King Saud University
 College of Sciences
 Department of Mathematics
 MATH-244 (Linear Algebra); Final Exam; Semester 441

Max. Marks: 40
Time: 3 hours

Name:

ID: Section:

Signature:

Note: Attempt all the five questions. Scientific calculators are not allowed!

Question 1 [Marks: 5+5]:
I. Choose the correct answer:
(i) If W is the subspace $\left\{(a, b, c, d) \in \mathbb{R}^{4}: b=a-c\right\}$ of Euclidean space \mathbb{R}^{4}, then $\operatorname{dim}(W)$ is:
a) 1
b) 2
c) 3
d) 4 .
(ii) If $\operatorname{rank}(A)=3$ where A is a matrix of size 5×9, then nullity $\left(A^{T}\right)$ is:
a) 1
b) 2
c) 3
d) 6 .
(iii) If θ is the angle between the matrices $A=\left[\begin{array}{cc}2 & 4 \\ -1 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & 1 \\ 4 & 2\end{array}\right]$ with respect to the inner product $\langle A, B\rangle=\operatorname{trace}\left(A B^{\mathrm{T}}\right)$, then $\cos \theta$ is:
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{15}{2 \sqrt{30}}$
d) 0 .
(iv) The value of k for which the vectors $\boldsymbol{u}:=\left(u_{1}=2, u_{2}=-4\right)$ and $\boldsymbol{v}:=\left(v_{1}=1, v_{2}=3\right)$ in \mathbb{R}^{2} are orthogonal with respect to the inner product $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=2 u_{1} v_{1}+k u_{2} v_{2}$ is:
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{15}{2 \sqrt{30}}$
d) $\frac{1}{3}$.
(v) If $B=\{(2,1),(-3,4)\}$ and $C=\{(1,1),(0,3)\}$ are bases of \mathbb{R}^{2}, then the transition matrix ${ }_{B} \boldsymbol{P}_{\boldsymbol{C}}$ from C to B is:
a) $\left[\begin{array}{ll}7 / 11 & 1 / 11 \\ 9 / 11 & 6 / 11\end{array}\right]$
b) $\left[\begin{array}{ll}7 / 11 & 9 / 11 \\ 1 / 11 & 6 / 11\end{array}\right]$
c) $\left[\begin{array}{ll}7 / 11 & 9 / 11 \\ 6 / 11 & 1 / 11\end{array}\right]$
d) $\left[\begin{array}{ll}9 / 11 & 7 / 11 \\ 1 / 11 & 6 / 11\end{array}\right]$.
II. Determine whether the following statements are true or false; justify your answer.
(i) If $A, B \in M_{n}(\mathbb{R})$, then $\operatorname{det}\left(A^{\mathrm{T}} B\right)=\operatorname{det}\left(B^{\mathrm{T}} A\right)$.
(ii) A basis for solution space of the following linear system is $\{(4,1,0,0),(-3,0,1,0)\}$:

$$
\begin{aligned}
x_{1}-4 x_{2}+3 x_{3}-x_{4} & =0 \\
2 x_{1}-8 x_{2}+6 x_{3}-3 x_{4} & =0 .
\end{aligned}
$$

(iii) If $W=\left\{A \in M_{2}(\mathbb{R}): A\right.$ is singular $\}$, then W is vector subspace of $M_{2}(\mathbb{R})$.
(iv) If u, v and w are vectors in an inner product space such that $\langle u, v\rangle=3,\langle v, w\rangle=-5$, $\langle u, w\rangle=-1$ and $\|u\|=2$, then $\langle u-2 w, 3 u+v\rangle=25$.
(v) If the characteristic polynomial of 2×2 matrix A is $q_{A}(\lambda)=\lambda^{2}-1$, then A is diagonalizable.

Question 2 [Marks: 2+2+2]: Consider the matrices $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & -2\end{array}\right]$. Then:
a) Find A^{-1} by the elementary matrix method.
b) Show that nullity $(A) \neq \operatorname{nullity}(B)$.
c) Find a basis for the null space $N(B)$.

Question 3 [Marks: 3+3]:
a) Find the values of x so that the set $\{(1,-2, x),(1,-x, 2),(1,-4,2 x)\}$ is linearly independent in the Euclidean space \mathbb{R}^{3}.
b) Let $\boldsymbol{F}:=\operatorname{span}(\{(1,-1,0,1),(0,1,0,-1),(-1,2,0,-1))\})$ in \mathbb{R}^{4}. Find a basis for \boldsymbol{F} and show that $(0,1,0,0) \in \boldsymbol{F}$.

Question 4: [Marks: 2+4]
a) Let u and v be any two vectors in an inner product space. Show that:

$$
2\left(\|u\|^{2}+\|v\|^{2}\right)=\|u+v\|^{2}+\|u-v\|^{2} .
$$

b) Let the set $B:=\left\{\boldsymbol{u}_{1}=(1,0,0), \boldsymbol{u}_{2}=(3,1,-1), \boldsymbol{u}_{3}=(0,3,1)\right\}$ be linearly independent in the Euclidean inner product space \mathbb{R}^{3}. Construct an orthonormal basis for \mathbb{R}^{3} by applying the GramSchmidt algorithm on B.

Question 5: [Marks: $(4+2)+(2+2+2)]$
a) Let $\boldsymbol{B}=\{(1,1,0),(0,1,1),(1,0,1)\}$ be a basis for $\mathbb{R}^{3}, \boldsymbol{C}=\left\{x+1, x-1, x^{2}+1\right\}$ be a basis for P_{2} (the vector space of all real polynomials in variable x of degree ≤ 2. Let $\boldsymbol{T}: \mathbb{R}^{3} \rightarrow P_{2}$ be the linear transformation: $\boldsymbol{T}(a, b, c)=(a+b)+(b+c) x+(a+c) x^{2}, \forall(a, b, c) \in \mathbb{R}^{3}$. Then:
(i) Find the values of $\mathrm{q}, \mathrm{r}, \mathrm{s}$ in the transformation matrix $[\boldsymbol{T}]_{\boldsymbol{B}}^{\boldsymbol{C}}=\left[\begin{array}{lll}1 & q & 0 \\ r & 1 & 1 \\ 1 & 1 & s\end{array}\right]$ with respect to the bases \boldsymbol{B} and \boldsymbol{C}.
(ii) Find the coordinate vector $[T(1,1,1)]_{C}$.
b) Let $A=\left[\begin{array}{rrr}1 & 7 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1\end{array}\right]$. Then:
(i) Show that the matrix A is diagonalizable.
(ii) Find an invertible matrix P and a diagonal matrix D satisfying $P^{-1} A P=D$.
(iii) Find A^{7}.

