
Research Article
Existence and Global Asymptotic Behavior of Singular Positive
Solutions for Radial Laplacian

Imed Bachar ,1 Habib Mâagli ,2 and Said Mesloub1

1King Saud University, College of Science, Mathematics Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2King Abdulaziz University, College of Sciences and Arts, Rabigh Campus, Department of Mathematics, P. O. Box 344,
Rabigh 21911, Saudi Arabia

Correspondence should be addressed to Imed Bachar; abachar@ksu.edu.sa

Received 2 December 2018; Accepted 2 January 2019; Published 3 February 2019

Academic Editor: Mark A. McKibben

Copyright © 2019 Imed Bachar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this paper is to establish existence and uniqueness of a positive continuous solution to the following singular nonlinear
problem. {−𝑡1−𝑛(𝑡𝑛−1𝑢) = 𝑎(𝑡)𝑢𝜎, 𝑡 ∈ (0, 1), lim𝑡→0𝑡𝑛−1𝑢(𝑡) = 0, 𝑢(1) = 0}, where 𝑛 ≥ 3, 𝜎 < 1, and 𝑎 denotes a nonnegative
continuous function that might have the property of being singular at 𝑡 = 0 and /or 𝑡 = 1 and which satisfies certain condition
associated to Karamata class. We emphasize that the nonlinearity might also be singular at 𝑢 = 0, while the solution could blow-up
at 0. Our method is based on the global estimates of potential functions and the Schauder fixed point theorem.

1. Introduction and Main Result

Nonlinear problems of the form

− 1𝐴 (𝐴𝑢) = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ (0, 1) ,
𝑢 > 0, in (0, 1) ,

(1)

where 𝐴 is a positive, differentiable function on (0, 1) and
satisfying several suitable conditions have been studied by
many researchers (see for instance [1–10]). Note that many
problems in the boundary layer theory and the theory of
pseudoplastic fluids can be modeled by equations of the form
(1) (see for example [11, 12]).

Equations of the form (1) with 𝐴(𝑡) = 𝑡𝑛−1 (𝑛 ≥3), appears in a natural manner in those cases when the
researcher is looking for radial solutions of Laplace operator.

For a multiple results of existence, uniqueness, and
asymptotic behavior associated with similar problems, we
refer the reader to [13–30] and their bibliographies.

Let us first introducing the following functional class K
called Karamata class.

Definition 1. Let 𝜂 > 1 and 𝐿 be a function defined on (0, 𝜂].
Then 𝐿 belongs to the classK if

𝐿 (𝑡) fl 𝑐 exp(∫𝜂
𝑡

𝑧 (𝑠)𝑠 𝑑𝑠) , (2)

where 𝑐 > 0 and 𝑧 ∈ 𝐶([0, 𝜂]) with 𝑧(0) = 0.
Here, it is pertinent to note that the functions in the class

K are slowly varying, and Karamata developed in [31] the
initial theory in this field.

Cirstea and Rădulescu have exploited in [32] the Kara-
mata theory to study the asymptotic and qualitative behavior
near the boundary of solutions of nonlinear elliptic problems.

The aim of this paper is to address the existence, unique-
ness and qualitative behavior of positive continuous solution
to the following singular nonlinear problem.

−𝑡1−𝑛 (𝑡𝑛−1𝑢) = 𝑎 (𝑡) 𝑢𝜎, 𝑡 ∈ (0, 1) ,
lim
𝑡→0

𝑡𝑛−1𝑢 (𝑡) = 0, 𝑢 (1) = 0, (3)

where 𝑛 ≥ 3, 𝜎 < 1 and 𝑎 denotes a nonnegative continuous
function on (0, 1) that might have the property of being
singular at 𝑡 = 0 and /or 𝑡 = 1 and which might satisfies
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certain condition associated with the Karamata class K. In
this situation, the nonlinearitymight also have the property of
being singular at 𝑢 = 0.Here we emphasizes that the obtained
solution may also blow-up at 0, which is not given in the
previous works. Our approach relies on Karamata theory and
the Schauder fixed point theorem.

Notations. (i) B((0, 1)) (resp. B+((0, 1))), denotes the set
of Borel (resp. nonnegative Borel) measurable functions in(0, 1).

(ii) 𝐿1((0, 1)) fl {𝑞 ∈ B((0, 1)), ∫1
0
|𝑞(𝑟)|𝑑𝑟 < ∞}.

(iii) 𝐶(𝑋) (resp. 𝐶+(𝑋)), is the set of continuous (resp.
nonnegative continuous) functions in a metric space𝑋.

(iii) 𝐶0([0, 1]) = {𝑓 ∈ 𝐶((0, 1)) : lim𝑡→0𝑓(𝑡) =
lim𝑡→1𝑓(𝑡) = 0}.

(iii) For 𝑛 ≥ 3,
𝐶𝑛−2 ([0, 1])

= {𝑓 ∈ 𝐶 ((0, 1]) : 𝑡 → 𝑡𝑛−2𝑓 (𝑡) ∈ 𝐶 ([0, 1])} . (4)

(iv) For 𝑓, 𝑔 ∈ B+((0, 1)), we say that 𝑓(𝑡) ≈ 𝑔(𝑡), 𝑡 ∈(0, 1), if there exists 𝑐 > 0 such that (1/𝑐)𝑓(𝑡) ≤ 𝑔(𝑡) ≤ 𝑐𝑓(𝑡),
for all 𝑡 ∈ (0, 1).

