
To Object-Oriented
Software Development

108 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Transition
To Object-Oriented

Software Development

A transition plan based on lessons learned from real-world

experience is presented and several effective managerial

practices are recommended.



bject-oriented software engineering
(OOSE) introduces a software develop-
ment model based upon the way
humans think. OOSE promises remark-
able benefits. It allows software compo-
nents to be readily reused, potentially
saving substantial development costs.
Also, OOSE reduces the scope and side
effects of software changes, potentially
saving substantial maintenance costs.

In spite of these potential benefits,
many software development groups still

hesitate to use OOSE. Many of these groups are fully occupied by their current
software development work and fear being overwhelmed if they introduce a
new development paradigm.

Other groups, interested in OOSE, do not know where to begin. “What’s the
first step?” “How long will it take?” “Is it really worth it?” Six years ago mem-
bers of various software development groups where one of the authors was
working as a consultant asked these same questions when they decided to con-
front the task of developing a large software system using OOSE. They were
confident that they understood the benefits of object-oriented (OO) tech-
niques, but they did not understand the theory behind OOSE. They lacked a

firm foundation from which to start and practical
experience on which to build. Furthermore, many of
these teams had never applied any formal or semi-
formal techniques.

To make matters worse, these groups had addi-
tional problems: their most recent development
efforts were in most cases “inconsistent”; they were
usually behind schedule—perpetually 90% complete;
they were constantly finding problems late in devel-
opment and feverishly applying band-aids to plug the
leaks. Fixing one problem frequently created others.
Also, despite having a highly centralized decision-
making organization, individually developed software
parts still looked radically different. Programmers or
software engineers developed software by applying
their own unique process. In retrospect, the overall
software development process was chaotic.

The transition to OOSE is often problematic, and
object-oriented approaches to software development
are becoming increasingly prevalent. Even though
research concerning the technical aspects of develop-
ing OO software is plentiful, many divergent opinions

exist. There is little guidance for OO software devel-
opment managers on how to transition to OOSE.

On average, the transition of a single software
development team to OOSE takes at least a year.
Throughout this transition period, they transform
their organization from an ad hoc, informal, or
chaotic group into an efficient OO development
team. Some people may think the transition period
would depend on the size of the projects, the number
of people involved, the techniques used, and so on.
The project size has nothing (or little) to do with get-
ting people to change how they approach software
development for problem solutions. The people can
change only through the application of the process.
It takes about a year of this sort of practice for the
transition to be complete.

During the last seven years, we have been involved
in the transitions of large software development
teams from ad hoc, informal, and extremely chaotic
to OOSE [11–14]. The transition became quicker
and easier on each new project. The transition plan
that is the topic of this article has been fine-tuned

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 109

Transition

O

Mohamed E. Fayad, Wei-Tek Tsai, and Milton L. Fulghum



over several subsequent OO efforts. This article pre-
sents the most significant evolutionary steps, many of
which were not initially apparent.

The OO transition process encompasses three
stages: the planning and pre-project stage; the technol-
ogy insertion stage; and the project management stage.

Planning and Pre-Project Activities 
The planning and pre-project stage encompasses two
major activities: effective development planning and
changing the existing culture.

Effective Development Planning 
Before a project begins, we must make key decisions
that can make or break the project. The current soft-
ware development processes and our personnel must
undergo a calculated change. What activities should
we perform before the project begins? How do we
change from ad hoc, informal, or chaotic procedures
to OO techniques?

Thorough preparation and planning will greatly
increase the chances of success. Software project plan-
ning is a key process area in Level 2 of the SEI Capa-
bility Maturity Model (CMM). The first project
probably will not encompass all the OO software prin-
ciples we desire. Comprehensive use of OO principles

takes several projects to fine-
tune—careful transition
planning and software devel-
opment will smooth the tran-
sition. Software developers
who have gone through a rig-

orous process that uses structured analysis should be
familiar with some of the management issues, but they
still face some of the old problems in a new
context—OO. For example, instead of worrying about
the data, processes, and data flow among the process-
es, they need to think in terms of objects, methods,
and inheritance. A transition plan and a complete soft-
ware development plan are necessary.

Transition Plan. The transition plan is examined
with respect to two central themes: “What makes the
transition to OOSE a mission with a lot of problems?”
and “How can the transition be accomplished with
minimum impact on the cost and schedule?” An
assessment of the software development processes is a
must. This will establish some sense of where the
software development team is. For a smooth transi-
tion to OOSE, an effective transition plan must be fol-
lowed. Figure 1 illustrates a framework for a
transition process.

Software Development Plan (SDP). The first docu-
ment for any software development project should be
the SDP [9]. For government contracts, this document
becomes part of the contract and is the final word on
what the developer is going to deliver to the customer.
For both government and commercial projects, the
SDP indicates who will do what and when they will do
it. It describes what techniques to use, what tools to
employ, and what risks are involved. For the software
developer it is probably the most important document
produced because it defines the scope of the project.

Changing the Existing Culture 
Adopting OO development techniques will definitely
require a change in culture in the entire project orga-
nization. This change can be made gradually and sys-
tematically. Almost every step of the software
development process must be adapted to fit the new
way of thinking. As a result, the following activities
are recommended to help readers achieve the neces-
sary change in their culture.

Understand the Culture Change. OOSE affects every-
one participating on the project, not just the software
engineers. It is, therefore, necessary to change the
culture in disciplines outside as well as inside the soft-
ware engineering group. Changing the culture in any
organization is not an easy task. For example, during
the transition to OOSE, we felt that it would be easi-
er to convince people that the world is flat than to
convince them to use OOSE.

