King Saud University	MATH 240 (Linear Algebra)
----------------------	---------------------------

Department of Mathematics 2ndMidterm

First Semester 1445 H

Duration:90 Minutes

Student Name:

Serial Number:

Question Number	I	II		III	IV		Total
Mark							
Question Number	1	2	3	4	5	6	Total
Answer							

Question I:

Choose the correct answer, then fill in the table above:

(1) If
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 and $B = \begin{bmatrix} 2a_{31} & 2a_{32} & 2a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{31} \end{bmatrix}$, then they have the same

- (a) row vectors (b) row space (c) column vectors (d) None of the previous

(2) Let
$$S = \{ x^3, 4x^2, x - 1, 3x, -2 \}$$
 be a subset of P_3 then S is

- (a) Linearly independent but does not span P_3 (b) Spans P_3 but is not linearly independent
- (c) a basis for P_3

(d) None of the previous

(3) Which of the following are subspace of R^3

(a) all vectors of the form (2a, a + c, c) (b) all vectors of the form (a, 1, 1)

(c) all vectors of the form (a, b, a - 1) (d) None of the previous

(4) The coordinate vector of u = (1, 4) relative to the basis $v_1 = (1, 1)$ and

 $v_2 = (1, 0)$ is

- (a) (4,-2) (b) (4,-3) (c) (1,-3) (d) None of the previous

(6) Let $M_{5\times 6}$ be the space of all 5×6 matrices then the number of vectors in any basis of $M_{5\times 6}$ is

- (a)11
- (b)30
- (c)1
- (d) None of the previous

Question II:

Find a basis and the dimension of the solution space of the homogeneous system

$$\begin{cases} x + y + 2z + w = 0 \\ -x - 2y + 3z + 2w = 0 \end{cases}$$

Question III: If $B = \{(2, 1, 1), (2, -1, 1), (1, 2, 1)\}$

and $B' = \{(3,1,-5),(1,1,-3),(-1,0,2)\}$ are bases for R^3 , then find the transition matrix B to B'.

Question IV:

Find a basis for the row space of the matrix $A = \begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2 \end{bmatrix}$ consisting entirely of row vectors from A.

Question V:

(a) Show that $S = \{(1, 2, 1), (3, 3, 4), (2, 9, 0)\}$ is a basis for R^3

(b) If $v = (4, -1, 2) \in R^3$. Then find $(v)_S$.

(c) If $(u)_S = (2, 0, 5)$ then find u.