In what follows, we let 𝑛 ≥ 3, 𝜎 < 1 and assume that
(H) 𝑎 ∈ 𝐶+((0, 1)) with

𝑎 (𝑡) ≈ 𝑡−𝜇𝐿1 (𝑡) (1 − 𝑡)−𝜆 𝐿2 (1 − 𝑡) , 𝑡 ∈ (0, 1) , (5)
where 𝜇 ≤ 𝑛 + (2 − 𝑛)𝜎, 𝜆 ≤ 2 and 𝐿1, 𝐿2 ∈ K defined on(0, 𝜂] (𝜂 > 1) such that

∫𝜂
0
𝑡𝑛+(2−𝑛)𝜎−𝜇−1𝐿1 (𝑡) 𝑑𝑡 < ∞,

∫𝜂
0
𝑡1−𝜆𝐿2 (𝑡) 𝑑𝑡 < ∞.

(6)

We introduce the function 𝜃 defined on (0, 1] by
𝜃 (𝑡) fl 𝑡min(0,(2−𝜇)/(1−𝜎)) (�̃�1 (𝑡))1/(1−𝜎)

⋅ (1 − 𝑡)min(1,(2−𝜆)/(1−𝜎)) (�̃�2 (1 − 𝑡))1/(1−𝜎) ,
(7)

where

�̃�1 (𝑡) fl
{{{{{{{{{{{{{{{{{{{

1, if 𝜇 < 2,
∫𝜂
𝑡

𝐿1 (𝑠)𝑠 𝑑𝑠, if 𝜇 = 2,
𝐿1 (𝑡) , if 2 < 𝜇 < 𝑛 + (2 − 𝑛) 𝜎,
∫𝑡
0

𝐿1 (𝑠)𝑠 𝑑𝑠, if 𝜇 = 𝑛 + (2 − 𝑛) 𝜎,
(8)

and

�̃�2 (𝑡) fl
{{{{{{{{{{{{{{{{{{{

1, if 𝜆 < 1,
∫𝜂
𝑡

𝐿2 (𝑠)𝑠 𝑑𝑠, if 𝜆 = 1,
𝐿2 (𝑡) , if 1 < 𝜆 < 2,
∫𝑡
0

𝐿2 (𝑠)𝑠 𝑑𝑠, if 𝜆 = 2.
(9)

Our main result is the following.

Theorem 2. Let 𝜎 < 1 and assume that 𝑎 satisfies (𝐻). Then
problem (3) has a unique positive solution 𝑢 ∈ 𝐶𝑛−2([0, 1])
satisfying for 𝑡 ∈ (0, 1],

𝑢 (𝑡) ≈ 𝜃 (𝑡) . (10)

Remark 3. The solution obtained in Theorem 2 blow-up at 0
for 𝜇 > 2.
Example 4. Let 𝑛 ≥ 3 and assume that 𝜇 < 𝑛. The unique
solution of the linear problem

−𝑡1−𝑛 (𝑡𝑛−1𝑢) = 𝑡−𝜇, 𝑡 ∈ (0, 1) ,
lim
𝑡→0

𝑡𝑛−1𝑢 (𝑡) = 0, 𝑢 (1) = 0, (11)

is given by

𝑢𝜇 (𝑡) =
{{{{{{{{{{{{{{{

1(𝑛 − 𝜇) (𝜇 − 2) (𝑡2−𝜇 − 1) , if 2 < 𝜇 < 𝑛,
− 1(𝑛 − 2) ln 𝑡, if 𝜇 = 2,

1(𝑛 − 𝜇) (2 − 𝜇) (1 − 𝑡2−𝜇) , if 𝜇 < 2.
(12)

Clearly the solution blow up at 0 for 𝜇 ≥ 2 and also we have

𝑢𝜇 (𝑡) ≈ 𝜃 (𝑡) =
{{{{{{{{{

𝑡2−𝜇 (1 − 𝑡) , if 2 < 𝜇 < 𝑛,
(1 − 𝑡) (ln 2 − ln 𝑡) , if 𝜇 = 2,
(1 − 𝑡) , if 𝜇 < 2.

(13)

This implies that the global estimates obtained in Theorem 2
are optimal.

2. Karamata Class and Global Estimates

2.1. Karamata Class. It is clear to see that for some 𝜂 > 1, the
classK is given by

K = {𝐿 : (0, 𝜂] → (0,∞) , 𝐿
∈ 𝐶1 ((0, 𝜂]) and lim

𝑡→0+

𝑡𝐿 (𝑡)𝐿 (𝑡) = 0} .
(14)

Standard examples of functions which are elements of the
classK are presented below (see [33–35])

𝐿 (𝑡) = 𝑚∏
𝑘=1

(log𝑘 (𝜔𝑡 ))
𝜉𝑘 ,

and 𝐿 (𝑡) = exp{ 𝑚∏
𝑘=1

(log𝑘 (𝜔𝑡 ))
]𝑘} ,

(15)

where log𝑘 𝑡 = log ∘ log ∘ ⋅ ⋅ ⋅ log 𝑡 (𝑘 times), 𝜉𝑘 ∈ R, ]𝑘 ∈ (0, 1)
and 𝜔 is a sufficiently large positive real number such that 𝐿
is defined and positive on (0, 𝜂], for some 𝜂 > 1.

Next, we collect several properties of the Karamata
functions, whichwill be useful in the proof of ourmain result.
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Lemma 5 (see [34, 35]). Let 𝛾 ∈ R and 𝐿 ∈ K defined on(0, 𝜂], 𝜂 > 1. We have
(𝑖) If 𝛾 > −1, then ∫𝜂

0
𝑠𝛾𝐿(𝑠)𝑑𝑠 < ∞ and ∫𝑡

0
𝑠𝛾𝐿(𝑠)𝑑𝑠 ∼

𝑡→0+𝑡1+𝛾𝐿(𝑡)/(1 + 𝛾).(𝑖𝑖) If 𝛾 < −1, then ∫𝜂
0
𝑠𝛾𝐿(𝑠)𝑑𝑠 = ∞ and ∫𝜂

𝑡
𝑠𝛾𝐿(𝑠)𝑑𝑠 ∼

𝑡→0+−𝑡1+𝛾𝐿(𝑡)/(1 + 𝛾).
Lemma 6 (see [35, 36]). (𝑖) Let 𝐿 ∈ K and 𝜖 > 0, then we
have

lim
𝑡→0+

𝑡𝜖𝐿 (𝑡) = 0. (16)

