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ABSTRACT

In this article, a test statistic for testing exponentiality versus a used better than aged in Laplace

transform ordering class of life distribution based on a U-statistic is proposed. Pitman’s asymp-

totic efficiencies of the test are calculated and compared to other tests. The percentiles of this

test statistic are tabulated for censored and non-censored data, and the powers of this test are

estimated for some famously alternative distributions in reliability, such as the Weibull,

Makeham, linear failure rate, and Gamma distributions. Finally, examples in different areas

are used as practical applications of the proposed test.

Keywords

used better than aged and used better than aged in expectation classes of life distributions, test-

ing hypothesis, right-censored data, Makeham, Weibull, linear failure rate, Gamma distributions

Introduction

Statistical inferences are used to project the data from the sample to the entire population.

Statistical inference based on two main branches, one of them the estimation and the other

the testing hypotheses. In general, we do not know the true value (claim) of the population

parameters; they must be estimated. However, we do have hypotheses about what the true

values (claims) are. The hypothesis actually to be tested is usually given the symbol H0 and

is commonly referred to as the null hypothesis. The other hypothesis, which is assumed to

be true when the null hypothesis is false, is referred to as the alternative hypothesis and is

often symbolized as H1. Both the null and alternative hypotheses should be stated before

any statistical test of significance is conducted.

In this article, real data are given, and we desire to testH0, whose data are exponential,

versus the alternative hypothesis H1, whose data are not exponential. To choose between
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H0 and H1 or to make a decision we need to define the test statistic. The test statistic is a random variable used to

determine how close a specific sample result falls to one of the hypotheses being tested.

In reliability theory, aging life is usually characterized by a nonnegative, continuous random variable X ≥ 0

representing equipment life with the distribution function F and survival function FðtÞ = 1 − FðtÞ such that

Fð0−Þ = 0. One of the most important approaches to the study of aging is based on the concept of residual life.

For any random variable X, let Xt = ½X − tjX > t�, and t ∈ fx∶FðxÞ < 1Þ denote a random variable whose dis-

tribution is the same as the conditional distribution of X–t, given that X > t and has the following survival:

FtðxÞ =
� Fðx+tÞ

FðtÞ FðtÞ > 0

0 FðtÞ = 0

When X is the lifetime of a device which has a finite mean μ = EðXÞ = ∫ ∞
0 FðuÞdu, the mean of Xt is called the

mean residual life and is given in the following:

μðtÞ = EðXtÞ =
R
∞
t FðuÞdu
FðtÞ

Furthermore, the hazard rate of X is defined by the following:

hðtÞ = −
d
dt

ln FðtÞ = f ðtÞ
FðtÞ , t ≥ 0, FðtÞ > 0

where f ðtÞ = F 0ðtÞ is the probability density of X, assuming it exists. Note that if limt→∞ hðtÞ = hð∞Þ exists and is
positive, then we have the following (Willmot and Cai [1]):

μð∞Þ = lim
t→∞

μðtÞ = 1
hð∞Þ

If X and Y are two random variables with distributions F and G (survivals F and G), respectively, then we say

that X is smaller than Y in the following:

(a) Usual stochastic order, denoted by X ≤st Y if

FðxÞ ≤ GðxÞ for all x;
(b) Increasing convex order, denoted by X ≤icx Y ifZ

∞

x
FðuÞ du ≤

Z
∞

x
GðuÞ du;

(c) Increasing concave order, denoted by X ≤icv Y ifZ
x

0
FðuÞ du ≤

Z
x

0
GðuÞ du:

Another importing ordering that has come to use in reliability and life testing is the following:

A random variable X is smaller than a random variable Y with respect to the Laplace transform order

(denoted by X ≤Lt Y) if, and only if, we have the following:Z
∞

0
e−sxdFðxÞ ≥

Z
∞

0
e−sxdGðxÞ, s ≥ 0 (1)

It is easy to check that Eq 1 is equivalent to the following:Z
∞

0
e−sxFðxÞdx ≤

Z
∞

0
e−sxGðxÞdx (2)
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Two classes of life distributions were introduced by Alzaid [2] that are in the used better than aged (UBA)

and UBA in expectation (UBAE) classes of life distribution.

