Blood Biochemistry BCH 471[Practical] Lab (9) Complete Blood Count (CBC)

Objectives

- To estimate the number of RBC in blood sample
- To estimate the number of total WBC in blood sample
- To perform a differential count for a blood sample

Introduction

- Complete blood count (CBC) is a series of tests used to evaluate the composition and concentration of the cellular components of blood.

A CBC test usually includes:
I. WBC count
I. WBC differential count
II. RBC count
iII. HCT
iv. $\mathbf{H b}$
v. Red blood cell indices: There are three red blood cell indices: mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

Complete Blood Count (CBC)

- CBC can applied by two way:

1. Automated blood count
2. Manual blood count

- Automated blood count:
- CBC is performed by an automated analyzer that counts the numbers and types of different cells within the blood.
- It aspirates a very small amount of the sample through the narrow tubing, within this tubing, there are sensors that count the number of cells going through it, and can identify the type of cell; this is called flow-cytometry.

Automated Blood Count (Flow cytometer)

BASIC COMPONENTS OF A FLOW CYTOMETER

Mindray BC-2800 Auto Hematology Analyzer

Flow Cytometry Animation: https://www.youtube.com/watch?v=EQXPJ7eeesQ

Automated Blood Count (Flow cytometer)

LOST RIVERS MEDICAL CENTER LABORATORY
551 HIGHLAND DRIVE, ARCO, IDAHO 83213
PH (208) 527-8206 x 119
FAX (208) 527-3791

Manual Blood Count

- This measurement is made with a microscope and a specially ruled chamber
(Hemocytometer) using diluted blood.

Counting Grid

(A) RBC Count

- It is test done to determine the number of RBC in a sample of blood, also it evaluate the size and shape of RBC.
- It is range from $4.2-5.5$ million RBC per cubic millimeter $\left(\mathrm{mm}^{3}\right)$.
- It is considered a very important indicator of a patient's health.

Low RBC count

- Anemia
- Acute or chronic blood loss
- Malnutrition
- Chronic inflammation

High RBC count

- Polycythemia
- Congenital heart disease
- Renal problem.

Normally high (RBC count)

- People who live at high altitudes

- Smokers

(B) WBC Count

- Total leukocytes count shows the number of WBC in a sample of blood.
- A normal WBC count is between 4,500-11,000 cells per cubic millimeter $\left(\mathrm{mm}^{3}\right)$.
- The number of WBC is sometimes used to identify an infection or to monitor the body's response to treatment.

Low WBC count \rightarrow Leukopenia

- A Condition in which the number of leukocytes is abnormally low and which is most commonly due to sever infections (such as HIV) and radiation poisoning.
High WBC count \rightarrow Leukocytosis
- A condition characterized by an elevated the number of WBC occur as a result of an infection, or cancer (Leukemia).

Principle

A. Regarding RBC

- The process involves by counting cells in several squares of the grid and obtain an average number.
- This number is multiply by a factor that compensates the amount of dilution.
- The final results expresses the number of $\mathbf{R B C} / \mathbf{m m}^{\mathbf{3}}$ of original blood sample.

B. Regarding WBC

- It is necessary to obtain RBC free preparation of WBC from blood.
- Suspension of the red blood cell in a very hypotonic solution will lead to the destruction of RBC.

Counting $\mathbf{2}$ sides in L shape

(i.e. count the cells settled on the top and left sides)

And (exclude the cells on the bottom and right sides)
Counting in zigzag in all squares

Blue cells are counted
Grey cells aren't counted
square $=1 \mathrm{~mm} 2$square $=0.0625 \mathrm{~mm} 2$square $=0.04 \mathrm{~mm} 2$
square $=0.0025 \mathrm{~mm} 2$
at a depth of 0.1 mm

How To Count Blood Cells ?