(𝑖𝑖) Let 𝐿1, 𝐿2 ∈ K defined on (0, 𝜂], 𝜂 > 1, and 𝑝 ∈ R.
Then the functions

𝐿1 + 𝐿2, 𝐿1𝐿2, 𝑎𝑛𝑑 𝐿𝑝1 𝑎𝑟𝑒 𝑖𝑛 K. (17)

(𝑖𝑖𝑖) Let 𝐿 ∈ K defined on (0, 𝜂], 𝜂 > 1, then we have

lim
𝑡→0+

𝐿 (𝑡)
∫𝜂
𝑡
(𝐿 (𝑠) /𝑠) 𝑑𝑠 = 0. (18)

In particular

𝑡 → ∫𝜂
𝑡

𝐿 (𝑠)𝑠 𝑑𝑠 ∈ K. (19)

If further ∫𝜂
0
(𝐿(𝑠)/𝑠)𝑑𝑠 < ∞, then we have

lim𝑡→0+(𝐿(𝑡)/ ∫𝑡0 (𝐿(𝑠)/𝑠)𝑑𝑠) = 0.
In particular

𝑡 → ∫𝑡
0

𝐿 (𝑠)𝑠 𝑑𝑠 ∈ K. (20)

2.2. Global Estimates. Let 𝑛 ≥ 3, then
𝐺 (𝑡, 𝑟) fl 1𝑛 − 2

𝑟𝑛−1 (1 − (max (𝑡, 𝑟))𝑛−2)
(max (𝑡, 𝑟))𝑛−2 , (21)

is the Green’s function of the operator 𝑢 → −𝑡1−𝑛(𝑡𝑛−1𝑢),
with boundary conditions lim𝑡→0𝑡𝑛−1𝑢(𝑡) = 𝑢(1) = 0.
Lemma 7. (𝑖) On [0, 1] × [0, 1], we have

𝐺 (𝑡, 𝑟) ≈ 𝑟𝑛−1 (1 −max (𝑡, 𝑟))
(max (𝑡, 𝑟))𝑛−2 . (22)

(𝑖𝑖) There exists a constant 𝑐 > 0 such that for all 𝑡, 𝑟 ∈[0, 1],
1𝑐 𝑟𝑛−1𝑡𝑛−2 (1 − 𝑡) (1 − 𝑟) ≤ 𝑡𝑛−2𝐺 (𝑡, 𝑟)

≤ 𝑐𝑟𝑛−1min (1 − 𝑡, 1 − 𝑟) .
(23)

Proof. (i)The property follows from (21) and the fact that

1 −max (𝑡, 𝑟) ≤ 1 − (max (𝑡, 𝑟))𝑛−2
≤ (𝑛 − 2) (1 −max (𝑡, 𝑟)) . (24)

(ii)The inequalities follow from (22) and the fact that

(1 − 𝑡) (1 − 𝑟) ≤ 1 −max (𝑡, 𝑟) ≤ min (1 − 𝑡, 1 − 𝑟) . (25)

For 𝑓 ∈ B+((0, 1)), we define the otential of 𝑓 by

𝑉𝑓 (𝑡) fl ∫1
0
𝐺 (𝑡, 𝑟) 𝑓 (𝑟) 𝑑𝑟, 𝑡 ∈ (0, 1) . (26)

Using Lemma 7, we deduce the following.

Corollary 8. Let 𝑓 ∈ B+((0, 1)), then we have

𝑉𝑓 (𝑡) ∈ 𝐶𝑛−2 ([0, 1]) ⇐⇒
∫1
0
𝑟𝑛−1 (1 − 𝑟) 𝑓 (𝑟) 𝑑𝑟 < ∞. (27)

Proposition 9. Let 𝑛 ≥ 3 and 𝑓 be a function such that the
map 𝑟 → 𝑟𝑛−1(1 − 𝑟)𝑓(𝑟) ∈ 𝐶((0, 1)) ∩ 𝐿1((0, 1)), then𝑉𝑓 belongs to 𝐶𝑛−2([0, 1]) and it is the unique solution of the
problem

−𝑡1−𝑛 (𝑡𝑛−1𝑢) = 𝑓 (𝑡) , 𝑡 ∈ (0, 1) ,
lim
𝑡→0

𝑡𝑛−1𝑢 (𝑡) = 0, 𝑢 (1) = 0. (28)

Proof. From Corollary 8, the function 𝑉𝑓 is in 𝐶𝑛−2([0, 1]).
Using (21), we have for 𝑡 ∈ (0, 1),

𝑉𝑓 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑟) 𝑓 (𝑟) 𝑑𝑟

= 1𝑛 − 2 (𝑡2−𝑛 − 1)∫𝑡
0
𝑟𝑛−1𝑓 (𝑟) 𝑑𝑟

+ 1𝑛 − 2 ∫1
𝑡
𝑟 (1 − 𝑟𝑛−2) 𝑓 (𝑟) 𝑑𝑟

= 𝐽1 (𝑡) + 𝐽2 (𝑡) .

