

Second Mid Term Exam, S2 1443 M 380 – Stochastic Processes

Time: 90 minutes - Marks: 25

Answer the following questions.

Q1: [2+6]

- (a) Define a martingale.
- (b) Suppose $X_1, X_2, X_3, ...$ are identically independent distributed random variables where

$$\Pr\left\{\mathbf{X}_{k}=1\right\}=\Pr\left\{\mathbf{X}_{k}=-1\right\}=\frac{1}{2} \ \ \text{and} \ \ S_{n}=\sum_{k=1}^{n}\mathbf{X}_{k}. \ \ \text{Show that} \ \ S_{n} \ \text{is a martingale}.$$

Q2: [4+4]

(a) For the Markov process $\{X_t\}$, t=0,1,2,...,n with states $i_0,i_1,i_2,\ldots,i_{n-1},i_n$

$$\text{Prove that:} \ \ \Pr \left\{ \mathbf{X}_0 = \mathbf{i}_0, \mathbf{X}_1 = \mathbf{i}_1, \mathbf{X}_2 = \mathbf{i}_2, \, \dots \, , \mathbf{X}_n = \mathbf{i}_n \right\} = p_{i_0} P_{i_0 i_1} P_{i_1 i_2} \dots \, P_{i_{n-1} i_n} \, \text{where} \ \ p_{i_0} = \Pr \left\{ \mathbf{X}_0 = \mathbf{i}_0 \right\}$$

(b) A Markov chain $X_0, X_1, X_2, ...$ has the transition probability matrix

$$\begin{array}{c|cccc}
0 & 1 & 2 \\
0 & 0.2 & 0.3 & 0.5 \\
\mathbf{P} = 1 & 0.4 & 0.2 & 0.4 \\
2 & 0.5 & 0.3 & 0.2
\end{array}$$

 $\text{and initial distribution} \quad p_0 = \text{pr}\left\{X_0 = 0\right\} = 0.3, \quad p_1 = \text{pr}\left\{X_0 = 1\right\} = 0.5 \quad \text{and} \quad p_2 = \text{pr}\left\{X_0 = 2\right\} = 0.2.$

 $\text{Determine the probabilities} \quad \text{pr}\left\{X_0=1, X_1=1, X_2=0\right\} \ \text{and} \quad \text{pr}\left\{X_1=1, X_2=1, X_3=0\right\}.$

Q3: [5+4]

(a) Consider a spare parts inventory model in which either 0, 1, or 2 repair parts are demanded in any period, with $\Pr\{\xi_n=0\}=0.5$, $\Pr\{\xi_n=1\}=0.4$, $\Pr\{\xi_n=2\}=0.1$, and suppose s=0 and S=3.

Determine the transition probability matrix for the Markov chain $\{X_n\}$, where X_n is defined to be the quantity on hand at the end of period n.

(b) Let X_n denote the quality of the nth item that produced in a certain factory with $X_n=0$ meaning "good" and $X_n=1$ meaning "defective". Suppose that $\left\{X_n\right\}$ be a Markov chain whose transition matrix is

$$P = \begin{bmatrix} 0 & 1 \\ 0.99 & 0.01 \\ 1 & 0.12 & 0.88 \end{bmatrix}$$

- i) What is the probability that the fourth item is good given that the first item is defective?
- ii) In the long run, what is the probability that an item produced by this system is good?

2

The Model Answer

Q1:[2+6]

(a)

A stochastic process $\{X_n; n = 0, 1, 2, ...\}$ is a martingale if

- (i) $E[|\mathbf{X}_n|] < \infty$,
- (ii) $E[X_{n+1}|X_0,...,X_n] = X_n$.
- (b)
- (1) To show that $E[|S_n|] < \infty$,

$$|S_n| = |X_1 + ... + X_n| \le |X_1| + ... + |X_n|$$
 $\le 1 + ... + 1 = n$

$$E\lceil |S_n| \rceil \le E\lceil n \rceil = n < \infty.$$

(2) To show that $E \lceil S_{n+1} | \mathbf{X}_1, ..., \mathbf{X}_n \rceil = S_n$,

$$\begin{split} E \Big[S_{n+1} \, \Big| \mathbf{X}_1, ..., \mathbf{X}_n \, \Big] &= E \Big[S_n + \mathbf{X}_{n+1} \, \Big| \mathbf{X}_1, ..., \mathbf{X}_n \, \Big] \\ &= E \Big[S_n \, \Big| \mathbf{X}_1, ..., \mathbf{X}_n \, \Big] + E \Big[\mathbf{X}_{n+1} \, \Big| \mathbf{X}_1, ..., \mathbf{X}_n \, \Big] \\ &= S_n + E \big[\mathbf{X}_{n+1} \big], \end{split}$$

where $S_{\scriptscriptstyle n}$ is determined by $\mathbf{X}_{\scriptscriptstyle 1},...,\mathbf{X}_{\scriptscriptstyle n}$ and $\mathbf{X}_{\scriptscriptstyle n+1}$ is independent of $\mathbf{X}_{\scriptscriptstyle i's},$

and :
$$E[X_{n+1}] = (1).Pr\{X_{n+1} = 1\} + (-1).Pr\{X_{n+1} = -1\}$$

= $(1)(1/2) + (-1)(1/2) = 0$

$$\therefore E[S_{n+1}|\mathbf{X}_1,...,\mathbf{X}_n] = S_n$$

That is from (1) and (2), we have proved that $S_{\scriptscriptstyle n}$ is a martingale.