Demonstrate Management Commitment. Perhaps the
single most important factor in changing an organi-
zation’s culture is demonstrating management com-
mitment. Humphrey points out that a basic principle
of software process modification is that major changes
must start at the top [15]. The following steps, which
are shown in Figure 2, can help demonstrate man-
agement commitment: 

• Demonstrate commitment to process changes.
Top-level management not only should start the
changes but must also demand or reinforce the

110 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

•  Effective development planning

•  Changing the existing culture
          1. Understanding the culture change
          2. Demonstrating management commitment
          3. Selling OOSE to the customer
          4. Preparing the software development team

• Selecting an OO technique
• Selecting a CASE tool
• Staffing and organizing the project
• Training the team
• Dealing with the legacy systems
• Budgeting for reuse 

• Analyzing, modeling, and prototyping
• Effective project tracking and controlling
• Defining and documenting OO development process
• Collecting software metrics
• Inspecting OO software products
• Integrating software documentation

III. Project Management Stage

II. Object-Oriented Insertion Stage

I.  Planning and Pre-Project Stage

Figure 1.
A framework for a
transition process



changes. Our experience confirms the top man-
agement must frequently remind people of the
importance of process changes. Otherwise, people
tend to slip back to their old ways of doing things
due to familiarity and habit. 

• Provide time in the schedule. The project manager
or software manager should set aside at least a
week or two at the beginning of the development
process for training and discussion of process
changes. During this time managers should expect
no project-related work to be done. Team mem-
bers’ full concentration should be on the new
processes and their definition.

• Provide proper tools. Although CASE tools are
often expensive, we believe they are essential to
the new OO process. Without proper tools, soft-
ware engineers waste effort and creativity on trivial
tasks instead of the analysis and design of the soft-
ware system. By not committing any capital to the
purchase of tools, management sends a wrong
message—that it is unsure about the new para-
digm shift and the success of the new OO process.
Software engineers may interpret this as a lack of
management commitment to the new OO process. 

• Strictly enforce the new OO process. Almost certain-
ly, there will come a time when a member of the
team wants to bypass all the rigorous OOSE activities
and develop the source code directly. This individ-
ual will undoubtedly provide numerous reasons why
going directly to coding will save time and money.
Managers should not back down from the process
change under any circumstances. A manager who
backs down, even in the most trivial of cases, will not
only be setting a bad trend but will also demonstrate
a lack of commitment to the newly defined process.
Selling OOSE to the Customer. In addition to

clients and users, the customer is defined as the

high-level management,
other projects’ managers,
the project team next door,
colleagues on the same
team, and so on. In most
cases we must overcome
customer resistance to
using OOSE, especially if
the customer knows it is our first OOSE project. For
an organization to succeed, it is important that the
customer be involved in the transition to OOSE.
Customers frequently associate new technology,
such as OOSE, with high risk. 

The following steps may help to make the cus-
tomer a believer: 

• Provide capability briefing charts. The customer
usually has a negative attitude toward software pro-
jects with any element of risk. Many people consid-
er an OO development high risk because they feel
the tools and techniques are immature. To over-
come the customer’s concerns, we provide a set of
briefing charts that address the perceived risk
areas. The main purpose of the charts is to
demonstrate that we have thought through our
transition plan. Some example topics are benefits
versus cost; training schedule; CASE tool strategy;
OO process documentation; organizational issues;
and return on investment (ROI). We have found
that the more we prepare for the transition, the
smaller the customer perceives the risk to be.

• Train the customer. If possible, the customer
should attend formal training on OO topics with
the development team. If the customers are unfa-
miliar with OO terminology, they may feel they
have lost control of the project. We diminish their
uneasiness by including them in training as early

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 111

Transition

Figure 2. 
Culture changes
require manage-
ment commitment
[6, 7]

J F M A M J J A S O N D J F M A

Demonstrate Commitment To
Process Changes

Provide Time In Schedule To
Foster Change

Provide Proper Tools Strictly Enforce The New Process

OOSE will
help our
business

Project Schedule

Ads OORA/OOD Software Development Process



and as much as possible. 
• Explain long-term payoffs. Make sure the customers

understand the long-term payoffs of OOSE. Some
important benefits of an OO development, such as
reusability and maintainability, directly affect the
customer’s pocketbook. The cost saving is not firm-
ly established, but initial data seems to be encourag-
ing; more data is needed to establish this. 

Preparing the Software Development Team. Surpris-
ingly, we must often overcome resistance from our
software development team. There seems to be an
instinctive suspicion of any deviation from the exist-
ing software development process, even if the process
is chaotic. The team’s first opinion of the new process
is typically that it requires significantly more work for
small benefit. The major purpose of the team prepa-
ration is to get people who have become accustomed
to working independently to operate as team mem-
bers. The principle of software process improvement
is that ultimately everyone on the project must be
involved [15]. The following ideas can be used to pre-
pare the development team for the transition:

• Work with Process Improvement Groups. We must
work with our company’s process improvement
groups to document the project software processes
and to get the team involved in documenting the
new process, taking responsibility for the process,
and establishing self-ownership of the process. Do
not establish a special process group on the project.
Why? Because the members of the software develop-
ment team are software developers, not process
builders. With the help of our team, the company’s
process improvement group upgrades the new
processes to fit the project needs. This process
forces the software engineers and other members of
our team to understand the development processes
so they can claim ownership in them. Both the
understanding and the ownership of the process
are keys to successful OO development. 

• Initiate Participative Management. In participative
management, the developers help to generate
schedules and make management decisions. The
greatest benefit is to enlighten the development
staff as to the importance and the sequence of the
various software development stages of a formal
development. Under participative management,
development teams gain an awareness of the sched-
ules and the products that need to be delivered at
each important milestone. Participative manage-
ment offers development teams an even greater
feeling of buying into the new OO development
process. Although participative management may
seem a bit risky considering everything else we are
changing, we still recommend this technique.

Object-Oriented Insertion Activities 
OO insertion is the second stage of the transition
process. This stage focuses on the insertion of OO tech-
nology before the initial application of the technology. 