(29)

Since the function 𝑟 → 𝑟𝑛−1(1 − 𝑟)𝑓(𝑟) ∈ 𝐶((0, 1)) ∩𝐿1((0, 1)), then 𝐽1(𝑡) and 𝐽2(𝑡) are differentiable on (0, 1).
By simple calculation, we obtain

(𝑉𝑓) (𝑡) = −𝑡1−𝑛 ∫𝑡
0
𝑟𝑛−1𝑓 (𝑟) 𝑑𝑟. (30)

That is

𝑡𝑛−1 (𝑉𝑓) (𝑡) = −∫𝑡
0
𝑟𝑛−1𝑓 (𝑟) 𝑑𝑟. (31)

By differentiating (31), we obtain for 𝑡 ∈ (0, 1),
−𝑡1−𝑛 (𝑡𝑛−1 (𝑉𝑓)) (𝑡) = 𝑓 (𝑡) . (32)

Using (31) and the fact that 𝑉𝑓 ∈ 𝐶𝑛−2([0, 1]), we obtain
lim
𝑡→0

𝑡𝑛−1 (𝑉𝑓) (𝑡) = (𝑉𝑓) (1) = 0. (33)
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Finally, we prove the uniqueness. Let 𝑢, V ∈ 𝐶𝑛−2([0, 1]) be
two solutions of (28) and put𝑤 = 𝑢−V.Then𝑤 ∈ 𝐶𝑛−2([0, 1])
and (𝑡𝑛−1𝑤) = 0. Since lim𝑡→0𝑡𝑛−1𝑤(𝑡) = 0, we deduce that𝑡𝑛−1𝑤(𝑡) = 0 and therefore𝑤(𝑡) = 𝑐.Using the fact𝑤(1) = 0,
we deduce that 𝑤 = 0.That is 𝑢 = V.
Proposition 10. Let 𝛾 ≤ 𝑛, ] ≤ 2 and 𝐿3, 𝐿4 ∈ K such that

∫𝜂
0
𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟 < ∞

𝑎𝑛𝑑 ∫𝜂
0
𝑟1−]𝐿4 (𝑟) 𝑑𝑟 < ∞.

(34)

Put

𝑏 (𝑡) = 𝑡−𝛾𝐿3 (𝑡) (1 − 𝑡)−] 𝐿4 (1 − 𝑡) , for 𝑡 ∈ (0, 1) . (35)

Then for 𝑡 ∈ (0, 1],
𝑉𝑏 (𝑡) ≈ 𝑡min(0,2−𝛾)�̃�3 (𝑡) (1 − 𝑡)min(1,2−]) �̃�4 (1 − 𝑡) , (36)

where

�̃�3 (𝑡) fl
{{{{{{{{{{{{{{{{{{{

1, 𝑖𝑓 𝛾 < 2,
∫𝜂
𝑡

𝐿3 (𝑟)𝑟 𝑑𝑟, 𝑖𝑓 𝛾 = 2,
𝐿3 (𝑡) , 𝑖𝑓 2 < 𝛾 < 𝑛,
∫𝑡
0

𝐿3 (𝑟)𝑟 𝑑𝑟, 𝑖𝑓 𝛾 = 𝑛,
(37)

and

�̃�4 (𝑡) fl
{{{{{{{{{{{{{{{{{{{

1, 𝑖𝑓 ] < 1,
∫𝜂
𝑡

𝐿4 (𝑟)𝑟 𝑑𝑟, 𝑖𝑓 ] = 1,
𝐿4 (𝑡) , 𝑖𝑓 1 < ] < 2,
∫𝑡
0

𝐿4 (𝑟)𝑟 𝑑𝑟, 𝑖𝑓 ] = 2.
(38)

Proof. For 𝑡 ∈ (0, 1], we have
𝑉𝑏 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑟) 𝑏 (𝑟) 𝑑𝑟. (39)

Using (22), we obtain that

𝑉𝑏 (𝑡)
≈ (1 − 𝑡) 𝑡2−𝑛 ∫𝑡

0
𝑟𝑛−𝛾−1 (1 − 𝑟)−] 𝐿3 (𝑟) 𝐿4 (1 − 𝑟) 𝑑𝑟

+ ∫1
𝑡
𝑟1−𝛾 (1 − 𝑟)1−] 𝐿3 (𝑟) 𝐿4 (1 − 𝑟) 𝑑𝑟.

(40)

In what follows, we distinguish two cases.

Case 1 (0 < 𝑡 ≤ 1/2). In this case 1 − 𝑡 ≈ 1. So we obtain
𝑉𝑏 (𝑡) ≈ 𝑡2−𝑛 ∫𝑡

0
𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟

+ (∫1/2
𝑡

𝑟1−𝛾 (1 − 𝑟)1−] 𝐿3 (𝑟) 𝐿4 (1 − 𝑟) 𝑑𝑟
+ ∫1
1/2

𝑟1−𝛾 (1 − 𝑟)1−] 𝐿3 (𝑟) 𝐿4 (1 − 𝑟) 𝑑𝑟)
≈ 𝑡2−𝑛 ∫𝑡

0
𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟 + (∫1/2

𝑡
𝑟1−𝛾𝐿3 (𝑟) 𝑑𝑟

+ ∫1
1/2

(1 − 𝑟)1−] 𝐿4 (1 − 𝑟) 𝑑𝑟)
= 𝑡2−𝑛 ∫𝑡

0
𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟 + (∫1/2

𝑡
𝑟1−𝛾𝐿3 (𝑟) 𝑑𝑟

+ ∫1/2
0

𝑟1−]𝐿4 (𝑟) 𝑑𝑟) .

(41)

Since ∫𝜂
0
𝑟1−]𝐿4(𝑟)𝑑𝑟 < ∞, we deduce that

𝑉𝑏 (𝑡) ≈ 𝑡2−𝑛 ∫𝑡
0
𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟

+ (1 + ∫1/2
𝑡

𝑟1−𝛾𝐿3 (𝑟) 𝑑𝑟) .
(42)

Using Lemma 5 and (34), we deduce that

∫𝑡
0
𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟 ≈ {{{{{

𝑡𝑛−𝛾𝐿3 (𝑡) , if 𝛾 < 𝑛,
∫𝑡
0

𝐿3 (𝑟)𝑟 𝑑𝑟, if 𝛾 = 𝑛 (43)

and

1 + ∫1/2
𝑡

𝑟1−𝛾𝐿3 (𝑟) 𝑑𝑟

≈
{{{{{{{{{

1, if 𝛾 < 2,
∫𝜂
𝑡

𝐿3 (𝑟)𝑟 𝑑𝑟, if 𝛾 = 2,
𝑡2−𝛾𝐿3 (𝑡) , if 2 < 𝛾 ≤ 𝑛.