Q2:[4+4]

(a)

$$\begin{split} & : \Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n}=i_{n}\right\} \\ & = \Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right\}. \Pr\left\{X_{n}=i_{n} \left|X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right.\right\} \\ & = \Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right\}. \Pr_{i_{n-1}i_{n}} \ \ \text{Definition of Markov} \end{split}$$

By repeating this argument n-1 times

$$\therefore \operatorname{Pr}\left\{X_{0}=i_{0},X_{1}=i_{1},X_{2}=i_{2},\ldots,X_{n}=i_{n}\right\}$$

$$=\operatorname{p}_{i_{0}}\operatorname{P}_{i_{0}i_{1}}\operatorname{P}_{i_{1}i_{2}}\ldots\operatorname{P}_{i_{n-2}i_{n-1}}\operatorname{P}_{i_{n-1}i_{n}} \text{ where } \operatorname{p}_{i_{0}}=\operatorname{Pr}\left\{X_{0}=i_{0}\right\} \text{ is obtained from the initial distribution of the process.}$$

(b)

i)
$$\operatorname{pr}\left\{X_0 = 1, X_1 = 1, X_2 = 0\right\} = \operatorname{p_1P_{11}P_{10}}, \ \operatorname{p_1} = \operatorname{pr}\left\{X_0 = 1\right\}$$
$$= 0.5(0.2)(0.4)$$
$$= 0.04$$

$$\begin{split} ⅈ) \; pr\left\{X_{1}=1,X_{2}=1,X_{3}=0\right\} = p_{1}P_{11}P_{10} \;\;, \quad p_{1}=pr\left\{X_{1}=1\right\} \\ ≺\left\{X_{1}=1\right\} = Pr(X_{1}=1 \Big| X_{0}=0) \, Pr(X_{0}=0) + Pr(X_{1}=1 \Big| X_{0}=1) \, Pr(X_{0}=1) + Pr(X_{1}=1 \Big| X_{0}=2) \, Pr(X_{0}=2) \\ &= P_{01}p_{0} + P_{11}p_{1} + P_{21}p_{2} \\ &= 0.3(0.3) + 0.2(0.5) + 0.3(0.2) = 0.25 \end{split}$$

:.
$$pr\{X_1 = 1, X_2 = 1, X_3 = 0\} = 0.25(0.2)(0.4) = 0.02$$

Q3:[5+4]

(a)

The transition probability matrix is given by

where.

$$\begin{split} P_{ij} &= \Pr\left\{X_{n+1} = j \middle| X_n = i\right\} \\ &= \begin{cases} \Pr(\xi_{n+1} = 3 - j), & i \leq 0 \\ \Pr(\xi_{n+1} = i - j), & 0 < i \leq 3 \end{cases} & \text{without replenishment} \end{split}$$

(b)

i)

$$P = \begin{bmatrix} 0 & 1 \\ 0.99 & 0.01 \\ 1 & 0.12 & 0.88 \end{bmatrix}$$

$$P^{2} = P.P$$

$$= \begin{bmatrix} 0.99 & 0.01 \\ 0.12 & 0.88 \end{bmatrix} \begin{bmatrix} 0.99 & 0.01 \\ 0.12 & 0.88 \end{bmatrix}$$

$$= \begin{bmatrix} 0.9813 & 0.0187 \\ 0.2244 & 0.7756 \end{bmatrix}$$

$$P^{3} = P.P^{2}$$

$$= \begin{bmatrix} 0.99 & 0.01 \\ 0.12 & 0.88 \end{bmatrix} \begin{bmatrix} 0.9813 & 0.0187 \\ 0.2244 & 0.7756 \end{bmatrix} = \begin{bmatrix} 0.9737 & 0.0263 \\ 0.3152 & 0.6848 \end{bmatrix}$$

$$\therefore pr\{X_{3} = 0 | X_{0} = 1\} = p_{10}^{3} = 0.3152,$$

or
$$pr\{X_4 = 0 | X_1 = 1\} = p_{10}^3 = 0.3152.$$

ii)

In the long run, the probability that an item produced by this system is good is given by

$$b/(a+b) = \frac{0.12}{0.01+0.12}$$
$$= \frac{12}{13} = 92.13 \% ,$$

where
$$\lim_{n\to\infty} P^n = \begin{bmatrix} \frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{bmatrix}$$
.