Selecting an Object-Oriented Technique
The first insertion activity, and possibly the most
important task, is to select one of the many available
OO software development techniques. The OO tech-
nique provides the step-by-step activities and a set of
graphic notations to be used for reviews, inspections,
and documentation. Therefore, this selection will
have an impact on almost every step in the software
development process. 

As OOSE has matured, the number of projects
applying OO techniques has multiplied. Choosing
some of the more popular methods and trying to
determine which one best fits the application is a dif-
ficult area to master.

Consider the following factors, shown in Figure 3,
when selecting an OO technique: 

Select a fully object-oriented technique. We highly rec-
ommend choosing an OO technique that covers as
much of the software life cycle system as possible.
Most OO techniques are focused only on require-
ments analysis, software design, and OO program-
ming languages, resulting in a potpourri of
representations and models. Unfortunately, testing
and verification and validation (V&V) are completely
ignored in most OO techniques. Using OO tech-
niques on a single activity (i.e., only analysis or only
design) is risky. For example, some projects have
used a functional analysis approach followed by an
OO design approach. Paradigm shifts in the middle
of a software project have generally ended in failure. 

Similarly, taking an OO analysis technique and com-
pleting it with an OO design technique can produce
unpredictable results. Mixing of techniques should be
left to teams experienced in OO development and not
to an organization in transition. Some OO techniques
are available that take a software organization from
requirements analysis through at least the detailed
design activity. These are the most appropriate.

Domain considerations. The application domain is
usually supported by a particular class of OO tech-
niques. Partitioning the available techniques into
unambiguous classes is impossible. However, one sim-
ple guideline we use is a distinction between a top-
down abstract object approach and an information
modeling approach.

The top-down abstract object approach uses a suc-
cessive breakdown of objects. The analyst successively
decomposes high-level objects into lower-level objects
until the lowest-level objects are all easily understood.
Computation-intensive systems in which the data is
not initially well understood (e.g., digital signal pro-
cessing, pattern recognition) map better to a top-
down, abstract approach. Examples of OO techniques
using a top-down approach are Colbert’s OO software
development (OOSD) technique [4, 7, 12, 13],
Fayad’s object-engineering technique (O-ET) [10],
and Selic’s real-time OO modeling (ROOM) [8, 18].

An information modeling approach uses data
objects as the starting point and builds up from there.
Information management systems (e.g., payroll sys-
tems, scheduling systems, and insurance applications)

112 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM



map better to an information modeling approach.
Since the analyst fully understands much of the data
early in the project, how to build objects from the data
is reasonably clear-cut. Examples of OO techniques
using an information modeling approach are Object-
Modeling Technique (OMT) [17], Fayad’s O-ET [10],
and Shlaer and Mellor’s OOA [6, 7, 13, 19].

Target language considerations. Some OO techniques
conform to the features of a particular target lan-
guage. For a first OO development it is best to use an
OO technique that maps easily to the target language.

For example, if the target language is Smalltalk or
C++, choose a technique that fully uses the features of
these languages. OO techniques like Fayad’s O-ET
[10] and OMT [17] use inheritance as a major feature
of the technique. Other techniques may not use inher-
itance at all. Since Smalltalk and C++ feature inheri-
tance as an integral part of the language, we want to
use a technique that has inheritance with them.

Availability of formal training. Typically, each soft-
ware development team member will learn each step
of the technique and then apply it to a small exam-
ple. Obviously, each member will not be an expert
immediately after formal training. But at least each
member will get to see how an experienced user cre-
ates objects using the specific technique. This type of
knowledge is often impossible to derive from a text-
book describing the technique. One major warning:
Make sure formal training is available from an expe-
rienced user before selecting a particular technique.

CASE tool support. For a first OO development, it is
essential to have a CASE tool that can adequately
implement the chosen technique. The CASE tool lets
the developers concentrate on the analysis and
design of the system and not on the mechanics and
diagramming of the OO technique.

Consider a consultant. A good consultant can save a

great deal of time by helping
the development team with
OO technique evaluation
and selection processes. In
addition, new techniques
are frequently being pub-
lished and old techniques
are constantly being updated. This is a difficult area
to track on a part-time basis. A good consultant could
be well worth the cost.

Selecting a CASE Tool 
Modern CASE tools are the subject of controversy,
having been credited and blamed for substantial
increases and decreases in productivity. Few would
argue that the right tools in the right hands can effec-
tively increase software quality and reduce costs. The
key is identifying the right tools.

We found the use of a CASE tool essential to a suc-
cessful transition to OOSE. However, be aware that
the CASE tool will not eliminate all the obstacles asso-
ciated with first-time OO development. There is still
no substitute for qualified software engineers who are
open to change. The following key factors are impor-
tant in selecting a CASE tool.

Implement the technique correctly. Numerous CASE
tool vendors (and even the OO authors) have pro-
vided a “mapping” of a particular OO technique to
CASE tools that implemented structured analysis and
design. Although this is undoubtedly possible with
careful engineering, we found it intuitively difficult.
Additionally, people familiar with the functional
graphics often have trouble making a complete
switch to OO thinking. Avoid using a CASE tool that
requires a “mapping” of the graphical representa-
tions to a particular technique.

Enforcement of OO technique. The CASE tool should

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 113

Transition

Figure 3. 
Six major factors for
selecting an OO
technique [6, 7]

+ = =

C++ / Smalltalk

Ada83 / Ada 95

C / Pascal

Fortran / Cobol

Maintenance

Testing

Code and
Unit Test

Detailed
Design

Preliminary
Design

Requirements

Covers at Least OORA and OOD CASE Tool Support Training Available

Method Language CompatibilityMethod Domain CompatibilityMethod “Guru” Available

Object Interaction Diagram

Real-time Scientific

MIS/Database



enforce the rules of the OO
technique as much as possi-
ble. The best time to find
mistakes is while the devel-
opers are making them. If
the CASE tool can catch
these faults before reviews or

inspections, then a great deal of time will be saved.
This is especially important when the technique is
new. The continual enforcement of the technique by
the CASE tool serves as a good training mechanism
for the developers.