(44)

Hence, it follows by Lemmas 5, 6 and (34) that, for 0 < 𝑡 ≤1/2,

𝑉𝑏 (𝑡) ≈
{{{{{{{{{{{{{{{{{{{

1, if 𝛾 < 2,
∫𝜂
𝑡

𝐿3 (𝑟)𝑟 𝑑𝑟, if 𝛾 = 2,
𝑡2−𝛾𝐿3 (𝑡) , if 2 < 𝛾 < 𝑛,
𝑡2−𝛾 ∫𝑡
0

𝐿3 (𝑟)𝑟 𝑑𝑟, if 𝛾 = 𝑛.
(45)

That is

𝑉𝑏 (𝑡) ≈ 𝑡min(0,2−𝛾)�̃�3 (𝑡) . (46)
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Case 2 (1/2 < 𝑡 ≤ 1). In this case, 𝑡 ≈ 1.Therefore, we have

𝑉𝑏 (𝑡) ≈ 𝑡2−𝑛 (∫1/2
0

𝑟𝑛−𝛾−1 (1 − 𝑡) (1 − 𝑟)−] 𝐿3 (𝑟)
⋅ 𝐿4 (1 − 𝑟) 𝑑𝑟 + ∫𝑡

1/2
𝑟𝑛−𝛾−1 (1 − 𝑡) (1 − 𝑟)−]

⋅ 𝐿3 (𝑟) 𝐿4 (1 − 𝑟) 𝑑𝑟) + ∫1
𝑡
𝑟1−𝛾 (1 − 𝑟)1−] 𝐿3 (𝑟)

⋅ 𝐿4 (1 − 𝑟) 𝑑𝑟 ≈ (1 − 𝑡) (∫1/2
0

𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟
+ ∫𝑡
1/2

(1 − 𝑟)−] 𝐿4 (1 − 𝑟) 𝑑𝑟) + ∫1
𝑡
(1 − 𝑟)1−]

⋅ 𝐿4 (1 − 𝑟) 𝑑𝑟 = (1 − 𝑡) (∫1/2
0

𝑟𝑛−𝛾−1𝐿3 (𝑟) 𝑑𝑟
+ ∫1/2
1−𝑡

𝑟−]𝐿4 (𝑟) 𝑑𝑟) + ∫1−𝑡
0

𝑟1−]𝐿4 (𝑟) 𝑑𝑟.

(47)

Since ∫𝜂
0
𝑟𝑛−𝛾−1𝐿3(𝑟)𝑑𝑟 < ∞, we deduce that

𝑉𝑏 (𝑡) ≈ (1 − 𝑡) (1 + ∫1/2
1−𝑡

𝑟−]𝐿4 (𝑟) 𝑑𝑟)
+ ∫1−𝑡
0

𝑟1−]𝐿4 (𝑟) 𝑑𝑟.
(48)

Using again Lemma 5 and hypothesis (34), we deduce that

∫1−𝑡
0

𝑟1−]𝐿4 (𝑟) 𝑑𝑟

≈ {{{{{
(1 − 𝑡)2−] 𝐿4 (1 − 𝑡) , if ] < 2,
∫1−𝑡
0

𝐿4 (𝑟)𝑟 𝑑𝑟, if ] = 2
(49)

and

1 + ∫1/2
1−𝑡

𝑟−]𝐿4 (𝑟) 𝑑𝑟

≈
{{{{{{{{{

1, if ] < 1,
∫𝜂
1−𝑡

𝐿4 (𝑟)𝑟 𝑑𝑟, if ] = 2,
(1 − 𝑡)1−] 𝐿4 (1 − 𝑡) , if 1 < ] ≤ 2.

(50)

Hence, it follows by Lemmas 5, 6 and hypothesis (34) that, for1/2 < 𝑡 ≤ 1, we get

𝑉𝑏 (𝑡) ≈
{{{{{{{{{{{{{{{{{{{

(1 − 𝑡) , if ] < 1,
(1 − 𝑡) ∫𝜂

1−𝑡

𝐿4 (𝑟)𝑟 𝑑𝑟, if ] = 1,
(1 − 𝑡)2−] 𝐿4 (1 − 𝑡) , if 1 < ] < 2,
∫1−𝑡
0

𝐿4 (𝑟)𝑟 𝑑𝑟, if ] = 2.
(51)

That is

𝑉𝑏 (𝑡) ≈ (1 − 𝑡)min(1,2−]) �̃�4 (1 − 𝑡) . (52)

Combining (46) and (52), we obtain for 𝑡 ∈ (0, 1],
𝑉𝑏 (𝑡) ≈ 𝑡min(0,2−𝛾)�̃�3 (𝑡) (1 − 𝑡)min(1,2−]) �̃�4 (1 − 𝑡) . (53)

This ends the proof.

