King Saud University/College of Sciences/Department of Mathematics Semester 442 / MATH-244 / Quiz-2

Max. Marks: 10
Max. Time: $\mathbf{3 5}$ Min.

Note: Choose the correct answers to all the $\mathbf{6}$ questions. Calculators are not allowed!

Question 1 [Marks: 1.5]: Let $B=\{(2,1,0),(-3,0,1)\}$ be a given basis for the null space $N(A)$, where $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & -6\end{array}\right]$. Find the vector $u \in N(A)$ that has the coordinate vector $[u]_{B}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
(a) $u=(-3,0,1)$
(b) $u=(-9,-3,1)$
(c) $u=(-3,1,0)$
(d) $u=(-6,-3,0)$.

Question 2 [Marks: 2]: Let $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ and $C=\left\{c_{1}, c_{2}, c_{3}\right\}$ be two ordered bases for the Euclidean space \mathbb{R}^{3}. If ${ }_{C} P_{B}=\left[\begin{array}{rrr}1 & 2 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 1\end{array}\right]$ is the transition matrix from B to C, then find the coordinate vector $\left[b_{1}-b_{3}+b_{2}\right]_{c}$.
(a) $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$.

Question 3 [Marks: 1.5]: If $\operatorname{nullity}\left(A^{T}\right)=3$ where A is a matrix of size 9×5, then find $\operatorname{rank}(A)$.
(a) 1
(b) 2
(c) 3
(d) 6 .

Question 4 [Marks: 1.5]: Let $M_{2 \times 2}(\mathbb{R})$ be the vector space of all 2×2 real matrices with the standard inner product. Which of the following statements is correct if $A=\left[\begin{array}{cc}-3 & 1 \\ 4 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 4 \\ -1 & 3\end{array}\right]$?
(a) Angle between A and B is 60°
(b) A and B are linearly dependent
(c) A and B are orthogonal
(d) $\{A, B\}$ is a basis for $M_{2 \times 2}(\mathbb{R})$.

Question 5 [Marks: 2]: If $\boldsymbol{E}=\{a, b, c\}$ is an orthogonal set of non-zero vectors in the Euclidean space \mathbb{R}^{4}, then which of the following statements is true?
(a) \boldsymbol{E} is an orthonormal basis for \mathbb{R}^{3}.
(b) $\operatorname{span}(\boldsymbol{E})$ is a proper subspace of \mathbb{R}^{3}.
(c) \boldsymbol{E} is an orthogonal basis of $\operatorname{span}(\boldsymbol{E})$.
(d) \boldsymbol{E} is linearly dependent in \mathbb{R}^{4}.

Question 6 [Marks: 1.5]: Let $\boldsymbol{V} \neq\{\mathbf{0}\}$ be a finite-dimensional inner product space. Which of the following statements is correct?
(a) \boldsymbol{V} is a basis of itself.
(b) \boldsymbol{V} may not have any basis.
(c) \boldsymbol{V} is a finite set.
(d) \boldsymbol{V} must have an orthonormal basis.