The result is obtained as cell / mm3:

The Cubic Millimeters $(\mathrm{mm} 3)=$ area per 1 square $(\mathrm{mm} 2) \mathrm{X}$ depth (mm)

RBC Calculations

- RBC blood cell count (5 squares)
- Find the sum of RBCs in 5 large squares, and divide it with $80(5 \times 16)$ small squares to find the average in one square, multiply it by $\mathbf{2 0 0}$ to allow for the dilution and then multiply by 4000 to obtain the number per cubic milliliter.
- The sum of RBCs in 5 large squares $=(84)+(71)+(63)+(93)+(83)=394$ cells.
- The average of RBCs in one square $=\frac{394}{5 \times 16}=\frac{394}{80}=4.9$ cells.
- RBC count $=4.9 \times 200 \times 4000=4$ million $/ \mathrm{mm}^{3}$.
- \quad Normal range $=4.2-5 \mathrm{million} / \mathrm{mm}^{3}$

RBC Calculations: Step by Step

- RBC count $=$ The average of RBCs in one square (1) \times Dilution factor (2) x Reciprocal of volume (3)
- The sum of RBCs in 5 large squares $=(84)+(71)+(63)+(93)+(83)=394$ cells.
- (1) The average of RBCs in one square $=\frac{\text { No. of cells in } 5 \text { squares }}{\text { No. of small squares }}=\frac{394}{(16 \times 5)=80}=4.9$ cells.
- (2) Dilution factor $=\frac{\text { Final volume }(\mathrm{RBC} \text { solution })}{\text { aliquot volume (blood sample) }}=\frac{200}{1}=200$
- (3) Reciprocal of volume $=\frac{1}{\text { cubic volume }}=\frac{1}{0.00025 \mathrm{~mm}^{3}}=4000$
- RBC count $=4.9 \times 200 \times 4000=4$ million $/ \mathrm{mm}^{3}$

WBC Calculations

- WBC blood cell count (4 squares)
- Find the sum of WBCs in 4 large squares, and divide it with $\mathbf{6 4}(4 \mathrm{X} 16)$ small squares to find the average in one square, multiply it by 20 to allow for the dilution and then multiply by $\mathbf{1 6 0}$ to obtain the number per cubic milliliter.
- The sum of WBCs in 4 large squares $=(16)+(21)+(17)+(15)=69$ cells.
- The average of WBCs in one square $=\frac{69}{64}=1.07$ cells.
- WBC count $=1 \times 20 \times 160=3200 \mathrm{Cells} / \mathrm{mm}^{3}$.
- Normal range $=4500-11000$ cells $/ \mathrm{mm}^{3}$

WBC Calculations: Step by Step

- WBC count $=$ The average of WBCs in one square (1) \times Dilution factor (2) \times Reciprocal of volume (3)
- \quad The sum of WBCs in 4 large squares $=(16)+(21)+(17)+(15)=69$ cells.
- (1) The average of $\mathbf{W B C s}$ in one square $=\frac{\text { No. of cells in } 4 \text { squares }}{\text { No. of small squares }}=\frac{69}{(16 \times 4)=64}=1.07$ cells.
- (2) Dilution factor $=\frac{\text { Final volume }(\text { WBC solution })}{\text { aliquot volume (blood sample) }}=\frac{20}{1}=20$
- (3) Reciprocal of volume $=\frac{1}{\text { cubic volume }}=\frac{1}{0.00625 \mathrm{~mm}^{3}}=160$
- WBC count $=1 \times 20 \times 160=3200 \mathrm{Cells} / \mathrm{mm}^{3}$.

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

(C) Differential Count

- It determines the number of each type of WBC present in the blood.

Class of white cells	White cell type		\% of total white cell population
Granulocytes	Polymorphonuclear	Eosinophils	$\mathbf{4 0 - 7 5}$
		Basophils	$\mathbf{1 - 6}$
		Mononuclear	Lymphocytes

*: Rarely seen in blood, but present in the tissues.

Principle

- Classification of polymorphonuclear granulocytes (PMN) is based on the size, shape, number and staining characteristics of their granules .
- Leishman's stain
- It is based on a mixture of methylene blue and eosin.
- It differentiates between WBC as indicated in the following table:

Type of cell	Color of the stain
Neutrophils nuclei	Purple
Eosinophils granules	Orange - Red
Basophils granules	Dark Blue
Lymphocytes nuclei	Dark Purple
Monocytes cytoplasm	Grey blue
Platelets granules	Violet
RBC	Pink

