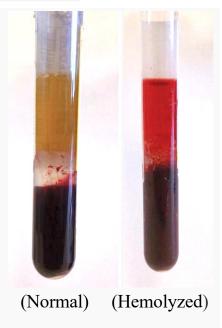


Blood Hemolysis

- Hemolysis (from the Greek Hemo: meaning blood, lysis, meaning to break open).
- It is the **breaking open** of <u>red blood cells</u> and the release of hemoglobin and the red cell contents into the surrounding fluid (plasma).
- Hemolysis may occur *in vivo* or *in vitro*.

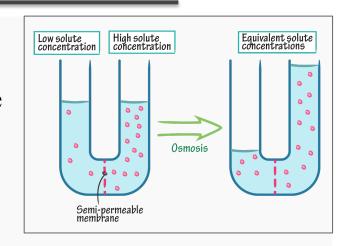
Hemolysis in-vivo


- Conditions that can cause hemolysis include:
- 1. Immune reactions (e.g. during blood transfusion)
- 2. Infections (e.g. malaria infection)
- 3. Medications (e.g. cisplatin, a chemotherapy drug)
- 4. Toxins and poisons
- Since the potassium concentration inside red blood cells is much higher than in the plasma, elevated <u>potassium in plasma</u> is usually found in biochemistry **tests of hemolyzed blood**.

Hemolysis in-vitro

- Factors that can cause hemolysis include:
- 1. Improper technique during collection (e.g. incorrect needle size, excessive suction)
- 2. pH imbalance (addition acid or base)
- 3. Placing RBCs in a hypotonic solution

- 1. Breaking down RBCs to release their content
- 2. Estimation of <u>haemoglobin</u>
- 3. To obtain <u>erythrocyte-free preparation</u> of leukocyte and platelet


Note: In this lab blood hemolysis will be done by using hypotonic solutions and pH imbalance.

Osmosis and Osmotic Pressure

Osmosis:

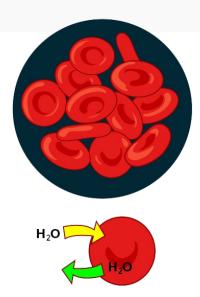
It is the <u>diffusion of solvent</u> molecules across a semi-preamble membrane into a region of higher solute concentration.

• Once an *equilibrium* is reached the flow of water stops.

Osmotic pressure:

The <u>pressure</u> exerted by a <u>solvent</u> passes through a semi-permeable membrane in osmosis.

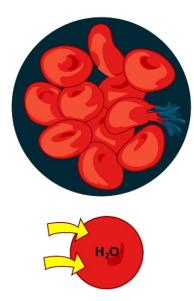
Tonicity:


Is the ability of an extracellular solution to make water move into or out of a cell by osmosis.

• Accordingly, there are three types of solutions: **Isotonic**, **Hypotonic**, and **Hypertonic**.

