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4.1 Real Vector Spaces

DEFINITION 1 Let V bean arbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by numbers called scalars. By addition we
mean a rule for associating with each pair of objects u and v in V an object u+ v,
called the sum of u and v; by scalar multiplication we mean a rule for associating with
each scalar k and each object uin V an object ku, called the scalar multiple of u by k.
If the following axioms are satisfied by all objects u, v, w in V' and all scalars k and
m, then we call V a vector space and we call the objects in V' vectors.

I. Ifuandvareobjectsin V, thenu+ visin V.

2. u+v=v+4u

3oout(vEw) =(u+v)4+w

4. Thereis an object 0 in V, called a zere vector for V, such that0 +u=u+0=u
foralluin V.
For each u in V| there is an object —u in V| called a megative of u, such that
ut+(—u)=(—u)+u=0.

Lh

6. If k is any scalar and u is any object in V, then kuisin V.
7. k(u+v) = ku+ kv

8. (k+m)u=Fku+ mu

9. k(mu) = (km)(u)

. lu=nu

In this text scalars will be ei-
ther real numbers or complex
numbers. Vector spaces with
real scalars will be called real
vector spaces and those with

complex scalars will be called

Observe that the definition of a vector space does not specify the nature of the vectors
complex vector spaces. There

. . or the operations. Any kind of object can be a vector, and the operations of addition
is a more general notion of a and scalar multiplication need not have any relationship to those on R". The only
vector space in which scalars requirement is that the ten vector space axioms be satisfied.

can come from a mathematical

structure known as a “field,”
but we will not be concerned
with that level of generality.
For now, we will focus exclu-
sively on real vector spaces,
which we will refer to sim-

ply as “vector spaces.”
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P EXAMPLE 1 The ZeroVector Space
Let V consist of a single object, which we denote by 0, and define
04+0=0 and k0=0

for all scalars k. It is easy to check that all the vector space axioms are satisfied. We call
this the zere vector space. 4

P EXAMPLE 2 R"Is aVector Space

Let V = R", and define the vector space operations on V to be the usual operations of
addition and scalar multiplication of n-tuples; that is,

u+v=(Uy, Uy, ..., Uy) +(V,02,...,0) = (U +v,up+ V2, ..., Uy + V)
ku=(kuy, ku>. ..., ku,)

Theset V = R" is closed under addition and scalar multiplication because the foregoing
operations produce n-tuples as their end result, and these operations satisfy Axioms 2,
3.4,5,7,8,9, and 10 by virtue of Theorem 3.1.1. <
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P EXAMPLE 4 TheVector Space of 2 x 2 Matrices

Let V be the set of 2 x 2 matrices with real entries, and take the vector space operations
on V to be the usual operations of matrix addition and scalar multiplication; that is,

Uy up Vi U2 Up +vn U+ v
utv= + = (1)
Hyp U Uy U Uy + v U+ Uxm
u Uz ku ki
ku— k| ¥ M2] 11 1
Uy U2 kuy  kuy
The set V' is closed under addition and scalar multiplication because the foregoing oper-
ations produce 2 x 2 matrices as the end result. Thus, it remains to confirm that Axioms

2,3.4,5,7,8,9,and 10 hold. Some of these are standard properties of matrix operations.
For example, Axiom 2 follows from Theorem 1.4.1(a) since

u Ui v vz L v12 u Hy2
“+":|:“ l]+[]l Jn]:[lu 1}_'_[11 1:|:‘_+u
Hap M2 Uz Va2 Uzp U2 by Ui
Similarly, Axioms 3, 7, 8, and 9 follow from parts (b), (h), ( j), and (e), respectively, of
that theorem (verify). This leaves Axioms 4, 5, and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a 2 x 2 matrix 00 in V for which
u+ 0 =0+ uforall 2 x 2 matrices in V. We can do this by taking

0— 0 0
]o 0
With this definition,

0 0 y  Up uy U
0+u= + = =u
0 0 Uy Un Uy U

and similarly u 4+ 0 = u. To verify that Axiom 5 holds we must show that each object
uin V has a negative —u in V such that u 4+ (—u) = 0 and (—u) + u = 0. This can be
done by defining the negative of u to be

—un —Hi2
—lu =
—Hn  —Uxn
With this definition,

Hyp Hy2 —Uy —Uyp2 0 0
u+(—u) = + = =10
Uy U2 —Ua  —Un 0 0

and similarly (—u) 4+ u = 0. Finally, Axiom 10 holds because

iy W2 iy M2
lu=1 = =nu
U2 Hm Uz Hx:
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P EXAMPLE 5 TheVector Space of m x n Matrices

Example 4 is a special case of a more general class of vector spaces. You should have
no trouble adapting the argument used in that example to show that the set V of all
m x n matrices with the usual matrix operations of addition and scalar multiplication is
a vector space. We will denote this vector space by the symbol M,,,,. Thus, for example,
the vector space in Example 4 i1s denoted as M.

