Instruction:

1- Use the following constants where applicable. Faraday constant F = 96485 C/mol, gas constant R = 8.314 J/mol K, Temperature T = 298 °K . 2- Use the back of the page if more space needed.

PART I:	Multi-choice questio	ons, circle the	right answer.	(10 Marks)	
<u>1-</u> Determine the $Sn(s) + 2$	cell notation for the redox $2Ag^+(ag) \rightarrow Sn^{2+}(ag) + 2$	reaction given be 2Ag(s)	low.		
a) $Ag^{+}(ag) Ag(s) Sn(s) Sn^{2+}(ag).$		b) Sn(s)	b) $Sn(s) Sn^{2+}(aq) Ag^{+}(aq) Ag(s)$.		
c) Ag(s) Ag ⁺ (aq) Sn ²⁺ (aq) Sn(s)		d) Sn ²⁺	d) $Sn^{2+}(aq) Sn(s) Ag(s) Ag^{+}(aq)$		
<u>2-</u> When the energy	gy of Fermi level E _f > lum	to energy for the r	eactant [O] then,		
a) Electrons are transferred from reactant to the electron		the electrode.	b) Electrode is at	the equilibrium.	
c) No electron transfer at all.			d) Electrons are	ransferred from electrode to	
3. The movement	of solution ionic species	due to the concen	tration gradient is	called	
b) Convection	a) Diffusion	c) Reac	tion	d) Migration	
4- Which of the f	ollowing reactions would	be the most spont	aneous at 298 K?		
a) $A + 2 B \rightarrow C$; $E^{\circ}_{cell} = +0.98 V$,		b) A + 1	b) $A + B \rightarrow 2 C$; $E^{\circ}_{cell} = -0.30 V$,		
c) $A + B \rightarrow C$; $E^{\circ}_{cell} = +1.22 V$		d) A + 1	d) A + B \rightarrow 3 C; E [°] _{cell} = -0.15 V		
<u>5-</u> Electrode activa) Formation of ac) The energy reqd) all of the above	ation polarization is origin diffusion layer at the elec uired to overcome the ene e.	nating from, trode surface. rgy barrier of the	b) The high resis rate-determining s	tance of the electrolyte.	
<u>6-</u> Which of the f a) $A + B \rightarrow C$; c) $A + B \rightarrow 2 C$;	bllowing reactions would $E^{\circ}_{cell} = +1.10 \text{ V},$ $E^{\circ}_{cell} = -0.30 \text{ V},$	have the smallest	value of equilibrium b) $A + 2 B \rightarrow C$; d) $A + B \rightarrow 3 C$;	m constant (K) at 298 °K? $E^{\circ}_{cell} = +0.85 V$ $E^{\circ}_{cell} = -0.15 V$	
<u>7-</u> In Cyclic Volta current is then me	ammetry (CV), the voltage assured as a function of:	e is scanned from a	a lower limit to an	upper limit during time and the	
a) Concentration,	b) Time,		c) Scan rate,	d) Potential	
<u>8 -</u> In the Potentia then measured as	l Step Voltammetry (PSV a function of:) the applied volta	ge is jumped from	V_1 to V_2 and the resulting current is	
a) Potential,	b) Concentration,	c) Scan	rate,	d) Time.	
<u>9-</u> For the fast one equals about a) 0.118 V	e-electron reversible reaction	ion at room tempe b) 0.059 V	rature, the anodic a	and cathodic peak separation (ΔE_{peak}) c) 0.045 V	
	a) 0.236 V				

<u>10-</u> The sum of cation transport number (t^+) and the anion transport number (t^-) is equal to

a) 10	b) 0.5	c) 1.0	d) 0.0

<u>PART II:</u> Answer true or false the following (10 Marks)

- <u>1</u>- The diffusion controlled reaction occurs when the rate depends on the rate the rate of charge transfer while the kinetic controlled reaction occurs when depends on the spontaneous transfer of the electroactive species. [
- 2- The <u>cathodic reaction</u> rate becomes faster when the applied potential is <u>more positive</u> than equilibrium potential.