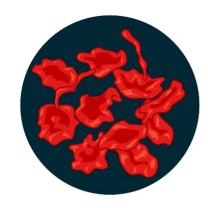
Isotonic

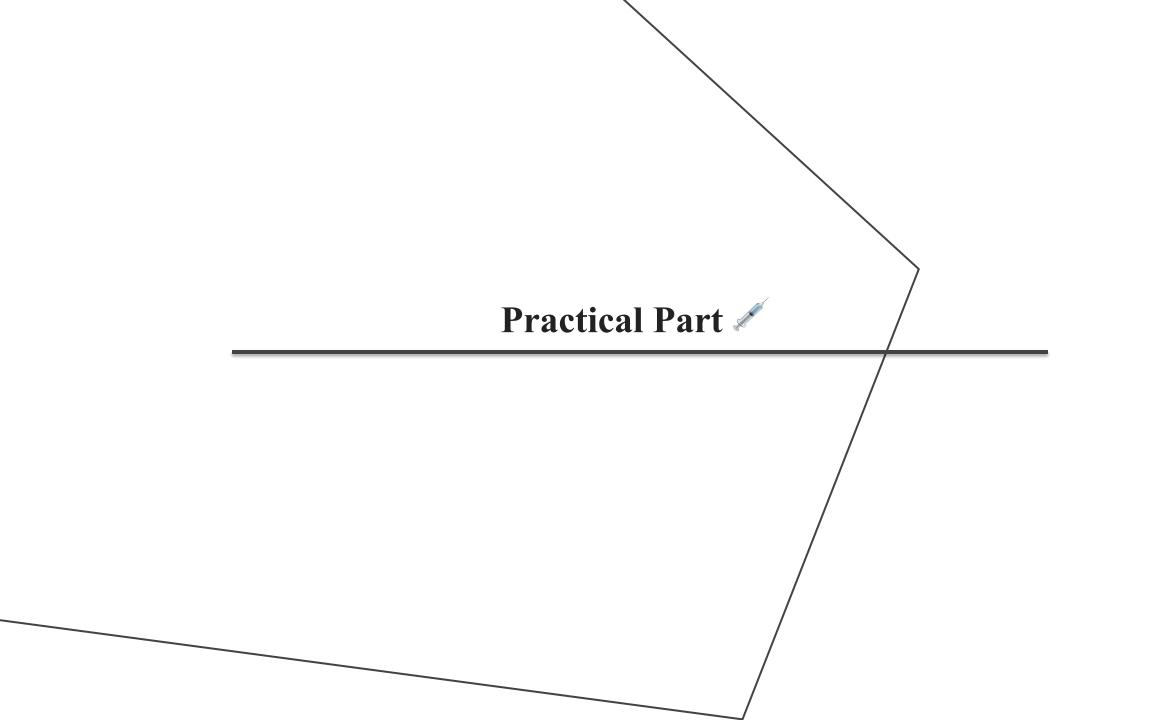
- A solution that has the <u>same solutes concentration</u> as the normal cells of the body and the blood, having equal osmotic pressure.
- Example of Isotonic solution is **sodium chloride 0.9% (normal saline)**, have the same osmotic pressure as serum and they <u>do not affect the membranes of the RBCs.</u>
- In hospitals, intravenous fluids are <u>isotonic</u>.


Solute inside the cell = Solute outside the cell

Hypotonic

- In a hypotonic solution, there is a <u>lower concentration of solute outside a cell</u>, creating an environment with <u>lower osmotic pressure</u> than what is contained within the cell.
- The RBCs will burst or hemolyzed.
- Any concentration of NaCl that is **lower than 0.9%**, will be considered hypotonic for cells.


Solute outside the cell < Solute inside the cell


Hypertonic

- In a hypertonic solution, there is a <u>higher concentration of solute outside a cell</u>, creating an environment with <u>higher osmotic pressure</u> than what is contained within the cell.
- The RBCs will be shrink.
- Any concentration of NaCl that is **higher than 0.9%**, will be considered hypertonic for cells.

Solute outside the cell > Solute inside the cell

Objectives

- 1. To evaluate the effects of different solutions in blood hemolysis.
- 2. To detect the presence of blood in a biological sample.

Calculate the concentration of an isotonic solution of a specific substance

For example, what is the concentration of NaCl (w/v%) that will make an isotonic solution for RBC? knowing that the osmolarity of RBC = 0.308 Osmolar.

First: Calculate the molarity from the osmolarity equation: [1]

Osmolarity = 0.308 Osmolar

No. of dissociation particles = 2, since NaCl \rightarrow Na⁺ + Cl⁻

→ M=
$$\frac{\text{Osmolarity}}{n} = \frac{0.308}{2} = 0.154 \text{ M}$$

[1] Osmolarity = $M \times n$ Where:

M = molarity n= No. of dissociation particles

Pause and think Why do you think it is important to prepare isotonic solutions?