Precisely, we have the following definitions:

DEFINITION

The distribution function F is said to be UBA if 0 < μð∞Þ < ∞ and for all (see Ahmad [3]):

Fðx + tÞ ≥ FðtÞe−x=μð∞Þ x, t ≥ 0 (3)

DEFINITION

The distribution function F is said to be UBAE if 0 < μð∞Þ < ∞; see the following:

μðtÞ ≥ μð∞Þ (4)

Consider that F is UBA (UBAE) if and only if Xt converges in distribution to a random variable XA (say)

exponentially distributed with failure rate 1
μ , and see the following:

Xt ≤st XA, ðEðXtÞ ≤st EðXAÞÞ

According to the aforementioned definitions, we can deduce the following new definition for UBA in the

Laplace transform order (UBAL) as follows.

DEFINITION

The distribution function F is said to be UBAL if 0 < μð∞Þ < ∞ and for all x, t ≥ 0; see the following:Z
∞

0
e−sxFðx + tÞdx ≥

μð∞Þ
1 + sμð∞Þ FðtÞ s ≥ 0, (5)

It is obvious that Eq 5 is equivalent to Xt ≤Lt XA for all t≥ 0.

To introduce the definition of the discrete UBAL, let X be a discrete nonnegative random variable, such that

PðX = kÞ = pk, k = 0, 1, 2 : : : Let Pk = PðX > kÞ, k ≥ 1, P0 = 1 denote the corresponding survival function.

The discrete nonnegative random variable X is said to be discrete UBAL if, and only if, we have the following:

X∞
k=0

Pk+izk ≥ Pi

X∞
k=0

zk, for all 0 ≤ z ≤ 1 and i = 0, 1, : : : :

Now X ≤st XA ⇒ X ≤Lt XA.

Then, we have the following implication:

Increasing Failure Rate ⊂ UBA ⊂ UBAL
∩

UBAE

Applications, properties, and interpretations of the Laplace transform order in the statistical theory of reli-

ability and economics can be found in Denuit [4], Klefsjö [5], and Ahmed and Kayid [6].

The main objective in this article is to deal with the problem of testing H0∶F, which is exponential, against

H1∶F, which is the largest class of life distribution UBAL. The article is organized as follows: in the “Testing

Hypothesis Application for Complete Data” section, we give a test statistic based on a U-statistic for complete

data. Selected critical values are tabulated for sample sizes 5(5)100 using the Mathematica 8 program (Wolfram

Research, Champaign, IL) in the “Monte Carlo Null Distribution Critical Points” section. The Pitman asymptotic
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efficiency (PAE) for common alternatives is obtained in the “Pitman Asymptotic Relative Efficiency” section. In

“The Power of the Proposed Test” section, we also calculate the power estimates for the Weibull, Makeham,

Gamma, and linear failure rate (LFR) distributions. A proposed test is presented for right-censored data in

the “Test for UBAL in Case for Right-Censored Data” section. In the “Applications” section, we discuss some

applications (numerical examples) to show the importance of the proposed test. Finally, we give a

conclusion for our work in the “Conclusions” section.

Testing Hypothesis Application for Complete Data

This section is concerned with the construction of the proposed statistic as a U-statistic and discussion of its

asymptotic normality.

Here, we hope to test the null hypothesis H0∶F, which is exponential, against H1∶F, which is UBAL and not

exponential. Nonparametric testing for classes of life distributions has been considered by many authors (see

Mahmoud and Abdul Alim [7]; Mugdadi and Ahmad [8]; Abu-Youssef and Bakr [9–11]; and Abu-Youssef,

Mohammed, and Bakr [12,13]).

According to Eq 5, we may use the following as a measure of departure from H0:

δðsÞ =
Z∞
0

Z∞
0

e−suFðu + tÞdu dt − μð∞Þ
1 + sμð∞Þ

Z∞
0

FðtÞdt

The following theorem is essential for the development of our test statistic.

THEOREM 4

Let X be the UBAL random variable with distribution function F; then, based on the previous technique, use the

following:

δðsÞ = μ

sð1 + sμð∞ÞÞ −
1
s2
ð1 − φðsÞÞ (6)

where φðsÞ = ∫ ∞
0 e

−sxdFðxÞ, and μ = ∫ ∞
0 FðtÞdt:

Proof

Since

δðsÞ =
Z

∞

0

Z
∞

0
e−suFðu + tÞdudt − μð∞Þ

1 + sμð∞Þ
Z

∞

0
FðtÞdt =

Z
∞

0

Z
∞

0
e−suFðu + tÞdudt − μð∞Þ

1 + sμð∞Þ μ

= I −
μð∞Þ

1 + sμð∞Þ μ

where

I =
Z

∞

0

Z
∞

0
e−suFðu + tÞdudt =

Z
∞

0

Z
∞

t
e−sðx−tÞFðxÞdxdt = 1

s

Z
∞

0
ð1 − e−stÞFðtÞdt

=
μ

s
−

1
s2
ð1 − φðsÞÞ

Hence, the result follows.