Watch out for low pay-off “features.” CASE tool vendors
are constantly trying to add more features to outdo the
competition. Features such as “reverse engineering” or
“automated code generation” are generally not the
most important reasons to buy a CASE tool. We found

these items to be marginally
useful. The most important
parts of the CASE tools were
graphical editors that enforce
consistent application of the
graphical rules. Consistency

checking between diagrams and a
data dictionary are useful.

Also be aware that the CASE
tool will not work entirely as the
vendor promised. For example,
after several tries we eventually
gave up on one feature of a CASE
tool: “automated documentation
generation.” The poor quality and
high overhead of this feature con-
vinced us we were better off using
a commercial word processor.

A CASE tool should also support
several OO techniques and their
development processes, and must be
flexible for generating and updating
these development processes.

Staffing and Organizing the Project
Staffing for a first OO software development requires
special consideration. We found that the standard
software engineering organization did not support
the needs of OO software development. As teams pro-
ceded through the development process, they made
several improvements to their software organization.
Key positions, such as OO guru, domain analyst, and
prototyping expert (“super hacker”), are essential to
successful OO software development (Figure 4). The
people in the new positions have direct responsibility
for eliminating several problems that development
teams have encountered early in development.

Staffing of the new positions within the organization
requires careful consideration. Software engineers who
have experience in the application of complete OO
development techniques are difficult to find. How
should we organize and assign our staff to minimize the
risk involved in introducing OO techniques?

OO Guru. An OO guru is required in the organiza-
tion to refine the use of the OO technique. Even
though each team member receives formal training
in a specific OO analysis and design technique, there

are still many technique-related
questions. Numerous clarifications
and extensions of the technique
are necessary to accommodate the
unique elements of the project,
such as reviews, documentation,
particular CASE tool, target lan-
guage, etc. Poor decisions in tech-
nique-related areas can necessitate
extensive rework efforts. There-
fore, appropriate staffing of the
OO guru position must be a high
priority. Figure 5 shows some of
the OO guru’s responsibilities.

Domain Analyst. A primary goal
of OOSE is to lay a firm founda-
tion for software reuse. The pro-
ject needs a domain analyst to
specifically address the reuse prob-
lem. The domain analyst is also

114 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Prototyping
Expert

Software
Manager

OO Guru

Software
Systems

Engineering

Software
Quality

Assurance

Technical
Lead 1

Technical
Lead 2

Technical
Lead N

Domain
Analyst

Key Positions for OO Software
Development

. . .

Real-time
Extensions

Object-
Oriented

Development

Solve Method Limitations Not
Uncovered During Training CASE Tool Adaptation

Training Example Your Problem

Requirements

Design

Code

Extensions for Problem Domain or
Current Organizational Standards

New Employee Training and
On The Job Reinforcement

Figure 4. 
Key positions for a
successful OO soft-
ware development

Figure 5. 
OO guru’s responsi-
bilities [6, 7]



responsible for understanding multiple software pro-
jects within the domain, extracting the common ele-
ments, and designing practical, reusable software
parts and components. Figure 6 shows the domain
analyst’s responsibilities.

The domain analyst must be an expert in the
application domain. Without a thorough knowledge
of the application area, it will be difficult to create
common parts. The domain analyst must also have a
firm understanding of “classes” and “objects.” Encap-
sulation of the details within a class or object is
important. If too many internal details are visible,
designers will be less likely to use the part.

Prototyping Expert. Even in the middle of semi-for-
mal OO development there is still a need for a super
hacker—someone who can develop a software product
rapidly and correctly without necessarily following any
specific techniques. The activities of the prototypers
must be carefully separated from those of the rest of
the software developers. This is especially true when we
are using OO techniques. The software product will
not be consistent if software designers incorporate pro-
totypes directly into the formal development. Figure 7
shows the prototyping expert’s responsibilities.

Once the prototypes are complete, the prototyping
staff must communicate the requirements to the devel-
opment personnel, who are then responsible for OO
development. Therefore, an important qualification
for the prototyping position is the ability to explicitly
communicate the prototypes to the development staff.

Other personnel. It is important that all software per-
sonnel understand the OO concepts quickly. We have
had the best success with people experienced in an
OO programming language. Even though these peo-

ple had not used an OO
technique, they could relate
the concepts to the OO lan-
guage constructs. Relating
OO principles to language
constructs is a good way to
understand and explain the more abstract concepts
of OO development.

Training the Team
Training is essential for new OO development teams.
Even experienced software developers benefit from a
formal introduction to OO tenets. An early training
investment pays large dividends in increased quality
and productivity throughout the development
process. Additionally, just as with reusing OO soft-
ware systems, the benefits of reusing an experienced,
highly trained work force increase dramatically as we
apply their knowledge to the next project.

After selecting an appropriate OO technique, we
arrange for in-house training. For a first-time OO devel-
opment, we recommend contracting with an experi-
enced training organization. Such an organization can
provide experience and valuable insight into applica-
tion of OO techniques and tools. This approach is help-
ful for the development team, in that it forces the
software developers to clearly explain the project to the
trainer, who has little domain knowledge.

