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the inverse of (113F). (4 marks) deduce(a) the inverse of F. Then  

(b) the cofactor C32. (2 marks) 
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Q2: Solve the following linear system By Gauss-Jordan Elimination: 

 (5 marks) 
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We will solve the system by reducing the augmented matrix of the  Answer:

system in the reduced row echelon form (R.R.E.F.) and then solving the 

corresponding system of equations: 
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Q3: Let V be any nonempty set which has two operations are defined: addition 
and scalar multiplication. State the 10 axioms that should be satisfied by all 
scalars and all objects in V that make V a vector space. (5 marks) 

:∈ℝV and k,m∈For all u,v,w Answer: 

1- u+v∈V 
2- u+v=v+u 
3- u+(v+w)=(u+v)+w 
4- there is a zero vector 0 in v such that u+0=u for all u∈V 
5- for each vector u in V, there is a negative vector –u such u+(-u)=0 
6- ku∈V 
7- k(u+v)=ku+kv 
8- (k+m)u=ku+mu 
9- k(mu)=(km)u 
10- 1u=u 

 

subspace of V.  notthat W is a  Show(A)=0}. det|22M ∈and W={A 22Let V=M: 4Q
(2 marks) 

Answer: Let A=[
1 1
1 1

] and B=[
1 2
0 0

]. Then |A|=|B|=0 and A,B∈W. Now, 

A+B=[
2 3
1 1

] and |A+B|=2−3=−1≠0. So, A+B∉W and W is a not subspace of V.  

 

Q5: Use the Wronskian to show that the vectors: 1, x and cos(x) are linearly 

independent in the vector space C∞(-∞,∞). (3 marks) 

  As Answer:  
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So the vectors 1, x and cos(x) are linearly independent. 

Q6: (a) Prove that if A has an inverse, then it is unique. (2 marks) 

has two inverses B and C. So ASuppose  Answer: 

 ( ) ( )B BI B AC BA C IC C     

So the inverse is unique. 

(b) Suppose A has an inverse. Show that det(A-1)=(det(A))-1. (2 marks) 

Answer: Since AA-1=I and det(A)≠0, So 
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 (c) Suppose S is a subset of the vector space P5 and suppose S has five 
different vectors. Is S a basis of P5? Why? (1 mark) 

>5.)=65Pdim(No, since  Answer: 

(d) If A is an invertible matrix of size 2×2 and |A|=3, then find |3((AT)2)-1|.  

(2 marks) 

Answer:  
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(e) If the general solution of a nonhomogeneous linear system is 
{(2r−s+1,r,s,5)}, then find the general solution of the corresponding 
homogeneous linear system. (2 marks) 
 
Answer: S.S={(2r−s,r,s,0)} 


