	King Sau	ıd University	<u>- ugo - v</u>				
College of Sciences							
	Department	of Mathematics					
MATH-244 (Linear Algebra); Final Exam; Semester 441							
Max. Marks: 40			Time: 3 hours				
Name:	ID:	Section:	Signature:				

Note: Attempt all the five questions. Scientific calculators are not allowed!

Question 1 [Marks: 5+5]:

Question I	[Marks: 5+5]:					
I. Cł	noose the correct answer:					
(i)	If W is the subspace $\{(a, b)\}$	$(b, c, d) \in \mathbb{R}^4$: $b = a - c$	} of Euclidean space \mathbb{R}^4 .	, then $\dim(W)$ is:		
	a) 1	b) 2	c) 3	d) 4.		
(ii)	If $rank(A) = 3$ where A is a matrix of size 5×9 , then $nullity(A^T)$ is:					
	a) 1	b) 2	c) 3	d) 6.		
(iii)	a) 1 If θ is the angle between	the matrices $A = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 4\\3 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 1\\4 & 2 \end{bmatrix}$ w	with respect to the		
inner product $\langle A, B \rangle = trace (AB^{T})$, then $cos \theta$ is:						
	a) $\frac{1}{\sqrt{2}}$	b) $\frac{1}{2}$	c) $\frac{15}{2\sqrt{30}}$	d) 0.		
(iv)	The value of k for which	the vectors $\boldsymbol{u} := (u_1 =$	= 2, $u_2 = -4$) and $v :=$	$(v_1 = 1, v_2 = 3)$		
	in \mathbb{R}^2 are orthogonal with respect to the inner product $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 2u_1v_1 + ku_2v_2$ is:					
	a) $\frac{1}{\sqrt{2}}$	b) $\frac{1}{2}$	c) $\frac{15}{2\sqrt{30}}$	d) $\frac{1}{2}$.		
(v)	v =	—		0		
(v) If $B = \{(2,1), (-3,4)\}$ and $C = \{(1,1), (0,3)\}$ are bases of \mathbb{R}^2 , then the transition matrix ${}_{B}P_{C}$ from C to B is:						
		_	9/11] [9/11	7/11]		
	a) $\begin{bmatrix} 7/_{11} & 1/_{11} \\ 9/_{11} & 6/_{11} \end{bmatrix}$ b) $\begin{bmatrix} 7/_{11} \\ 1/_{11} \end{bmatrix}$	$\begin{bmatrix} 11 & / 11 \\ / & 6/_{11} \end{bmatrix}$ c) $\begin{bmatrix} / 1 \\ 6/_{11} \end{bmatrix}$	$ \begin{array}{c} 1 & 1 \\ 1 & 1 $	$\binom{11}{6}$		
II. Determine whether the following statements are true or false; justify your answer.						
(i)	If $A, B \in M_n(\mathbb{R})$, then de	$t(A^{\mathrm{T}}B) = det(B^{\mathrm{T}}A).$				
(ii)		f the following linear sy $x_1 - 4x_2 + 3x_3 - x_4$ $2x_1 - 8x_2 + 6x_3 - 3x_4$	= 0	8,0,1,0)}:		

- (iii) If $W = \{A \in M_2(\mathbb{R}): A \text{ is singular}\}$, then W is vector subspace of $M_2(\mathbb{R})$.
- (iv) If u, v and w are vectors in an inner product space such that $\langle u, v \rangle = 3$, $\langle v, w \rangle = -5$, $\langle u, w \rangle = -1$ and ||u|| = 2, then $\langle u 2w, 3u + v \rangle = 25$.
- (v) If the characteristic polynomial of 2×2 matrix A is $q_A(\lambda) = \lambda^2 1$, then A is diagonalizable.

Page 2 of 2

Question 2 [Marks: 2+2+2]: Consider the matrices $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & -2 \end{bmatrix}$. Then:

- a) Find A^{-1} by the elementary matrix method.
- b) Show that $nullity(A) \neq nullity(B)$.
- c) Find a basis for the null space N(B).

Question 3 [Marks: 3+3]:

- a) Find the values of x so that the set { (1, -2, x), (1, -x, 2), (1, -4, 2x)} is linearly independent in the Euclidean space \mathbb{R}^3 .
- b) Let $F := span(\{(1, -1, 0, 1), (0, 1, 0, -1), (-1, 2, 0, -1)\})$ in \mathbb{R}^4 . Find a basis for F and show that $(0, 1, 0, 0) \in F$.

Question 4: [Marks: 2+4]

- a) Let u and v be any two vectors in an inner product space. Show that:
 - $2(||u||^2 + ||v||^2) = ||u + v||^2 + ||u v||^2.$
- **b)** Let the set $B := \{ u_1 = (1, 0, 0), u_2 = (3, 1, -1), u_3 = (0, 3, 1) \}$ be linearly independent in the Euclidean inner product space \mathbb{R}^3 . Construct an orthonormal basis for \mathbb{R}^3 by applying the Gram-Schmidt algorithm on *B*.

Question 5: [Marks: (4+2) + (2+2+2)]

- a) Let $B = \{ (1, 1, 0), (0, 1, 1), (1, 0, 1) \}$ be a basis for \mathbb{R}^3 , $C = \{ x + 1, x 1, x^2 + 1 \}$ be a basis for P_2 (the vector space of all real polynomials in variable x of degree ≤ 2 . Let $T: \mathbb{R}^3 \to P_2$ be for P_2 (the vector space of all real polynomials in variable x of degree ± 2 . Let T_2 the linear transformation: $T(a, b, c) = (a + b) + (b + c)x + (a + c)x^2$, $\forall (a, b, c) \in \mathbb{R}^3$. Then: (i) Find the values of q, r, s in the transformation matrix $[T]_B^c = \begin{bmatrix} 1 & q & 0 \\ r & 1 & 1 \\ 1 & 1 & s \end{bmatrix}$ with respect

to the bases **B** and **C**.

- Find the coordinate vector $[T(1,1,1)]_c$. (ii)
- b) Let $A = \begin{bmatrix} 1 & 7 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$. Then:
 - Show that the matrix A is diagonalizable. (i)
 - Find an invertible matrix P and a diagonal matrix D satisfying $P^{-1}AP = D$. (ii)
 - Find A^7 . (iii)

***/