Calculations

To Calculate in w/v% expression:

Second: Calculate the No. of moles: [2]

- \rightarrow No. of moles = M x V (in L) =
- \rightarrow 0.154 M x 0.1 L = 0.0154 moles

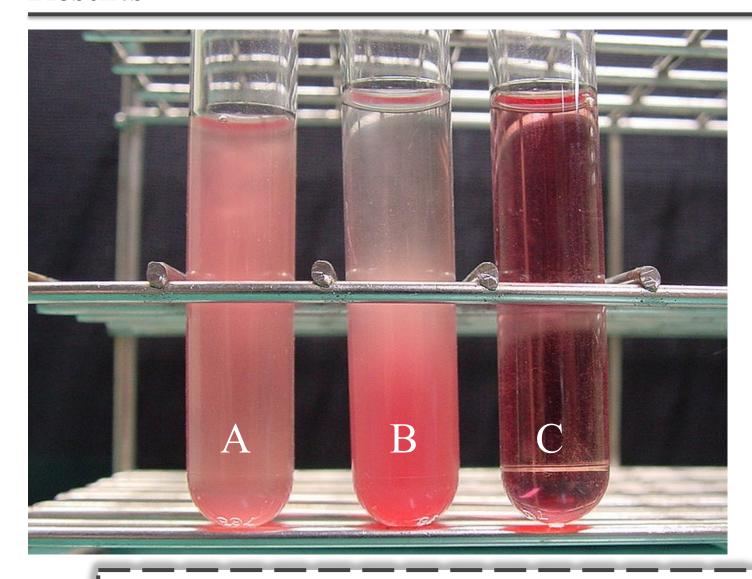
[2] Molarity =
$$\frac{\text{No. of moles of solute}}{\text{Volume (L)}}$$

[3] No. of moles = $\frac{Wt(g)}{Mwt}$

Third: Calculate weight in grams knowing that Mwt of NaCl = 58.5 g/mol: [3]

- \rightarrow Wt (g) = No. of moles x Mwt
- \rightarrow 0.0154 x 58.5= <u>0.9 g in 100 ml then 0.9% w/v</u>
 - $= 0.9 \% \rightarrow$ the concentration of NaCl that will make an isotonic solution

Experiment (1): Hemolysis Test


Method

1. Label 6 tubes $(A \rightarrow F)$. Then add as following:

	Tube A	Tube B	Tube C	Tube D	Tube E	Tube F
NaCl 0.45%	5 ml					
NaCl 1.2%		5 ml				
Sucrose 6%			5 ml			
NaOH 0.1 M				3 drops		
HCl 0.1 M					3 drops	
Dis. Water						5 ml
NaCl 0.9%				5 ml	5 ml	

- 2. Add 1ml of Sample A into each tube
- 3. Wait 10 30 min
- 4. Observe whether hemolysis has taken place

Results

- A Normal, non-hemolyzed sample
- **B** Sedimented after one hour
- C Hemolyzed sample

Note: the hemolyzed sample is transparent because there are no cells to scatter the light.

Experiment (2): Detection of Blood by Benzidine Test

It is often necessary to detect the presence of small quantities of blood in urine, stomach contents etc.

Principle

- This method depend on the fact that the heme group of hemoglobin possesses a peroxidase-like activity which catalyzes the breakdown of hydrogen peroxide $(\mathbf{H_2O_2})$.
- The oxidizing species formed in this reaction can then react with benzidine giving blue greenish color.

```
Heme (hemoglobin) + H_2O_2 \rightarrow H_2O + [O]
[O] + benzidine \rightarrow blue greenish complex
```

Note: the test is <u>not specific</u> for blood as peroxidases present in milk, potatoes and pus, as well as the ions of Fe^{+3} , Cu^{+2} and K^{+1} will give false positive results

Experiment (2): Detection of Blood by Benzidine Test

Method

In a test tube add:

- Pinch of benzidine powder.
- 2ml glacial acetic acid.
- 3ml hydrogen peroxide (H₂O₂).
- Add 1 2 ml of the sample B.

Results

- If the test is **negative** \rightarrow blood is <u>absent</u> from sample.
- If the test is **positive** \rightarrow blood is probably **not definitely** present in sample.
- For this reason these tests are often described as "presumptive tests".

Positive results