First Semester	Second Exam	King Saud University
(without calculators)	Time allowed: 1 h and 30 m	College of Science
Monday 15-4-1445	240 Math	Math. Department

Q1: (a) Show that the vector $w=(1,2,3)\in span\{(1,2,2), (2,4,8)\}$. (3 marks) (b) Let $V=M_{nn}$ and W is the set of all symmetric matrices of degree n. Prove that W is a subspace of V. (3 marks)

Q2: (a) Use the Wronskian to show that 1, x, x^3 are linearly independent in the vector space $C^2(-\infty,\infty)$. (2 marks)

(b) show that the set S={(1,1,2), (2,1,1), (1,1,0)} forms a basis for \mathbb{R}^3 and then find the vector w whereas (w)_S=(1,2,3). (4 marks)

Q3: (a) Let $B=\{(1,2),(2,5)\}$ and $B'=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^2 . Find the transition matrix from B' to B. (3 marks).

(b) Find a basis for the column space of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 4 & 6 \\ 3 & 6 & 10 & 5 \end{bmatrix}$$

and <u>deduce</u> nullity(A^T) without solving any linear system. (4 marks)

Q4: (a) Let $S=\{v_1, v_2, ..., v_n\}$ be a basis for a vector space **V**. Suppose **u** is a vector in **V** such that

$$\mathbf{u} = |A_1| \mathbf{v_1} + 2|A_2| \mathbf{v_2} + 3|A_3| \mathbf{v_3} + ... + n|A_n| \mathbf{v_n}$$

where, A_i is a matrix of order 2 for all $i \in \{1,2,...,n\}$. Find $(\mathbf{u})_S$ (1 mark)

- **(b)** If $S=\{v_1, v_2,...,v_n\}$ is a basis for a vector space V, then prove that every vector v in V can be expressed in the form $v=c_1v_1+c_2v_2+...+c_nv_n$ in exactly one way, where c_1 , c_2 , ..., c_n are real numbers. (2 marks)
- (c) Show that $rank(A)=rank(A^{T})$ for any matrix A. (1 mark)
- (d) If u and v are linearly independent, then show that u+v and u-v are linearly independent. (2 marks)

Solutions:

A1(a):

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 2 & 8 & 3 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 4 & 1 \end{bmatrix} \xrightarrow{R_{23}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{4}R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 \end{bmatrix}} \xrightarrow{(-2)R_{21}} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow (1, 2, 3) = \frac{1}{2}(1, 2, 2) + \frac{1}{4}(2, 4, 8)$$

A1(b): For all A,B \in W and k \in R:

- 1- W is not empty since $0^T=0$. Hence $0 \in W$
- 2- $(A+B)^T = A^T + B^T = A + B$. So $A+B \in W$.
- 3- $(kA)^T = kA^T = kA$. So $kA \in W$
 - 1, 2 and 3 implies that W is a subspace of $V=M_{nn}$.

A2(a):

$$W(x) = \begin{vmatrix} 1 & x & x^{3} \\ 0 & 1 & 3x^{2} \\ 0 & 0 & 6x \end{vmatrix} = 6x$$

$$W(1) = 6 \neq 0$$

So 1, x, x^3 are linearly independent.

A2(b):

$$\begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{vmatrix}_{(-2)R13} \begin{vmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 0 & -3 & -2 \end{vmatrix} = 1(-1)(-2) = 2 \neq 0$$

So the vectors (1,1,2), (2,1,1), (1,1,0) form a basis for \mathbb{R}^3 . Now,

$$w = (1,1,2) + 2(2,1,1) + 3(1,1,0) = (8,6,4)$$

A3(a):

$$\begin{bmatrix} B \mid B ' \end{bmatrix} = \begin{bmatrix} 1 & 2 \mid 1 & 2 \\ 2 & 5 \mid 1 & 0 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 \mid 1 & 2 \\ 0 & 1 \mid -1 & -4 \end{bmatrix} \\
\xrightarrow{(-2)R_{21}} \longrightarrow \begin{bmatrix} 1 & 0 \mid 3 & 10 \\ 0 & 1 \mid -1 & -4 \end{bmatrix} \\
= \begin{bmatrix} I \mid P_{B' \to B} \end{bmatrix} \\
P_{B' \to B} = \begin{bmatrix} 3 & 10 \\ -1 & -4 \end{bmatrix}$$

A3(b):

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 4 & 6 \\ 3 & 6 & 10 & 5 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & -8 & 8 \\ 0 & 0 & -8 & 8 \end{bmatrix}$$

$$\xrightarrow{(-1)R_{23}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & -8 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}} \xrightarrow{(-\frac{1}{8})R_{2}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Using the leading ones, $\{[1 \ 2 \ 3]^T, [6 \ 4 \ 10]^T\}$ is a basis of col(A).

Now, rank(A)+nullity(A^{T})=m

So nullity(A^T)=m- rank(A)=3-2=1

A4(a): $(u)_S = (|A_1|, 2|A_2|, 3|A_3|, ..., n|A_n|)$

A4(b): Suppose v∈V has two expressions:

$$v=c_1v_1+c_2v_2+\cdot\cdot\cdot+c_nv_n$$
 and $v=k_1v_1+k_2v_2+\cdot\cdot\cdot+k_nv_n$, so

$$0 = (c_1-k_1)v_1 + (c_2-k_2)v_2 + \cdots + (c_n-k_n)v_n$$

But $S = \{v_1, v_2, \dots, v_n\}$ is a basis, so it is linearly independent. Thus,

 c_1 - k_1 = c_2 - k_2 =...= c_n - k_n =0 and hence c_i = k_i for all i \in {1,2,...,n} and hence v has exactly one expression.

A4(c): $rank(A)=dim(row(A))=dim(col(A^T))=rank(A^T)$.

A4(d): Observe that:

$$a(u+v)+b(u-v)=0$$

$$\Rightarrow (a+b)u+(a-b)v=0$$

$$L.I. \Rightarrow a+b=0 & a-b=0$$

$$\Rightarrow 2a=0 \Rightarrow a=0 \Rightarrow b=0$$

So, u+v and u-v are linearly independent.