Let X1,X2, : : : ,Xn be a random sample from the distribution function F. For generality, we assume μð∞Þ is
known and equal one. The empirical estimator bδðsÞ of our test statistic can be obtained as follows:
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bδnðsÞ = 1
n

X
i

�
Xi

sð1 + sÞ −
1
s2
ð1 − e−sXiÞ

�
To make the test invariant, allow the following:

bΔnðsÞ =
bδnðsÞ
X

then bΔnðsÞ =
1

Xn

X
i

∅ðXiÞ

where

∅ðXiÞ =
1
s

�
Xi

ð1 + sÞ −
1
s
ð1 − e−sXiÞ

�
To find the limiting distribution of bδðsÞ, we resort to the U-statistic theory (Lee [14]).

Set the following:

∅ðX1Þ =
1
s

�
X1

ð1 + sÞ −
1
s

�
1 − e−sX1

��
Then, bΔnðsÞ is equivalent to the U-statistic given by the following:

Un =
1�
n
1

�X
i

∅ðXiÞ

The following theorem summarizes the asymptotic normality of bδnðsÞ.
THEOREM 5

i. As n → ∞, ðbδnðsÞ − δðsÞÞ is asymptotically normal, with mean 0 and variance σ2ðsÞ, where we have the
following:

σ2ðsÞ = Var½bδnðsÞ� = E

�
1
s

�
x

ð1 + sÞ −
1
s
ð1 − e−sxÞ

��
2

ii. Under H0, the variance is as follows:

σ20ðsÞ =
1

ð2s + 1Þðs + 1Þ3

Proof

i. Using the standard U-statistic theory, Lee [14], we get the following:

E
hbδnðsÞi = E

�
1
s

�
x

ð1 + sÞ −
1
s
ð1 − e−sxÞ

��
σ2ðsÞ = Var

hbδnðsÞi = E

�
1
s

�
x

ð1 + sÞ −
1
s
ð1 − e−sxÞ

��
2

ii. Under H0, by direct calculations we have the following:

μ0 = E
hbδnðsÞi = Z∞

0

�
1
s

�
x

ð1 + sÞ −
1
s
ð1 − e−sxÞ

��
e−xdx = 0

σ20ðsÞ =
Z∞
0

�
1
s

�
x

ð1 + sÞ −
1
s
ð1 − e−sxÞ

��
2
e−xdx =

2
ð2s + 1Þðs + 1Þ3
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Monte Carlo Null Distribution Critical Points

Based on 10,000 generated samples from the standard exponential distribution, the Monte Carlo null distribution

critical values of our test bδnðsÞ for s = 2 and s = 3 are simulated and tabulated, where n= 5(5)100 in Table 1. The

Mathematica 8 program is used.

It is clear from Table 1 and Fig. 1 that the critical values decrease as the sample size increases, and they

increase as the confidence level increases.

Also, our test bδnðsÞ gives higher efficiency whenever s increases.

TABLE 1
The upper percentile points of bδnð2Þ and bδnð3Þ with 10,000 replications.