P EXAMPLE 6 TheVector Space of Real-Valued Functions

Let V be the set of real-valued functions that are defined at each x in the interval ( —=e, =2).
Iff = f(x) and g = g(x) are two functions in V and if k is any scalar, then define the
operations of addition and scalar multiplication by

(f+g)(x) = f(x) + g(x) (2)
(kf)(x) = kf(x) (3)
The set V with these operations is denoted by the symbol F(x,~) . We can

prove that this is a vector space.
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» EXAMPLE 7 A Set That Is Not aVector Space
Let V = R? and define addition and scalar multiplication operations as follows: If
u— (i, u;) and v = (v;, v1), then define
u+v=1(u;+ v, u + 1)
and if k 1s any real number, then define
ku = (ku;,0)

For example, if u = (2,4), v = (-3, 5),and k = 7, then

ut+v=(24+(-3),44+5 =(-1,9)

ku="Tu=(7-2,0)=(14,0)
The addition operation is the standard one from R?, but the scalar multiplication is not.
In the exercises we will ask you to show that the first nine vector space axioms are satisfied.

However, Axiom 10 fails to hold for certain vectors. For example, if u = (u, u>) is such
that u, # 0, then

lu= 1y, uz) = (1-uy,0) = (u;,0) #u
Thus, V is not a vector space with the stated operations.

THEOREM 4.1.1 Let V be a vector space, u a vector in V, and k a scalar; then:

(@) Ou=0
by kO=10
(¢) (—lu=—u

(d) Ifku=0, thenk =0 oru=\.
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4.2 Subspaces

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself
a vector space under the addition and scalar multiplication defined on V.

THEOREM 4.2.1 If W is a set of one or more vectors in a vector space V, then W is a
subspace of 'V if and only if the following conditions are satisfied.

(a) If wandv are vectorsin W, thenu+ v isin W.

(b) Ifk is a scalar and v is a vector in W, then ku is in W.

Theorem 4.2.1 states that W 1s
a subspace of V if and only if
it is closed under addition and
scalar multiplication.

P EXAMPLE 1 The Zero Subspace

If V is any vector space, and if W = [0} is the subset of V' that consists of the zero vector
only, then W is closed under addition and scalar multiplication since

0+0=0 and kO=0
for any scalar k. We call W the zero subspace of V.

Note that every vector space
has at least two subspaces, it-
self and its zero subspace.
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Table 1
Subspaces of R? Subspaces of R*
e {0} e {0}
e Lines through the origin e  Lines through the origin
R? e Planes through the origin
« R

P EXAMPLE 4 A Subset of R? That Is Not a Subspace

Let W be the set of all points (x, y) in R? for which x > 0 and v = 0 (the shaded region
in Figure 4.2.4). This set is not a subspace of R” because it is not closed under scalar
multiplication. For example, v = (1, 1) is a vector in W, but (—1)v = (-1, —1) is not.

A Y
w0

(1,-1)

Figure 4.2.4 W is not closed
under scalar multiplication.
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> EXAMPLE 5 Subspaces of My, A=A

We know from Theorem 1.7.2 that the sum of two symmetric n X n matrices is symmetric
and that a scalar multiple of a symmetric n x n matrix is symmetric. Thus, the set of
symmetric # x 7 matrices is closed under addition and scalar multiplication and hence
is a subspace of M,,. Similarly, the sets of upper triangular matrices, lower triangular
matrices, and diagonal matrices are subspaces of M,,,.

P EXAMPLE 6 A Subset of M, That Is Not a Subspace

The set W of invertible n % n matrices is not a subspace of M, failing on two counts—it
is not closed under addition and not closed under scalar multiplication. We will illustrate
this with an example in M, that you can readily adapt to M,,. Consider the matrices

1 2 -1 2
o[ Y =[]

The matrix OU is the 2 x 2 zero matrix and hence is not invertible, and the matrix U + V
has a column of zeros so it also is not invertible.
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