A requirement for 40 hours of training may be ful-
filled in one week if that week is totally dedicated to
the training activity. The same training may be spread
across two weeks if employees are available only half-
time. The training may also be spread across 10 weeks
with the addition of a part-time consultant. The

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 115

Transition

Figure 6. 
Domain analyst’s
responsibilities [6, 7]

Class Library
Class Part No. Description
Sensor
Quick Sort
Signal
GPS Navigation
Air Data Unit
Inertial Navigation

A-001
B-001
A-002
C-001
A-001
C-002

Sensor Monitors
Efficient Sort
Alarm Signals
Nav with GPS update
Pressure/Temp
Basic Nav Routines

Part
A-007

Part
A-009

Part
B-012

Part
E-002

Reuse Cost Evaluation

Estimated Number of Uses

C
os

t $

Cost-Effective 
Range

Coordinate With Domain Experts
On Different Projects

Decide When It Is Cost-Effective
To Design For Reuse

Create/Maintain A Class LibraryDevelop Specifications For
Reusable Software Parts



authors favor the last approach,
for several reasons. Compressing
the training tends to overwhelm
the students. They are exposed
to too much, too fast. Spreading
the training across a longer peri-
od allows the students time to

reflect on and practice each significant detail. Adding
a consultant provides the opportunity for much more
one-on-one learning.

Software engineers are not the only people who ben-
efit from training. Each member of the development
team, including managers, contract engineers, cost esti-
mators, and system engineers, needs to understand his

or her role in an OO develop-
ment. A training program
should be tailored to comple-
ment the entire development
team. Figure 8 shows the five W’s
for training the project team.

Dealing With Legacy Systems
The preexisting non-object-ori-
ented software system is called a
legacy system. This issue is of
great concern to management
and will come up often. The ways
of dealing with legacy systems
can be categorized as follows: (1)
use as is; (2) reverse-engineer
them; or (3) modify them to fit
with OO systems. Each of these
approaches has its own set of
problems and issues that we
must deal with. We used the
third approach, using the preex-
isting software modules by creat-
ing an OO shell around them, as

116 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Figure 7. 
Prototyping
expert’s
responsibili-
ties [6, 7]

Figure 8.
The Five W’s for training
the project team

Prototypes Objects

C++ Code

Ada Code

Evaluates Requirements Completeness Evaluates Design Efficiency

Throughput Study

Memory Utilization Study

Accurately Communicates Requirements/Design
to Software Developers

J F M A M J J A S O N D J F M A

Project Schedule

Managers
Customers

Quality
Assurance

Software
Engineers

IV & V
Testing

Subcontractors

Qualified Object-Oriented Training In-House

Just In TimeEveryone Involved In Project

Rapid Change In Culture

1.  What 2.  Where

3.  Who 4.  When

5.  Why

Paradigm Shift Software Factory

Functional

Object-Oriented



shown in Figure 9. The shell approach provides a clean-
er interface, and the OO software will interact with these
modules as existing objects or classes.

Budgeting for Reuse
Reusable software costs extra time and money to devel-
op. If there are software parts that must be reused, be
sure to budget the time and resources to make them
reusable. Determining how much to spend on reuse is
a strategic decision. We must determine how much
extra money we want to spend right now to save money
in the future. It should be remembered that money
spent now will save money in the future.

We should not expect huge gains from our first
OO project. Many people still associate OO design
with automatic reusability. We found that just
because we used an OO technique, that did not make
the code reusable. The software organization must
learn how to develop reusable software. Therefore,
we recommend budgeting at least a small portion of
the effort to developing reusable software.

Object-Oriented Project Management Activities
This is the third stage of the transition framework. Up
to now, we have focused on the preparation—laying
a foundation for a significant cultural and paradigm
shift. Once the project begins, additional activities
are required. 

Analyzing, Modeling, and Prototyping
Because OO techniques optimize the life-cycle costs,
reusability, and supportability of software development,
penalties often arise in performance and memory uti-
lization. This can be especially true with inexperienced
OO development teams, who may over-apply some OO
tenets. For example, we found that many new develop-
ment teams tend to ambitiously create several layers of
abstracted objects. The resultant increase in system
overhead is usually not noticed until system integration.
It is essential that software parts considered critical to
project success be fully evaluated early in the project
life cycle to reduce development risks.

The first step is to establish a computer resource
budget. This budget should be based on a full exam-
ination of the capacity of the target machine, includ-
ing memory, CPU performance, and I/O bandwidth.
This budget must now be compared to the specific
requirements of the application program.

This is where the plan gets interesting. Detailed
resource requirements are difficult to establish, espe-
cially for OO developments. Designers must under-
stand not only the resource requirements of the
algorithms but also the overhead associated with
their construction. 

OO designs may introduce more overhead than
traditional developments. This overhead ranges from
implementations of polymorphism and inheritance
to dynamic binding. Also, as designs maximize object
encapsulation and privatization, dedicated methods
and messages must be created to gain access to hid-
den data. The resource impacts of all of the OO

trade-offs must be understood before the software
design can safely mature. 

Software prototypes, on the other hand, are func-
tional approximations of some aspect of the actual tar-
get system. These approximations can be generated to
evaluate alternative software designs. Eventually, these
prototypes evolve into “rules of thumb” to help guide
future design decisions.

It is important not to over-design models or proto-
types. These tools should be used to estimate
resource utilization or iron out design issues. Once
this is done, the models and prototypes should be
considered disposable. 

Effective Project Tracking and Controlling
Large software projects require accurate and detailed
tracking systems to provide insight into development

progress. Tracking systems
become even more indispens-
able for large developments,
because several software
parts, at various life cycle
stages, typically coexist. Using
the tracking system, managers
can always ascertain current
performance against schedule and project personnel
always have access to the latest development data. 

Deciding what and how much information to track
depends upon how the system will be used. A system
used solely to chart progress will contain less infor-
mation than one used to plan future work. A system
used for management overview may contain signifi-
cantly less data that one used for future cost estima-

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 117

Transition

Figure 9. 
Using the shell
approach to create
objects from legacy
systems

Requirements

Design

Code

Functional Representation

Functional Representation

Functional Representation

Develop Object Shell

Develop Object Shell

Develop Object Shell



tion. It is more efficient to decide what we want out of
a system before we decide what to put in.