[]

- <u>**3-**</u> The <u>overpotential (η)</u> is the potential applied to the working electrode relative to the <u>redox equilibrium</u> potential.
 - []
- <u>4-</u> The exchange current (\underline{I}_0) is the current at equilibrium is an <u>intensive parameter</u> and is not influenced by the electrode surface area and the kinetics or speed of the reaction.
 - []
- <u>5-</u> Galvanic corrosion occurs in the area when the ion concentration gradient is existing.
 -]
- <u>6-</u> In linear sweep voltammetry (LSV) the <u>ions flux</u> to the electrode surface is considerably <u>smaller</u> at high scan rates and is <u>high</u> at low scan rates.

[]

<u>7-</u> The difference of limiting molar conductivity (Λ°) of different pairs of electrolytes having a common cation or a common anion is almost same.

[]

<u>8 - Match between the following parameters:</u>

a) Q = 1	i) $E_{cell} > 0$
b) Q > K	ii) $E_{cell} = 0$
c) Q < K	iii) $E^{\circ}_{cell} < 0$
d) $\Delta G^{\circ} < 0$	iv) $E_{cell} = E^{\circ}_{cell}$
e) $\Delta G^{\circ} > 0$	v) $E_{cell} < 0$

vi) $E^{\circ}_{cell} > 0$

PART III: Answer only four questions from the following:

(10 Marks)

<u>1-</u> Define the following terms:

<u>a-</u> Diffusion:

<u>b-</u> Ion Transport number

<u>c-</u> Strong and Weak Electrolytes

<u>2-</u> Balance the following redox reaction and identify the anodic and cathodic reactions.

 $MnO_4(aq) + Fe^{2+}(aq) + H^+(aq) \rightarrow Mn^{2+}(aq) + Fe^{3+}(aq) + H_2O(l)$

Anodic :

Cathodic:

Overall :

<u>3-</u> Explain the mechanisms for iron corrosion process in the air by sketching a diagram and writing down the relevant <u>anodic, cathodic and overall electrochemical reactions</u>.

CHEM430, SEM432-1443

<u>4-</u> Briefly list and explain only four types of the metal corrosion.

a -Indicate the anodic and cathodic reactions on each diagram, peak potential and peak current on the diagram.

b- Discuss the anodic-cathodic peaks separation, reversibility and reaction kinetics of each reaction.

<u>6-</u>Sketch the diagram showing the concentration profile at the electrode surface of the reactant and product for the electrochemical reaction $O + ne \rightarrow R$ at time of 0 < t1 < t2 < t3 of the reaction progress.

PART IV: Problem solving. Answer only four questions from the following. (10 Marks)

<u>1</u>- Calculate the activation polarization η_{act} if the current density (*i*) equals 8 times the exchange current density (*i_o*). Given that Tafel slope $\beta = 0.118$ V/dec

<u>2-</u> Calculate the mean activity co-efficient ($\gamma \pm$) of Na₂SO₄ at a molality of 0.001 in aqueous solution at 25°C.

<u>3-</u> An electrochemical galvanic cell is based on the following two half-reactions:

$\operatorname{Zn}^{2+}(\operatorname{aq}, \underline{0.01 \text{ M}}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	$E^{\circ} = -0.76 V$
$Cu^{2+}(aq, \underline{0.1 M}) + 2e^{-} \rightarrow Cu(s)$	$E^{\circ} = + 0.34 V$

a- Identify the anodic, cathodic reaction and the cell overall reaction.

b- Calculate the E^{o}_{cell} , and E_{cell} for the cell

c- Calculate the Gibbs free energy change ΔG and the equilibrium constant (K) at 298 °K .

<u>4-</u> Using the Tafel equation, calculate the current flowing at overpotentials (η) of 0.3 V for a reaction at 298 K in which n = 1, $\alpha = 0.5$, $i_0 = 2.0 \times 10^{-6}$ A.

<u>5-</u> Calculate the limiting molar conductivity (Λ^0) at 25 °C for sodium sulphate (Na₂SO₄) and lanthanum sulphate (La₂(SO₄)₃ giving the following individual ionic conductivity (λ^0) for Na⁺ (aq) = 50.1 S cm²/mol, La³⁺ (aq) = 209.1 S cm²/mol and SO₄²⁻ (aq) = 160.0 cm²/mol.