Blood Biochemistry BCH 471[Practical]

Lab (2) Determination of Non-functional Plasma Enzymes in Serum

Blood Enzymes

- Plasma, serum or **blood proteins**, are <u>proteins present in blood plasma</u> which have several functions.
- Some blood proteins also act as enzymes.
- **Enzymes** are biocatalysts that increase the rate of the chemical reaction.
- Clinical enzymology refers to measurement of enzyme activity in body fluids for the diagnosis and treatment of diseases.
- Most clinical enzyme measurements using serum or plasma, occasionally other fluids, such as urine and gut secretions are also investigated.

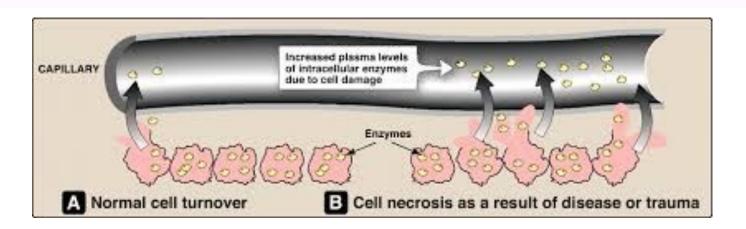
Differences Between Plasma Enzymes

Plasma Enzymes

1. Plasma-specific Enzymes (Functional)

Enzymes that are <u>normally present</u> in the plasma and <u>perform their primary function in the blood</u>.

2. Non-plasma specific Enzymes (Non functional)


<u>Intracellular</u> enzymes that are normally <u>present in very small amount</u> in blood and <u>perform no known</u> function in blood.

	Functional plasma enzymes	Non functional plasma enzymes
Their substrate	Always present in the blood	Absent from the blood
Site of synthesis	Liver	Different organs e.g. liver, heart, muscles, and brain
Effect of diseases in its plasma levels	Decrease in liver diseases	Different enzymes increase in different organ diseases
Examples	Thrombin Plasmin Ceruplasmin	ALT LDH Acid Phosphatase Amylase

Pause and Think Which of these enzymes is a better diagnostic indicator? Why?

Sources of Non functional Plasma Enzyme

- 1. Cell damage with the release of its content of enzymes into blood e.g. Myocardial infarction and viral hepatitis.
- 2. Block in the secretory pathway e.g. elevation of blood pancreatic amylase and lipase in pancreatitis.
- 3. Increase enzyme synthesis e.g. elevation of serum alkaline phosphatase in bone cancer.
- 4. Increased permeability of cell membrane as in hypoxia.

So estimation of the plasma concentration of these enzymes in blood <u>is useful for the diagnosis of disease</u> depending on their tissue origin.

Clinical Significance of Non-Functional Plasma Enzymes

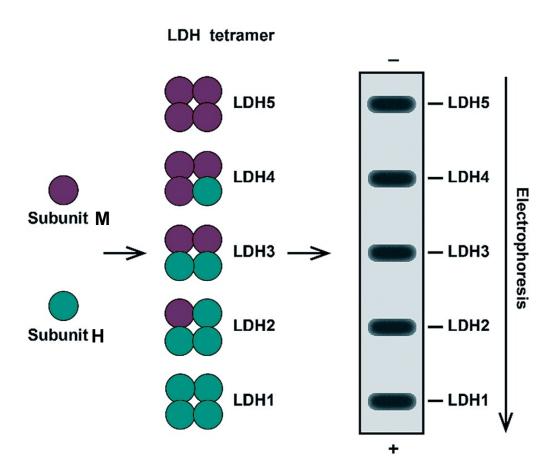
Measurement of non-functional enzymes is important for:

- 1. Diagnosis of diseases.
- 2. Prognosis of the disease: following up of the treatment by measuring plasma enzymes before and after treatment.

Lactate Dehydrogenase (LDH)

- LDH is a hydrogen transfer enzyme which catalyzes the **interconversion of pyruvate and lactate** with the mediation of **NAD**⁺ as hydrogen acceptor, eventually converting pyruvate to glucose.
- The optimum pH for lactate pyruvate (L \rightarrow P) reaction is **8.8 9.8**, While for pyruvate to lactate (P \rightarrow L) is **7.7 7.8**.
- The enzyme is inhibited by sulfhydryl reagents and mercuric ions.

Lactate Dehydrogenase (LDH)


- Lactic acid dehydrogenase (LDH) is a cytoplasmic enzyme that helps produce energy.
- LDH is most often measured to evaluate the presence of tissue damage (diagnostic).
- The enzyme LDH is found in many body tissues, especially the heart, liver, kidney, skeletal muscle,
 brain, blood cells and lungs.

	Diseases	Examples
	Myocardial infarction	
	Liver Disease	Toxic jaundice
		Viral hepatitis
High LDH Level in the Plasma in Different Diseases		Obstructive jaundice
	Anemia	Pernicious anemia
		Megaloblastic anemia
	Renal Diseases	Tubular necrosis
		Pyelonephritis
	Malignant Disease	Lung Cancer
		Hodgkin's disease

LDH Isoenzymes

- LDH exists in 5 forms (isoenzymes), which differ slightly in structure.
- All of these isoenzymes can be measured in the blood, and can be separated by <u>electrophoresis</u>.