A tracking system identifies, estimates, allocates,
and tracks the software objects, or “work-packages.”
In the development sense, these work-packages are
“objects” and “classes” in most OO techniques. In
addition to object and classes, the work-packages are
also called “blocks” in Jacobson [16], and “modules”
in OMT [17]. A work-package can consist of one or
many work-packages. We think of work-packages as
individual orders for which we contract and measure
work. Work-packages exist for requirements, design,
code, and testing/integration. We identify sufficient
information with each assignment to allow an exter-
nal contractor, knowledgeable about the specific
application and processes, to execute the assignment.

The typical work-package allocates about one per-
son-week of work. We found that this level of detail is
sufficient to adequately estimate the work without
being unmanageable.

After the system’s engineering organization creates
and estimates the initial system work-packages. These
typically identify several subsystems’ requirements to
define and prototypes to implement. This initial set of
work-packages recursively spawns additional work-
packages to complete the system. For example,
design, code, test, and integration work-packages are
created for sufficiently decomposed software objects. 

Additionally, we estimate the required effort and
resource utilization for each new work-package.
Required effort is usually estimated in the form of per-
son-hours or lines of code. Resource utilization esti-
mates the required access to development facilities,
such as unique test stations. The tracking system main-
tains these estimates to help establish and maintain real-
istic system development and integration schedules.

The work-packages must be closed after satisfactory
completion. The process mandates the authenticating
agent, such as SQA or system engineering, to close the
work-package. Closure typically involves a formal
review of the work, documentation of actual resources
used or created (such as lines of code), and collection
of appropriate quality metrics. The closure of work-
packages earns (accumulates) value for the project.

The developers, managers, and customers use the
system to quickly view project status. Developers can
identify what new work is available and how their com-
pleted pieces fit into the big picture. Managers can
review the recently completed work, compare progress
to schedule, and compare actual to estimated metrics.
The customer, with limited access to the system, can
review the up-to-date schedule and quality metrics.

Consider the following ideas before implementing
the tracking system.

• Incorporate tracking system updates directly into
the existing software development processes. The
software development processes should specify
what, when, and how to update. Complete compli-
ance is imperative for tracking system usefulness.

• Make the tracking system readily available and easy

to use. People naturally resist tedious systems, and
resistance is the enemy of compliance. It is worth
spending time up front to ensure that the tracking
system is easy and helpful. Automation of key fea-
tures, including extensive use of default or boiler-
plate data, and template data is always appreciated.
Time invested in tracking system simplification is
always well spent.

• Establish trust in the tracking system. The faith that
is placed in the system must be visually obvious and
unwavering. Set high quality standards and expect
no less. The development team must clearly under-
stand the importance of the tracking system and
the potential results of neglect. This attitude will
become contagious and spread through the group.
Ensure the system works—and trust it.

Defining and Documenting the
Development Process
Defining and documenting the development process
is an important step. The processes that tailor the OO
technique to the project must be defined. The
processes transform the theories of the textbook into
the real world—our world. Documented processes
enable the development team to consistently apply
and benefit from the new OO technique.

The customer may want progress reviews, extensive
documentation, and bidirectional traceability from
requirements models to code. The OO techniques we
used did not address these topics. To address such top-
ics, we need a detailed, documented process that can
consistently apply the features of the OO technique to
the target system and satisfy the customer’s demands.

We recommend appointing a team member to
interact with the company’s process improvement
group to document exactly how to apply the OO tech-
nique to the target system. The team member should
attend the process group meeting on a regular basis
and work with them to determine what, how, and
when to document. Forming a project’s process team
must be avoided because of process paralysis. Process
paralysis, as defined by Yourdon, is what happens
when the project team becomes thoroughly over-
whelmed by the new technology and gradually ends
up spending all of its time (1) trying to understand
the new technology, (2) arguing about its merits, or
(3) trying to make it work [18]. We must watch for this
paralysis and get our project team on track with the
project objectives and goals by using a specialized soft-
ware process improvement team outside the project. 

The process’ definition concentrates on what and
when software products are required. For example, what
level of documentation is required for a preliminary
design review? Which graphics are incorporated into our
requirements specification? What are the exit criteria for
object-level testing? We found that by precisely defining
the software products required for each development
phase, each developer can maximize individual contri-
butions and still maintain system consistency.

The software process must be defined with sufficient
detail that any competent developer outside the scope

118 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM



of the current project could correctly answer the ques-
tion, “What’s next?” Specifically, the process defines the
intent, techniques, entry and exit criteria, and appro-
priate quality standards for each step of development.
Figure 10 shows appropriate process detail.

There is a common misconception that we cannot
document techniques, such as software development,
that involve creativity. We would argue, as may our
customer, that without defined processes the devel-
opment team cannot consistently apply any develop-
ment approach. Indeed, the Software Engineering
Institute strongly advocates this position [15]. With-
out the process, developers freely apply their version
of software development. This approach becomes
especially risky when implementing a new OO tech-
nique. Core development processes should exist
before starting a project, and should be continuously
tuned as the program matures. 

Collecting Software Metrics
While documented processes provide the framework
for improvements, metrics provide the ruler that
measures success or failure. Carefully selecting mea-
sures indicating application of the process will help to
prove a growing proficiency. The collection of valu-
able software metrics should be permanently
ingrained in each software process.

Collecting software metrics is easy; collecting use-
ful software metrics requires effort. What makes them
meaningful? Consider the following suggestions:
Gather metrics only in support of specific, predeter-
mined objectives, and evaluate the measures in that
context. Figure 11 illustrates software metrics collec-
tion principles. Measures of planned versus actual
class or object reuse, or of cost of designing for reuse,
help guide follow-on projects. Measures of object
quality, such as coupling or cohesion between classes
or objects, provide insight on how well developers are
applying OO technique concepts.

