First Semester	Second Exam	King Saud University
(without calculators)	Time allowed: 1 h and 30 m	College of Science

240 Math

Math. Department

Q1: Let V be any nonempty set which has two operations are defined: addition and scalar multiplication. State the 10 axioms that should be satisfied by all scalars and all objects in V that make V a vector space. (5 marks)

A1: For all $u,v,w \in V$ and $k,m \in \mathbb{R}$:

- 1- u+v∈ℝ
- 2- u+v=v+u

Wednesday 28-3-1443

- 3- u+(v+w)=(u+v)+w
- 4- there is a zero vector 0 in v such that u+0=u for all u∈V
- 5- for each vector u in V, there is a negative vector –u such u+(-u)=0
- 6- ku∈V
- 7- k(u+v)=ku+kv
- 8- (k+m)u=ku+mu
- 9- K(mu)=(km)u
- 10-1u=u

Q2: Let $V=M_{22}$ and $W=\{A \in M_{22} \mid tr(A)=0\}$. Prove that W is a subspace of V. (3 marks)

A2: For all $A = \begin{bmatrix} a & a' \\ a'' & a''' \end{bmatrix}$, $B = \begin{bmatrix} b & b' \\ b'' & b''' \end{bmatrix} \in W$ and $k \in \mathbb{R}$:

- 1- W is not empty since tr(0)=0. Hence $0\in W$ 2- $tr(A+B) = tr\Big(\begin{bmatrix} a+b & a'+b' \\ a''+b'' & a'''+b''' \end{bmatrix}\Big) = a+b+a'''+b''' = a+a'''+b+b'''$ =tr(A)+tr(B)=0+0=0. So A+B∈W.
- 3- $\operatorname{tr}(kA) = \operatorname{tr}\left(\begin{bmatrix} ka & ka' \\ ka'' & ka''' \end{bmatrix}\right) = ka + ka''' = k(a + a''') = \operatorname{ktr}(A) = k0 = 0.$ So $kA \in W$ 1, 2 and 3 implies that W is a subspace of V=M_{nn}.

Q3: Use the Wronskian to show that xsin(x) and xcos(x) are linearly independent in the vector space $C^{\infty}(-\infty,\infty)$. (3 marks)

A3:

$$W(x) = \begin{vmatrix} x \sin(x) & x \cos(x) \\ \sin(x) + x \cos(x) & \cos(x) - x \sin(x) \end{vmatrix}$$

$$= x \sin(x) \cos(x) - x^{2} \sin^{2}(x) - x \cos(x) \sin(x) - x^{2} \cos^{2}(x)$$

$$= -x^{2} \sin^{2}(x) - x^{2} \cos^{2}(x) = -x^{2} (\sin^{2}(x) + \cos^{2}(x))$$

$$= -x^{2} (1) = -x^{2}$$

Since $W(1)=-1\neq 0$, so $x\sin(x)$ and $x\cos(x)$ are linearly independent.

Q4: show that the vectors (1,1,2), (2,1,0), (1,1,0) form a basis for \mathbb{R}^3 . (3 marks) A4:

$$\begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 2(2-1) = 2 \neq 0$$

So the vectors (1,1,2), (2,1,0), (1,1,0) form a basis for \mathbb{R}^3

Q5: Let $B=\{(1,2),(2,5)\}$ and $B'=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^2 . Find the transition matrix from B' to B. (3 marks). A5:

$$\begin{bmatrix} B \mid B ' \end{bmatrix} = \begin{bmatrix} 1 & 2 \mid 1 & 2 \\ 2 & 5 \mid 1 & 0 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 \mid 1 & 2 \\ 0 & 1 \mid -1 & -4 \end{bmatrix} \\
\xrightarrow{(-2)R_{21}} \begin{bmatrix} 1 & 0 \mid 3 & 10 \\ 0 & 1 \mid -1 & -4 \end{bmatrix} \\
= \begin{bmatrix} I \mid P_{B' \to B} \end{bmatrix} \\
P_{B' \to B} = \begin{bmatrix} 3 & 10 \\ -1 & -4 \end{bmatrix}$$

Q6: Find a basis for the column space of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 4 & 6 \\ 3 & 6 & 10 & 5 \end{bmatrix}$$

and <u>deduce</u> nullity(A^T) without solving any linear system. (4 marks) A6:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 4 & 6 \\ 3 & 6 & 10 & 5 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & -8 & 8 \\ 0 & 0 & -8 & 8 \end{bmatrix}$$

$$\xrightarrow{(-1)R_{23}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & -8 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Using the leading ones, $\{[1 \ 2 \ 3]^T$, $[6 \ 4 \ 10]^T\}$ is a basis of col(A).

Now, rank(A)+nullity(A^{T})=m

So nullity(A^T)=m- rank(A)=3-2=1

Q7:(a) Let $S=\{v_1, v_2, ..., v_n\}$ be a basis for a vector space V. Suppose u is a vector in V such that

$$\mathbf{u} = |A_1| \mathbf{v}_1 + 2|A_2| \mathbf{v}_2 + 3|A_3| \mathbf{v}_3 + \ldots + n|A_n| \mathbf{v}_n$$

where, A_i is a matrix of order 2 for all $i \in \{1,2,...,n\}$. Find $(\mathbf{u})_S$ (1 mark)

A7(a):
$$(u)_S = (|A_1|, 2|A_2|, 3|A_3|, ..., n|A_n|)$$

(b) If $S=\{v_1, v_2,...,v_n\}$ is a basis for a vector space V, then prove that every vector v in V can be expressed in the form $v=c_1v_1+c_2v_2+...+c_nv_n$ in exactly one way, where c_1 , c_2 , ..., c_n are real numbers. (2 marks)

A5(b): Suppose v∈V has two expressions:

$$v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$$
 and $v = k_1v_1 + k_2v_2 + \cdots + k_nv_n$, so

$$0 = (c_1-k_1)v_1 + (c_2-k_2)v_2 + \cdots + (c_n-k_n)v_n$$

But $S = \{v_1, v_2, \dots, v_n\}$ is a basis, so it is linearly independent. Thus,

 c_1 - k_1 = c_2 - k_2 =...= c_n - k_n =0 and hence c_i = k_i for all i \in {1,2,...,n} and hence v has exactly one expression.

(c) Suppose S is a subset of the vector space P_5 and suppose S has seven different vectors. Is S linearly independent? Why? (1 mark)

No, since $7>6=dim(P_5)$