.134	0.534	0.648	0.244	0.525	0.340
Std 4	0.162	0.032	0.224	0.209	0.441	0.493	0.850	0.607
Std 5	0.359	0.946	0.607	0.420	0.058	0.197	0.336	0.353
Std 6	0.908	0.385	0.181	0.683	0.067	0.856	0.736	0.328
Std 7	0.287	0.537	0.196	0.087	0.297	0.772	0.564	0.633
Std 8	0.980	0.383/	0.485	0.909	0.061	0.201	0.356	0.361
Std 9	0.253	0.671	0.545	0.765	0.651	0.030	0.839	0.546
Std 10	0.160	0.498	0.090	0.432	0.187	0.588	0.248	0.954

OR 441 - Modeling and Simulation Dr. Khalid Alnowibet

Question #4:

A traffic department of a small city wants to simulate the occurrence time for the accident in an intersection using some different choices of distributions to estimate the number of accidents per month (30 days). Use the following U(0,1) numbers to compute the simulation under the following assumptions.

- 1. Estimate the number of accidents in the 1st month assuming the time between accident is an exponential distribution with mean 4 days.
- 2. Estimate the number of accidents in the 1st month assuming the time between accident is a discrete uniform distribution with mean 4 days and ±2 days.
- 3. Estimate the number of accidents in the 1st month assuming the time between accident is Binomial distribution with parameters n = 6 and p = 0.75.
- 4. Compare the result from simulation in (1), (2) and (3) with exact mean for each question.

4. Compare the result from simulation in (1), (2) and (3) w

$$\frac{1}{2} \exp cdf = 1 - e^{-\Theta x}$$

$$= 1 - e^{-\frac{1}{4}(30)}$$

$$= 1 - e^{-\frac{1}{4}(30)}$$

$$= (x - a)$$

$$= (x - a)$$

$$-2 < x < 2$$

$$= (30 + 2)$$

$$= 8$$
3) binomial $(x) = x$

$$(x - a)$$

needed) finish	niform nun by column all number then move t	s until you s in the
Part 1	Part 2	↓ Part3
0.737	0.454	0.516
0.293	0.046	0.239

Ψ Part 1	<u> </u>	<u> </u>
0.737	0.454	0.516
0.293	0.046	0.239
0.136	0.024	0.034
0.848	0.162	0.032
0.692	0.359	0.946
0.727	0.908	0.385
0.116	0.287	0.537
0.074	0.980	0.383
0.262	0.253	0.671
0.385	0.160	0.498
0.317	0.815	0.328
0.923	0.500	0.336
0.057	0.872	0.600
0.441	0.993	0.965

OR 441 - Modeling and Simulation Dr. Khalid Alnowibet

كسلية السعلوم نسم الاحصساء وبحوث العسليات

Question #5:

Consider a continuous random variable with the following pdf:

$$f(x) = \begin{cases} \frac{1}{2} & 0 \le x \le 1\\ \frac{3}{4} - \frac{x}{4} & 1 \le x \le 3 \end{cases}$$

- (a) Construct the algorithm for obtaining random numbers from f(x) using the inverse transform method.
- (b) Using your answer in (a), give 10 random numbers from f(x) using the following uniform numbers.

1	2	3	4	5	6	7	8	9	10
0.387	0.336	0.466	0.074	0.184	0.336	0.900	0.875	0.475	0.636

(c) Assume that the variable X represents the time between arrival to a service station (in hours). The station work hours are from 8 am to 3 pm. The owner wants to determine the expected number arrivals per day using simulation output for 3 days. Using the following uniform numbers for each day, estimate the average number of arrivals per day.

	Day-1	Day-2	Day-3
1	0.194	0.489	0.029
2	0.790	0.300	0.800
3	0.084	0.791	0.764
4	0.111	0.918	0.553
5	0.954	0.638	0.452
6	0.723	0.890	0.744
7	0.551	0.079	0.139
8	0.919	0.926	0.281
9	0.337	0.310	0.384
10	0.831	0.086	0.100

a)
$$cdf \int \frac{1}{2} dx + \int \frac{3}{4} - \frac{\chi}{8} dx = \frac{1}{2} [\chi] + \frac{3\chi}{4} - \frac{\chi^{2}}{8}$$

$$= \frac{\chi}{2} + \frac{3\chi}{4} - \frac{\chi}{8} = \frac{10\chi - \chi^{2}}{8} = \frac{80\chi - 8\chi^{2}}{64} = \frac{8(10\chi - \chi^{2})}{64}$$

$$= \frac{10\chi - \chi^{2}}{8}$$