Before measuring any process, rank the metrics

based on the potential value
they add. The act of measur-
ing human processes is per-
sonal and disruptive. The
risks range from offending
the developers to erroneous-
ly invalidating long-standing values. Also, the act of
measuring some processes alters what we are measur-
ing. With all of this at stake, we make sure that we col-
lect metrics only for high-value, repeatable processes.
Collect metrics on processes, not people. Figure 12
shows some useful software management metrics that
were collected on several projects.

We conclude that collecting measurements is
important for software development tracking and
control. However, there are no universally accepted
measurements for OO. Jacobson [16], Chen and Lu
[2], and Chidamber and
Kemerer [3] suggest well-
known and accepted mea-
surements. They could be
used as the starting point. 

Jacobson [16], treats met-
rics in a very general fashion

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 119

Transition

Figure 10. 
Appropriate process
detail

– depends upon environment
– specifies “who,” “what,” “when”
– reference “how”

Cost-effective range

Too Much
•  not cost-effective
•  typically too much “why”

Not Enough
•  useless
•  typically only “what”

SET    
 RESET

Reliability

Objectives

Collect Metrics in Support of
Predetermined ObjectivesMeasure Processes — Not People

Collect Metrics from Repeatable Processes Ingrain Metrics Collection into Processes

Enter
Reliability
Metric into
Database

Figure 11. 
Software metrics
collection princi-
ples [7]



and divides them into two
categories: (1) process-
related metrics, such as
total development time,
development time in
each process and sub-
process, and time spent
modifying models from previous process, and (2) prod-
uct-related metrics, such as total number of classes, of
width and height of inheritance hierarchies, average
number of operations in a class, and length of operations
(in statement). Chen and Lu [2] present eight metrics
for OO design. Chidamber and Kemerer’s work [3] is
most frequently quoted; they propose a set of six metrics:
Weighted methods per class, depth of inheritance tree,
number of children, coupling between objects, response
of a class, and lack of cohesion in methods.

Inspecting Object-Oriented Software Products
Software inspections substantially improve product
quality and help to keep new OO development on track
by reducing defects and costs [5]. As with anything new,
the application of specific concepts may not be fully
understood. Even concepts that are well understood
may allow several implementations, all equally correct.

Documentation is a good example. Those who have
attempted to integrate several developers’ writing into a
coherent document are well aware of the difficulties.
Without formal interim reviews, the final product will
resemble a United Nations meeting—several seemingly
unrelated individual elements trying to work together.

Approach software inspections as a rigorous form
of peer review or walkthrough. As such, inspections
should formally compare developed software to
established standards. Standards vary with the pro-
ject, but inspections will ensure that the development
team follows the appropriate standard. 

Thoroughly reviewing all software on a large project
is time-consuming. Because of this, inspection processes
should be optimized by defining specific, complemen-
tary roles for individual reviewers. For example, one
reviewer may ensure all requirements are sufficiently
allocated in the design, while another may verify a unit’s
testability. The number and specific responsibilities of
the reviewers must be formally documented for each
type of material reviewed. We have found that inspec-
tion checklists are a good way to ensure that several
independent reviewers cover all the bases. 

Some software teams feel they can not afford
inspections. We contend that inspections are the
most cost-effective technique for ensuring software
quality. Removing defects at their point of insertion
significantly reduces the cost of their repair. Effi-
cient inspections are always a wise investment.

We make some final
suggestions about inspec-
tions:

• Review products for
specific qualities of
object orientation.
These qualities range
from consistent
abstraction levels for
generic objects and
methods to appropri-
ate utilization of
inheritance. Addition-

ally, potential for reuse may be scored and docu-
mented. These reviews will help reinforce OO
concepts by revealing several applications in the
project domain. Applying these theories is the best
continuing education available.

• Develop quantifiable metrics to ensure adherence
to specific technique. These measurements should
concentrate on the specifics of the application of
the technique itself. They may include definition
of an object, correct utilization of graphics, and
other documentation. 

• Inspect the quality of documentation, including
graphics. Standards should be developed to define
documentation quality. These standards are often
overlooked in software development, especially
when CASE tools are introduced as documentation
aids. We’ve found that while good graphics increase
maintainability, poor graphics detract. Remember
that the customer’s main perception of system
development quality is through the documentation.

Integrating Software Documentation
Documentation may be the most visible sign of soft-
ware quality. It exposes not only the construction but
the logic behind the physical connections. The docu-
mentation is usually the only link maintenance per-
sonnel have to the original designers. It is imperative
that this link be strong.

Mapping an OO technique to documentation stan-
dards can be difficult. The problem is compounded
with extensive use of graphics. This difficulty is usual-
ly traced to understanding the term “standard” as
implying “applicable to all developments except
mine.” What is worse, OO developments were proba-
bly uncommon when the documentation standard
originated. Undoubtedly, the documentation stan-
dard will need to be revised for compatibility with an
OO development technique.

We have found that the best approach is to tailor
the documentation standard to the specific tech-
nique before the development begins. This includes
translating all the terms given to the development
phases, concepts, and deliverable pieces. It is impor-
tant to define and to maintain the focus on the real
purpose of the documentation. Poor documentation
is worse than none at all. 

Technique-specific graphics (possibly generated by

120 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Figure 12. 
Useful software
management met-
rics [7]

100

80

60

40

20

0

Orig. Est.
Actual
Current
   Plan

Jan.
Feb.

Mar.
Apr.

May Jul. Sep. Nov.
Jun. Aug. Oct. Dec.

• Staffing Profile by
    Discipline
• Software size
     – Objects
     – Lines of Code
     – Interfaces
• Objects Integrated
• Target System
     – Throughput
     – Memory Utilization
     – I/O Utilization
• Software Defects by
    Phase (STRs)

Track actual progress against original and current plan



CASE tools) should be mapped into specific docu-
mentation sections. This step may prove surprisingly
difficult to achieve. The mapping requires several revi-
sions; however, the results are well worth the effort.