Proposition 11. Assume that condition (𝐻) is satisfied. Then
for 𝑡 ∈ (0, 1], we have

𝑉𝑝 (𝑡) ≈ 𝜃 (𝑡) , (54)

where 𝑝(𝑟) fl 𝑎(𝑟)𝜃𝜎(𝑟).
Proof. Let 𝑎 be a function satisfying (𝐻). Using (5) and (7),
we obtain

𝑝 (𝑡) ≈ 𝑡−𝛾𝐿1 (𝑡) (�̃�1 (𝑡))𝜎/(1−𝜎) (1 − 𝑡)−] 𝐿2 (1 − 𝑡)
⋅ (�̃�2 (1 − 𝑡))𝜎/(1−𝜎) ,

(55)

where 𝛾 = 𝜇−min(0, (2−𝜇)/(1−𝜎))𝜎 and ] = 𝜆−min(1, (2−𝜆)/(1 − 𝜎))𝜎.
Since 𝜇 ≤ 𝑛+ (2 − 𝑛)𝜎 and 𝜆 ≤ 2, then one can easy check

that 𝛾 ≤ 𝑛 and ] ≤ 2.
Now using Lemmas 5, 6 and Proposition 10 with𝐿3 = 𝐿1(�̃�1)𝜎/(1−𝜎) ∈ K and 𝐿4 = 𝐿2(�̃�2)𝜎/(1−𝜎) ∈ K, we

deduce that for each 𝑡 ∈ (0, 1],
𝑉𝑝 (𝑡) ≈ 𝑡min(0,2−𝛾)�̃�3 (𝑡) (1 − 𝑡)min(1,2−]) �̃�4 (1 − 𝑡) . (56)

Sincemin(0, 2−𝛾) = min(0, (2−𝜇)/(1−𝜎)) andmin(1, 2−]) =
min(1, (2 − 𝜆)/(1 − 𝜎)), then we deduce

𝑉𝑝 (𝑡) ≈ 𝑡min(0,(2−𝜇)/(1−𝜎))�̃�3 (𝑡) (1 − 𝑡)min(1,(2−𝜆)/(1−𝜎))

⋅ �̃�4 (1 − 𝑡) ≈ 𝜃 (𝑡) . (57)

This completes the proof.

3. Existence Results

3.1. Preliminary Results. For 𝛼 ≥ 0, we denote by (𝑃𝛼) the
following problem

(𝑃𝛼)
{{{{{{{{{

−𝑡1−𝑛 (𝑡𝑛−1𝑢) = 𝑎 (𝑡) 𝑢𝜎, in (0, 1) ,
lim
𝑡→0

𝑡𝑛−1𝑢 (𝑡) = (2 − 𝑛) 𝛼,
𝑢 (1) = 𝛼.

(58)

Next, we establish several facts to be used within the proof of
the main result.

Lemma 12. Let 𝜎 < 0, 0 ≤ 𝛼 ≤ 𝛽 and 𝑢𝛼, 𝑢𝛽 ∈ 𝐶((0, 1]) ∩𝐶1((0, 1)) be two positive functions satisfying
−𝑡1−𝑛 (𝑡𝑛−1𝑢𝛼) ≤ 𝑎 (𝑡) 𝑢𝜎𝛼, 𝑖𝑛 (0, 1) ,
lim
𝑡→0

𝑡𝑛−1𝑢𝛼 (𝑡) = (2 − 𝑛) 𝛼,
𝑢𝛼 (1) = 𝛼.

(59)
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and

−𝑡1−𝑛 (𝑡𝑛−1𝑢𝛽) ≥ 𝑎 (𝑡) 𝑢𝜎𝛽, 𝑖𝑛 (0, 1) ,
lim
𝑡→0

𝑡𝑛−1𝑢𝛽 (𝑡) = (2 − 𝑛) 𝛽,
𝑢𝛽 (1) = 𝛽.

(60)

Then 𝑢𝛼 ≤ 𝑢𝛽 in (0, 1].
Proof. Let 𝑢(𝑡) fl 𝑢𝛼(𝑡) − 𝑢𝛽(𝑡) for 𝑡 ∈ (0, 1). Assume that𝑢(𝑡0) > 0 for some 𝑡0 ∈ (0, 1). Then there exists an interval(𝑡1, 𝑡2) ⊂ [0, 1] containing 𝑡0 such that 𝑢(𝑡) > 0, on (𝑡1, 𝑡2)
with 𝑢(𝑡2) = 0 and 𝑢(𝑡1) = 0 or 𝑡1 = 0.

On the other hand, since 𝜎 < 0, then we have 𝑢𝜎𝛽(𝑡) >𝑢𝜎𝛼(𝑡) for 𝑡 ∈ (𝑡1, 𝑡2). So
𝑡1−𝑛 (𝑡𝑛−1𝑢) = 𝑡1−𝑛 (𝑡𝑛−1𝑢𝛼) − 𝑡1−𝑛 (𝑡𝑛−1𝑢𝛽)

≥ 𝑎 (𝑡) (𝑢𝜎𝛽 − 𝑢𝜎𝛼) > 0 on (𝑡1, 𝑡2) .
(61)

So the function 𝑡 → 𝑡𝑛−1𝑢 is nondecreasing on (𝑡1, 𝑡2) with
lim𝑡→𝑡1𝑡𝑛−1𝑢(𝑡) ≥ 0.

Hence, the function 𝑢 is nondecreasing on (𝑡1, 𝑡2) with𝑢(𝑡0) > 0 and 𝑢(𝑡2) = 0.This gives a contradiction.Therefore,𝑢𝛼 ≤ 𝑢𝛽.
Proposition 13. Let 𝜎 < 0, and assume that hypothesis (𝐻)
is satisfied. Then for each 𝛼 > 0, problem (𝑃𝛼) has a unique
positive solution 𝑢𝛼 ∈ 𝐶((0, 1]) ∩ 𝐶1((0, 1)) satisfying for 𝑡 ∈(0, 1)

𝑢𝛼 (𝑡) = 𝛼𝑡2−𝑛 + ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑢𝜎𝛼 (𝑟) 𝑑𝑟. (62)

In particular, lim𝑡→0𝑡𝑛−2𝑢𝛼(𝑡) = 𝛼.
Proof. Let 𝜎 < 0, 𝛼 > 0 and assume that the function 𝑎
satisfies hypothesis (𝐻). Note that the function

𝑡 → ℎ (𝑡)
fl 𝑡𝑛−2 ∫1

0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎𝑑𝑟 is in 𝐶0 ([0, 1]) . (63)

Indeed, since for each 𝑟 > 0, the function 𝑡 → 𝑡𝑛−2𝐺(𝑡, 𝑟) ∈𝐶0([0, 1]), it follows from (23), (6) and the convergence
dominated theorem that ℎ ∈ 𝐶0([0, 1]).

