King Saud University/College of Sciences/Department of Mathematics Semester 442 / MATH-244 / Quiz-2

Max. Marks: 10

Max. Time: 35 Min.

Note: Choose the correct answers to all the 6 questions. Calculators are not allowed!

Question 1 [Marks: 1.5]: Let $B = \{(2, 1, 0), (-3, 0, 1)\}$ be a given basis for the null space N(A), where $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \end{bmatrix}$. Find the vector $u \in N(A)$ that has the coordinate vector $[u]_B = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$. (a) u = (-3, 0, 1) (b) u = (-9, -3, 1) (c) u = (-3, 1, 0) (d) u = (-6, -3, 0).

Question 2 [Marks: 2]: Let $B = \{b_1, b_2, b_3\}$ and $C = \{c_1, c_2, c_3\}$ be two ordered bases for the Euclidean space \mathbb{R}^3 . If $_{CP_B} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ is the transition matrix from B to C, then find the coordinate vector $[b_1 - b_3 + b_2]_C$.

(a)
$$\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1\\ -1\\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix}$.

<u>Question 3</u> [Marks: 1.5]: If $nullity(A^T) = 3$ where A is a matrix of size 9×5 , then find rank(A). (a) 1 (b) 2 (c) 3 (d) 6.

Question 4 [Marks: 1.5]: Let $M_{2\times 2}(\mathbb{R})$ be the vector space of all 2 × 2 real matrices with the standard inner product. Which of the following statements is correct if $A = \begin{bmatrix} -3 & 1 \\ 4 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix}$?

(a) Angle between A and B is 60°

(b) *A* and *B* are linearly dependent

(c) A and B are orthogonal

(d) $\{A, B\}$ is a basis for $M_{2\times 2}(\mathbb{R})$.

Question 5 [Marks: 2]: If $E = \{a, b, c\}$ is an orthogonal set of non-zero vectors in the Euclidean space \mathbb{R}^4 , then which of the following statements is true?

- (a) *E* is an orthonormal basis for \mathbb{R}^3 .
- (b) $span(\mathbf{E})$ is a proper subspace of \mathbb{R}^3 .
- (c) E is an orthogonal basis of span(E).
- (d) *E* is linearly dependent in \mathbb{R}^4 .

Question 6 [Marks: 1.5]: Let $V \neq \{0\}$ be a finite-dimensional inner product space. Which of the following statements is correct?

- (a) **V** is a basis of itself.
- (b) **V** may not have any basis.
- (c) **V** is a finite set.
- (d) **V** must have an orthonormal basis.