If customer approval is required for documenta-
tion decisions, include the customer in the early dis-
cussions. The customer, who will often be the ultimate
system maintenance agent, may have strong feelings
on specific documentation issues. Simple agreements
early in a program may avert many later headaches.

One final note about documentation. In many cases,
documentation revisions are more common than soft-
ware revisions. Without software configuration man-
agement, documentation integrity is impossible.

Using Software Configuration Management
Configuration management is the process of identify-
ing and defining the configuration items in a system
(e.g., class diagram, design document, object test case),
controlling the release and change of these items
throughout the system life cycle, recording and report-
ing the status of configuration items and change
requests, and verifying the completeness and correct-
ness of configuration items [1]. A large number of con-
figuration items (e.g., design artifacts and products)
are produced by an OO technique. These configura-
tion items, such as requirements, class diagrams, object-
interaction diagrams, object diagrams, object-hierarchy
diagrams, process diagrams, object/class design, code,
and test cases must be placed under software configu-
ration management. During development, updating,
and reuse, these products are revised several times and
must be placed under version control. This intensifies
the need for a powerful yet simple software configura-
tion management and version control system.

Conclusions
We have shown that a successful transition to OO soft-
ware development techniques requires the use of
management processes designed for the paradigm.
The project must be preceded by an effective software
development planning process that includes OO tech-
nique considerations—A critical part of these early
activities is changing the culture.

We have concluded that the OO insertion stage of
the transition defines the development environment
and allocates the required resources. The critical activ-
ities during this stage include defining techniques and
tools and selecting and training the development team. 

We recommend that managers make every process
and tool used during development their own. This
requires that processes be customized for the current
project and that tools be used in the most effective
manner for the current project. Managers should not
be frightened away from good concepts because
some documented implementation seems expensive.
They should instead study what the concept means in
the context of their project and adapt it to their own
purposes. Good concepts and techniques do not have
to be forced on people who want to maximize effec-
tiveness. If concepts and techniques are truly good,

developers will fight to be able to use them.
Management of software projects can proceed

effectively when good management techniques are
applied. We have shown that the best of software
management techniques can be effectively applied to
OO development projects. 

References
1. Bersoff, E.H. Elements of software configuration management.

IEEE Trans. Softw. Eng. SE-10, 1 (Jan. 1984), 79–87.
2. Chen, J.Y. and Lu J.F. A new metric for object-oriented design.

Information and Software Technology (Apr. 1993), 232–240.
3. Chidamber, S.R. and Kemerer, C.F. Toward a metrics suite for

object-oriented design. In Proceedings of OOPSLA ‘91 (1991).
4. Colbert, E. The object-oriented software development method:

A practical approach to object-oriented development. In Pro-
ceedings of ACM TRI-Ada ‘89 (Oct. 1989), pp. 400–415.

5. Fagan, M.E. Advances in software inspections. IEEE Trans.
Softw. Eng. SE-12, 7 (July 1986), 744–751.

6. Fayad, M. E. Managing Object-Oriented SoftwareDevelopment Pro-
jects. Three-day seminar, Technology Training Corporation
(TTC), Toronto/Washington DC, April/May 1993.

7. Fayad, M.E. Managing Object-Oriented Software Development Pro-
jects. Full-day tutorial, ECOOP ‘93. July 1993, Kaiserslauter,
Germany

8. Fayad, M.E. Object-Oriented Experiences. In Proceedings of the
TOOLS USA Conference ‘93. (Santa Barbara, Calif., Aug. 1993). 

9. Fayad, M.E. Software Development Plan for Object-Oriented Projects.
IEEE Computer Society Press, March 1996.

10. Fayad, M.E. Object-oriented software engineering: Problems
and perspectives. Ph.D. dissertation, June 1994.

11. Fayad, M.E., et al. Using the Shlaer-Mellor object-oriented
method. IEEE Softw. (Mar. 1993).

12. Fayad, M.E., et al. Adapting an object-oriented development
method. IEEE Softw. (May 1994).

13. Fayad, M.E., et al. Object Modeling Technique (OMT): Expe-
rience report. J. OO Programming (JOOP) (Nov.–Dec. 1994).

14. Fayad, M.E. and Fulghum, M. Object-Oriented Experiences. SIGS
Books, New York, 1996.

15. Humphrey, W. Managing the Software Process. Addison-Wesley,
Reading, Mass., 1989.

16. Jacobson, I., et al. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley, Reading, Mass., 1992.

17. Rumbaugh J., et al. Object-Oriented Modeling and Design. Prentice-
Hall, Englewood Cliffs, N.J., 1991.

18. Selic, B., et al. Real-Time Object-Oriented Modeling. Wiley, New
York, 1994. 

19. Shlaer, S., and Mellor, S.J. Object Lifecycles: Modeling the World in
States. Yourdon Press, Englewood Cliffs, N.J., 1992.

20. Yourdon E. A Game Plan for Technology Transfer. Tutorial: Software
Engineering Project Management. R.H. Thayer, Ed. Computer
Society Press, 1987, 214–217.

About the Authors:
MOHAMED E. FAYAD is an associate professor of computer sci-
ence at the University of Nevada, Reno. Author’s Present Address:
Computer Science/171, University of Nevada, Reno, NV 89557;
email: fayad@cs.unr.edu 

WEI-TEK TSAI is a professor of computer science at the Universi-
ty of Minnesota. Author’s Present Address: Computer Science
Department, University of Minnesota, Minneapolis, MN 55455;
email: tsai@cs.umn.edu

MILTON L. FULGHUM is a senior staff engineer at FlightSafety
International in St. Louis, MO. Author’s Present Address: Flight
Safety International, St. Louis, MO 63042; email:
fulghum@vss.fsi.com

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0200 $3.50

C

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 121

Transition