Let 𝛽 fl 𝛼+𝛼𝜎‖ℎ‖∞ andΛ be the closed convex set given
by

Λ = {V ∈ 𝐶 ([0, 1]) : 𝛼 ≤ V ≤ 𝛽} . (64)

Define the operator 𝑇 on Λ by

𝑇V (𝑡) = 𝛼 + 𝑡𝑛−2 ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎V𝜎 (𝑟) 𝑑𝑟. (65)

Since 𝜎 < 0, then for all V ∈ Λ, we have
𝛼 ≤ 𝑇V ≤ 𝛽. (66)

On the other hand, we have for all 𝑡1, 𝑡2 ∈ [0, 1]𝑇V (𝑡1) − 𝑇V (𝑡2)
≤ 𝛼𝜎 ∫1

0

𝑡𝑛−21 𝐺 (𝑡1, 𝑟) − 𝑡𝑛−22 𝐺 (𝑡2, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎𝑑𝑟. (67)

Since, for each 𝑟 > 0, the function 𝑡 → 𝑡𝑛−2𝐺(𝑡, 𝑟) ∈𝐶0([0, 1]), then we deduce by (23), (6) and the convergence
dominated theorem that 𝑇(Λ) is equicontinuous in [0, 1].
In particular, for all V ∈ Λ, 𝑇(Λ) ⊂ 𝐶([0, 1]) and so𝑇(Λ) ⊂ Λ. Moreover, since the family {𝑇V(𝑡), V ∈ Λ} is
uniformly bounded in [0, 1], then by Ascoli’s theorem that𝑇(Λ) becomes relatively compact in𝐶([0, 1]).Next, we prove
the continuity of 𝑇 in Λ. Let (V𝑘)𝑘 ⊂ Λ and V ∈ Λ such that‖V𝑘 − V‖∞ → 0 as 𝑘 → ∞.Then we have𝑇V𝑘 (𝑡) − 𝑇V (𝑡)

≤ ∫1
0
𝑡𝑛−2𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎 V𝜎𝑘 (𝑟) − V𝜎 (𝑟) 𝑑𝑟.

(68)

Now, since V𝜎𝑘 (𝑟) − V𝜎 (𝑟) ≤ 2𝛼𝜎, (69)

we deduce by convergence dominated theorem that

∀𝑡 ∈ [0, 1] , 𝑇V𝑘 (𝑡) → 𝑇V (𝑡) as 𝑘 → ∞. (70)

Since 𝑇(Λ) is relatively compact in 𝐶([0, 1]), we obtain𝑇V𝑘 − 𝑇V∞ → 0 as 𝑘 → ∞. (71)

So 𝑇 is a compact mapping Λ to itself. Therefore, by the
Schauder fixed point theorem, there exists V𝛼 ∈ Λ such that
for each 𝑡 ∈ [0, 1]

V𝛼 (𝑡) = 𝛼 + 𝑡𝑛−2 ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎V𝜎𝛼 (𝑟) 𝑑𝑟. (72)

Put 𝑢𝛼(𝑡) = 𝑡2−𝑛V𝛼, for 𝑡 ∈ (0, 1]. Then 𝑢𝛼 ∈ 𝐶((0, 1]) and we
have

𝑢𝛼 (𝑡) = 𝛼𝑡2−𝑛 + ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑢𝜎𝛼 (𝑟) 𝑑𝑟, (73)

and

𝛼𝑡2−𝑛 ≤ 𝑢𝛼 (𝑡) ≤ 𝛽𝑡2−𝑛. (74)

We have for all 𝑟 ∈ (0, 1),𝑎 (𝑟) 𝑢𝜎𝛼 (𝑟) ≤ 𝛼𝜎𝑎 (𝑟) 𝑟(2−𝑛)𝜎. (75)

Now since by hypothesis (𝐻) the function 𝑟 → 𝑟𝑛−1(1 −𝑟)𝑎(𝑟)𝑟(2−𝑛)𝜎 ∈ 𝐶((0, 1)) ∩ 𝐿1((0, 1)), we deduce from (73)
and Proposition 9 that 𝑢𝛼 is a solution of problem (𝑃𝛼). By
Lemma 12, we obtain the uniqueness.

Finally, using (73) and the fact that

0 ≤ 𝑡𝑛−2 ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑢𝜎𝛼 (𝑟) 𝑑𝑟 ≤ 𝛼𝜎ℎ (𝑡)

∈ 𝐶0 ([0, 1]) ,
(76)

we deduce that lim𝑡→0𝑡𝑛−2𝑢𝛼(𝑡) = 𝛼.
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From Lemma 12 and (73) we deduce the following

Corollary 14. Let 𝜎 < 0, and assume that hypothesis (𝐻) is
satisfied. For 0 < 𝛼1 ≤ 𝛼2, we denote by 𝑢𝛼𝑖 ∈ 𝐶((0, 1]) ∩𝐶1((0, 1)) the unique positive solution of the problem (𝑃𝛼).Then
we have

0 ≤ 𝑢𝛼2 (𝑡) − 𝑢𝛼1 (𝑡) ≤ (𝛼2 − 𝛼1) 𝑡2−𝑛, for 𝑡 ∈ (0, 1] . (77)

Theorem15. Let𝜎 < 0.Under hypothesis (𝐻), problem (3) has
a unique positive solution 𝑢 ∈ 𝐶((0, 1]) ∩ 𝐶1((0, 1)) satisfying
for 𝑡 ∈ (0, 1)