Isoenzyme	Cellular level	Diseases associated
LDH-1	Heart tissue	Myocardial infarction
LDH-2	WBC (monocytes), RBC	Megaloblastic anemialeukemia
LDH-3	Lung tissue	Pulmonary embolism
LDH-4	kidneys, placenta and pancreas	Pancreatitis
LDH-5	liver and skeletal muscle	Toxic hepatitis with jaundiceMuscular dystrophy

Alanine Transaminase (ALT)

- ALT is an enzyme that catalyzes a type of reaction (**transamination**) between an amino acid and α -keto acid.
- It is important in the <u>production of various amino acids</u>.
- Also called alanine transferase (ALT), serum glutamate-pyruvate transaminase (SGPT).

• Transamination reaction is the process by which amino groups are removed from amino acids and transferred to acceptor keto-acids to generate the amino acid version of the keto-acid and the keto-acid version of the original amino acid.

ALT Diagnostic Importance

- Normally, high concentrations of ALT occur in the liver, and relatively low concentrations are found in the heart, muscle, and kidney.
- In the **serum**, only **low level** (10–35 U/L) of the ALT is found, thus an elevated level is a sensitive index of acute hepatocellular injury.
- <u>Elevated</u> serum ALT (SGPT) level are found in hepatitis, cirrhosis and obstructive jaundice.
- Levels of ALT are only <u>slightly elevated</u> in patient following a **myocardial infarction**.

Practical Part

Objectives

- To determine the level of Lactate Dehydrogenase (LDH) in serum
- To determine the level of Alanine Transaminase (ALT) in serum.
- To evaluate the presence of tissue damage.

Lactate Dehydrogenase Assay

Principle

LDH catalysis the following reaction:

L-Lactate +
$$NAD^+$$
 $\stackrel{LDH}{\longleftrightarrow}$ Pyruvate + $NADH + H^+$

• The rate of NADH formation is indicated by **increase the absorbance at 340 nm** and it is <u>directly</u> <u>proportional to serum LDH activity.</u>

If:

- NADH is **product** → **increase** the absorbance/min
- NADH is **reactant** → **decrease** the absorbance/min

Method

	Pipette into cuvettes at 30 °C:
Serum Sample	20 μ1
Buffer *Containing (TRIS buffer, Pyruvate)	1000 μ1
Mix and incubate at 30 °C for 3 minutes	
Substrate *Containing (NADH)	250 μ1

Mix and incubate at 30 °C for 1 minute, then read the absorbance at 340 nm against distilled water (blank) every minute for 2 minutes. Then determine $\Delta A/min$.

Measure enzyme kinetics using UV-visible spectroscopy:

- 2) Applications → 2) Simple Kinetics → wavelength (340 nm) → 1) Seconds → Duration (120 sec)
- →Intervals (60 sec)→Print Data Table (off)→Press start (2 times)

Results and Calculations

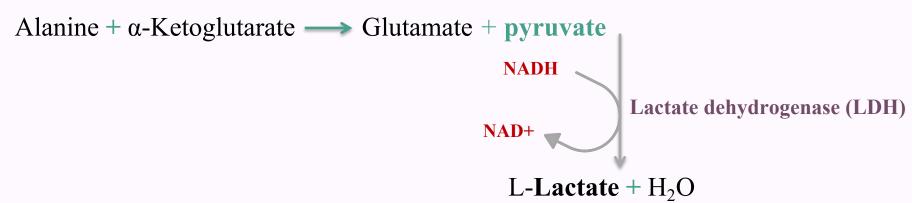
Results

	Time (min)	Absorbance at 340 nm
A_1	0	
A_2	1	
A_3	2	

Calculations

•
$$\Delta A_1$$
, = $A_1 - A_2$ $\Delta A_2 = A_2 - A_3$

$$\Delta \mathbf{A}/\mathbf{min} = (\Delta \mathbf{A}_1 + \Delta \mathbf{A}_2) / 2$$


• LDH Activity (U/L) = $\Delta A/\min x 10080$

Normal Values: Adults: 160 – 320 (U/L)

Alanine Transaminase Assay

Principle

Alanine Transaminase (ALT)

■ The rate of NAD⁺ formation is indicated by **decreased the absorbance at 340 nm** and it is <u>indirectly proportional to serum LDH activity.</u>

If:

- NADH is **product** → **increase** the absorbance/min
- NADH is **reactant** → **decrease** the absorbance/min

Method

Pipette into cuvettes at 37 °C:

ALT reagent

 $1000 \mu l$

*Containing (L-Alanine, Oxoglutarate LDH, NADH, buffer)

Pre-warm at 37 °C for 3 minutes and add

Sample (serum)

 $100 \mu l$

Mix and incubate at 37 °C for 1 minute, then read the absorbance at 340 nm against distilled water (blank) every minute for 2 minutes. Then determine $\Delta A/min$.

Measure enzyme kinetics using UV-visible spectroscopy:

- 2) Applications \Rightarrow 2) Simple Kinetics \Rightarrow wavelength (340 nm) \Rightarrow 1) Seconds \Rightarrow Duration (120 sec)
- →Intervals (60 sec)→Print Data Table (off)→Press start (2 times)

Results and Calculations

Results

	Time (min)	Absorbance at 340 nm
A_1	0	
A_2	1	
A_3	2	

Calculations

•
$$\Delta A_1$$
, = $A_1 - A_2$ $\Delta A_2 = A_2 - A_3$

$$\Delta A/\min = (\Delta A_1 + \Delta A_2) / 2$$

• ALT Activity (U/L) = $\Delta A/\min x 1768$

Normal Values: Males: 10-40 (U/L). Female: 7- 35 (U/L).