S= 2 S= 3

n 95 % 98 % 99 % 95 % 98 % 99 %

5 0.06085 0.07382 0.08090 0.0330278 0.0395916 0.0430635

10 0.04812 0.05859 0.06557 0.0257983 0.0308428 0.034064

15 0.04127 0.05057 0.05603 0.0227896 0.0276479 0.0300001

20 0.03636 0.04452 0.04940 0.019715 0.0242044 0.026861

25 0.03383 0.04198 0.04584 0.017804 0.022084 0.0250399

30 0.03173 0.03859 0.04342 0.0167156 0.0203496 0.0228828

35 0.02921 0.0359 0.04052 0.0157187 0.0191094 0.0211741

40 0.02748 0.03374 0.03830 0.0150886 0.0185543 0.0209858

45 0.02566 0.03141 0.03503 0.0142948 0.0173694 0.0196203

50 0.02495 0.03065 0.03474 0.0134933 0.016529 0.0183436

55 0.02370 0.02959 0.03310 0.0129006 0.0161976 0.0178974

60 0.02242 0.02773 0.03078 0.0125106 0.0152783 0.0168409

65 0.02207 0.02735 0.03104 0.012161 0.0150751 0.0168118

70 0.02149 0.02634 0.02952 0.0119155 0.0144347 0.016079

75 0.02082 0.02587 0.02882 0.0113417 0.0140585 0.0156581

80 0.02043 0.0252 0.02871 0.0110623 0.0135801 0.0151916

85 0.01971 0.02393 0.02707 0.0105783 0.0129985 0.014651

90 0.01926 0.02401 0.02659 0.0102163 0.0126186 0.0143817

95 0.01840 0.02251 0.02519 0.0102966 0.012609 0.0141236

100 0.01769 0.02236 0.02503 0.00984433 0.0119589 0.0133261

FIG. 1

The relation between

sample size and critical

values.
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Pitman Asymptotic Relative Efficiency

Since the aforementioned test statistic bΔðsÞ = δ
X
is new and no other tests are known for this class (UBAL), we may

compare our test to the other classes. Here we choose the test Δθ,ð1Þ presented by Mugdadi and Ahmad [8], δð2ÞFn

presented by Mahmoud and Abdul Alim [7] for the new better than average failure rate class of life distribution,bΔG presented by Abu-Youssef and Bakr [10], bΔk presented by Abu-Youssef, Mohammed, and Bakr [12], and bΔut

presented by Abu-Youssef, Mohammed, and Bakr [13] for the (UBACT) class of life distribution. Then, compar-

isons are achieved by using Pitman asymptotic relative efficiency (PARE), which is defined as follows:

Let T1n and T2n be two statistics; then PARE of T1n, relative to T2n, is defined by the following:

eðT1n,T2nÞ =
μ\1ðθ0Þ
σ1ðθ0Þ

�
μ\2ðθ0Þ
σ2ðθ0Þ

where μ\iðθ0Þ = limn→∞
∂
∂θ EðTniÞ

				
θ→θ0

and we have the following:

σ2i ðθ0Þ = lim
n→∞

varðTniÞ

Three of the most commonly used alternatives are as follows:

(i) LFR family:

F1ðxÞ = e−x−
x2
2 θ , θ, x ≥ 0 (7)

(ii) Makeham family:

F2ðxÞ = e−x−θðx+e−x−1Þ, θ, x ≥ 0 (8)

(iii) Weibull family:

F3ðxÞ = e−x
θ
, θ ≥ 1, x ≥ 0 (9)

Note thatH0 (the exponential distribution) is attained at θ = 0 in (i) and (iii) and when θ = 1 in (ii). The PAE

of δðsÞ is equal to the following:

PAEðδðsÞÞ =

			 ∂
∂θ δðsÞ

			
θ→θ0

σ0ðsÞ
=

1
σ0ðsÞ

				 s
s + 1

Z∞
0

F
0
θ0
ðxÞdx − ðs + 1Þ

Z∞
0

e−sxdF
0
θ0
ðxÞ
				

where F
0
θ0
ðxÞ = d

dθ FθðuÞ
				
θ→θ0

.

This leads to the following for s = 2 and 3:

(i) PAE in the case of the LFR distribution:

PAEðδð2ÞÞ = 1
σ0ð2Þ

				−112
Z∞
0

x2e−xdx −
1
4

Z∞
0

e−sxd

�
−
x2

2
e−x
�				 = 2.15
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PAEðδð3ÞÞ = 1
σ0ð3Þ

				−112
Z∞
0

x2e−xdx −
1
4

Z∞
0

e−sxd

�
−
x2

2
e−x
�				 = 1.87

(ii) PAE in the case of the Weibull distribution:

PAEðδð2ÞÞ = 1
σ0ð2Þ

				−16
Z∞
0

xlnðxÞe−xdx − 1
4

Z∞
0

e−sxdð−xlnðxÞe−xÞ
				 = 0.38

PAEðδð3ÞÞ = 1
σ0ð3Þ

				−16
Z∞
0

xlnðxÞe−xdx − 1
4

Z∞
0

e−sxdð−xlnðxÞe−xÞ
				 = 0.32

(iii) PAE in the case of the Makeham distribution:

PAEðδð2ÞÞ = 1
σ0ð2Þ

				 16
Z∞
0

ð1 − x − e−xÞe−xdx − 1
4

Z∞
0

e−sxdðð1 − x − e−xÞe−xÞ
				 = 1.13

PAEðδð3ÞÞ = 1
σ0ð3Þ

				 16
Z∞
0

ð1 − x − e−xÞe−xdx − 1
4

Z∞
0

e−sxdðð1 − x − e−xÞe−xÞ
				 = 0.97

Direct calculations of the PAE of δð3Þ,Δθ,ð1Þ, δ
ð2Þ
Fn
, bΔut , bΔk, and bΔG are summarized in Table 2; the efficien-

cies in the table clearly show our U-statistic δðsÞ performs well for F1, F2, and F3:

In Table 3, we give the PAREs of δð3Þ with respect to bΔθ,ð1Þ, δ
ð2Þ
Fn
, bΔut , bΔk, and bΔG, whose PAE are mentioned

in Table 2.

It is clear from Table 3 that the statistic δð3Þ is more efficient thanΔθ,ð1Þ, δ
ð2Þ
Fn
, bΔut , bΔk, and bΔG for all the cases

mentioned and gives higher efficiency whenever s is decreased. Hence our test, which deals the much larger UBA,

is better and also simpler.

TABLE 2
PAE of δð3Þ,Δθ,ð1Þ , δ

ð2Þ
Fn
, bΔut , bΔk , and bΔG.

Distribution δð3Þ Δθ,ð1Þ δð2ÞFn
bΔut

bΔk
bΔG

LFR 1.87 0.408 0.217 0.748 0.776 1.496

Makeham 0.97 0.0395 0.144 0.248 0.255 0.495

Weibull 0.32 0.170 0.050 – – –

TABLE 3
PARE of δð3Þ, with respect to Δθ,ð1Þ , δ

ð2Þ
Fn
, bΔut , bΔk , and bΔG.

Distribution eðδð3Þ,Δθ,ð1ÞÞ e
�
δð3Þ, δð2ÞFn

�
eðδð3Þ, bΔutÞ eðδð3Þ, bΔkÞ eðδð3Þ, bΔGÞ

LFR 4.58 8.62 2.5 2.41 1.25

Makeham 24.56 6.74 3.91 3.80 1.96

Weibull 1.88 6.4 – – –
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The Power of the Proposed Test

The power of the proposed test at a significance level α= 0.05, with respect to the alternatives F1, F2 and F3, is

calculated based on simulation data. In this simulation, 10,000 samples were generated with the Mathematica

8 program. Table 4 gives the power of the test at different values of parameter θ= 2, 3, and 4, with sizes

n= 10, 20, and 30.

Test for UBAL in Case for Right Censored Data

In this section, a test statistic is proposed to test:

H0 (F is the exponential distribution with mean μ) versus H1 (F is UBAL and not an exponential distri-

bution), with randomly right-censored data.

It is known that censored data are usually the only information available in a life-testing model or in a

clinical study in which patients may be lost (censored) before the completion of a study. We can describe the

experimental situation as follows. Suppose n units are put on a test, and X1,X2, : : : ,Xn denote their true lifetime.

Let X1,X2, : : : ,Xn be independent and identically distributed (i.i.d.) according to a continuous life distribution F.

Let Y1,Y2, : : : ,Yn be (i.i.d.) according to a continuous life distribution G. Also, we assume that Xs and Ys are

independent. In the randomly right-censored model, we observe the pairs ðZi, δiÞ, i = 1, : : : , n, where

Zi =minðXi,YiÞ, and we assume μð∞Þ is known and equal to one. See the following:

δi =
�
1 if Zi = Xi ðith observation is uncensoredÞ
0 if Zi = Yi ðith observation is censoredÞ

Let Zð0Þ < Zð1Þ < : : : < ZðnÞ denote the order of Z 0 s and δi be the δ corresponding to ZðiÞ, respectively. Use
the Kaplan and Meier estimator in the case of censored data ðZi, δiÞ, i = 1, : : : , n as follows:

δcðsÞ =
1

sð1 + sÞ
Xl
j=1

Yj−1
k=1

Cδk
k ðZðjÞ − Zðj−1ÞÞ −

1
s2

 
1 −

Xl
m=1

e−sZðmÞ

"Ym−2

p=1

C
δp
p −

Ym−1

p=1

C
δp
p

#!
,

where bμ =Pl
j=1
Qj−1

k=1 C
δk
k ðZðjÞ − Zðj−1ÞÞ,∅ðsÞ = ∫ ∞

0 e
−sxdFðxÞ,

b∅ðsÞ =
Xl
m=1

e−sZðmÞ

 Ym−2

p=1

C
δp
p −

Ym−1

p=1

C
δp
p

!
dFnðZiÞ =

Yj−2
q=1

Cδi
i −

Yj−1
q=1

Cδi
i , FnðtÞ =

Y
m<t

Cδm
m ,

Cm =
n −m

n −m + 1
, t ∈ ½0, zðmÞ�:

TABLE 4
Power estimate for our test bΔð2Þ.
n θ Weibull LFR Gamma Makeham

10 2 0.9936 0.0183 0.5882 0.1451

3 0.9999 0.1130 0.9832 0.9964

4 1 0.3508 1 1

20 2 1 0.0656 0.8622 0.9982

3 1 0.2318 0.9998 1

4 1 0.4818 1 1

30 2 1 0.2658 0.9560 0.9988

3 1 0.4888 1 1

4 1 0.6808 1 1
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Table 5 gives the critical values of δcð2Þ for sample sizes n= 5(5) 50, (39).

From Table 5 and Fig. 2, the critical values decrease as the sample size increases, and they increase as the

confidence level increases.

Applications

Here, we introduce some real examples to elucidate the applications of our test in the two cases (censored and

non-censored data) at 95 % confidence level.

CASE OF COMPLETE DATA

In this section, two examples are presented, considering s= 2.

Example 1

Consider the data in Table 6, Abouammoh, Abdulghani, and Qamber [15]; these data represent a set of 40

patients suffering from blood cancer (leukemia) from one of the Ministry of Health hospitals in Saudi

Arabia, and the ordered values in years are shown in Table 6.

It was found that bδð2Þ = 0.09; that is greater than the critical value of Table 1. Then, we conclude that this

dataset has a UBAL property and is not exponential.

TABLE 5
The upper percentile points of δð2Þ.

n 95 % 98 % 99 %

5 0.11946 0.16961 0.22646

10 0.08251 0.10732 0.12622

15 0.06748 0.08496 0.09439

20 0.05503 0.06574 0.07675

25 0.05225 0.06322 0.06987

30 0.04390 0.05348 0.06051

35 0.04300 0.05266 0.06006

39 0.04155 0.04931 0.05303

40 0.03985 0.04841 0.05128

45 0.03814 0.04747 0.05333

50 0.03669 0.04462 0.04844

FIG. 2

Relation between

sample size and critical

values.
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Example 2

Consider the data in Table 7 from Ref. Fisher [16] that represent the differences in heights between cross- and

self-fertilized plants of the same pair grown together in one pot.

It was found that bδnð2Þ = 0.02, which is less than the critical value of Table 1. Then, we accept the null

hypothesis that states that the dataset has an exponential property.

CASE OF CENSORED DATA

In this section, an example is presented, considering S= 2.

Example 3

Consider the data in Table 8 from Ref. Mahmoud and Abdul Alim [7] that represent 51 liver cancer patients,

taken from the Elminia Cancer Center Ministry of Health in Egypt. Of them, 39 represent whole lifetimes

(non-censored data) and the others represent censored data. The ordered non-censored lifetimes (in days) are

shown in Table 8.

The ordered censored data are shown in Table 9.

One can calculate δð2Þ = 1.1 × 1074 that is greater than the critical value of Table 5. Then we conclude that

this dataset has a UBAL property and is not exponential.

Conclusions

In this work, a test statistic for testing exponentiality versus the UBAL class of life distribution based on a U-

statistic is proposed. The PAEs of the test are calculated and compared to other tests. The percentiles of this test

TABLE 6
Abouammoh data ordered values in years.

0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162

2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348

3.348 3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244

4.323 4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 4.381

TABLE 7
Fisher data differences in plants heights.

4.9 −6.7 0.8 1.6 0.6

2.3 2.8 4.1 1.4 2.9

5.6 2.4 7.5 6.0 −4.8

TABLE 9
Censored lifetimes (in days) of 12 liver cancer patients data.

30 30 30 30 30 60 150 150 150 150 150 185

TABLE 8
Non-censored lifetimes (in days) of 39 liver cancer patients data.

10 14 14 14 14 14 15 17 18

20 20 20 20 20 23 23 24 26

30 30 31 40 49 51 52 60 61

67 71 74 75 87 96 105 107 107

107 116 150
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statistic are tabulated for censored and non-censored data, and the powers of this test are estimated for some

famously alternative distributions in reliability, such asWeibull, LFR, and Gamma distributions. Finally, examples

in different areas are used as practical applications of the proposed test.
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