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑢𝜎 (𝑟) 𝑑𝑟. (78)

Proof. Let (𝛼𝑘)𝑘 ⊂ (0,∞) be a sequence that decreases to
zero. Let 𝑢𝑘 be the unique positive continuous solution of the
problem (𝑃𝛼𝑘). By Lemma 12 (or Corollary 14), the sequence(𝑢𝑘)𝑘 decreases to a function 𝑢, and from (73) the sequence(𝑢𝑘−𝛼𝑘𝑡2−𝑛)𝑘 increases to𝑢.Using this fact and (73), we obtain
for each 𝑡 ∈ (0, 1),

𝑢 (𝑡) ≥ 𝑢𝑘 (𝑡) − 𝛼𝑘𝑡2−𝑛 = ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑢𝜎𝑘 (𝑟) 𝑑𝑟

≥ 𝛽𝜎𝑘 ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎𝑑𝑟 > 0,

(79)

where 𝛽𝑘 fl 𝛼𝑘 + 𝛼𝜎𝑘‖ℎ‖∞ and ℎ is given by (63).
By the monotone convergence theorem, we obtain

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑢𝜎 (𝑟) 𝑑𝑟. (80)

Since 𝑢 = inf𝑘𝑢𝑘 = sup𝑘(𝑢𝑘 − 𝛼𝑘𝑡2−𝑛), then 𝑢 is upper
and lower semi-continuous function on (0, 1] and so 𝑢 ∈𝐶((0, 1]).

We claim that 𝑢 is a solution of problem (3).
From (23), there exists 𝑐 > 0, such that for all 𝑡 ∈ [0, 1],

1𝑐 (1 − 𝑡) ∫1
0
𝑟𝑛−1 (1 − 𝑟) 𝑎 (𝑟) 𝑢𝜎 (𝑟) 𝑑𝑟

≤ ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑢𝜎 (𝑟) 𝑑𝑟 = 𝑢 (𝑡) .

(81)

In particular,

∫1
0
𝑟𝑛−1 (1 − 𝑟) 𝑎 (𝑟) 𝑢𝜎 (𝑟) 𝑑𝑟 ≤ 2𝑐𝑢 (12) < ∞. (82)

So the function 𝑟 → 𝑟𝑛−1(1 − 𝑟)𝑎(𝑟)𝑢𝜎(𝑟) ∈ 𝐶((0, 1]) ∩𝐿1((0, 1)). By Proposition 9, 𝑢 is a solution of problem (3).
Finally, by Lemma 12, we obtain the uniqueness.

3.2. Proof of Theorem 2. Assume that hypothesis (𝐻) is ful-
filled. Let 𝜃 be the function defined in (7). By Proposition 11,
there exists𝑀 ≥ 1 such that for each 𝑡 ∈ (0, 1),

1𝑀𝜃 (𝑡) ≤ 𝑉𝑝 (𝑡) ≤ 𝑀𝜃 (𝑡) , (83)

where 𝑝(𝑟) fl 𝑎(𝑟)𝜃𝜎(𝑟). We will break up the proof in two
cases.

Case 1 (𝜎 < 0). Let 𝑢 be the solution of problem (3) given by
Theorem 15. We claim that 𝑢 satisfies (10).

Let 𝑐 = 𝑀−𝜎/(1−𝜎) and put V fl (1/𝑐)𝑉𝑝.
Using hypothesis (𝐻) and Lemmas 5, 6, we deduce that

∫1
0
𝑟𝑛−1 (1 − 𝑟) 𝑝 (𝑟) 𝑑𝑟 < ∞. (84)

So, it follows by Proposition 10 and (83), that V satisfies

−𝑡1−𝑛 (𝑡𝑛−1V) ≤ V (𝑡) , 𝑡 ∈ (0, 1) ,
lim
𝑡→0

𝑡𝑛−1V (𝑡) = 0, V (1) = 0. (85)

Therefore by Lemma 12, we have

1𝑐𝑉𝑝 ≤ 𝑢. (86)

Similarly, we show that

𝑢 ≤ 𝑐𝑉𝑝. (87)

Now since by (83), 𝑉𝑝(𝑡) ≈ 𝜃(𝑡), we deduce that 𝑢(𝑡) ≈ 𝜃(𝑡).
Case 2 (0 ≤ 𝜎 < 1). We shall use a fixed point argument to
construct a solution of problem (3). Let 𝜑(𝑡) = 𝑡𝑛−2𝜃(𝑡), for𝑡 ∈ [0, 1]. By (83), we have

1𝑀𝜑 (𝑡) ≤ 𝑡𝑛−2𝑉𝑝 (𝑡) ≤ 𝑀𝜑 (𝑡) . (88)

Put 𝑐 = 𝑀1/(1−𝜎) and consider the closed convex set given by

𝐸 = {V ∈ 𝐶 ([0, 1]) , 1𝑐 𝜑 ≤ V ≤ 𝑐𝜑} . (89)

Clearly 𝜑 ∈ 𝐸.
We define the operatorF on 𝐸 by

FV (𝑡) fl 𝑡𝑛−2 ∫1
0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎V𝜎 (𝑟) 𝑑𝑟,

𝑡 ∈ [0, 1] .
(90)

Using (88), for V ∈ 𝐸, we have
1𝑐 𝜑 ≤ FV ≤ 𝑐𝜑. (91)

Since for each 𝑟 > 0, the function 𝑡 → 𝑡𝑛−2𝐺(𝑡, 𝑟) is
in 𝐶0([0, 1]), it follows by (23), (84) and the convergence
dominated theorem thatF(𝐸) ⊂ 𝐸.

Let (V𝑘)𝑘 ⊂ 𝐶([0, 1]) defined by

V0 = 1𝑐𝜑
and V𝑘+1 = FV𝑘, for 𝑘 ∈ N.

(92)
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Since the operator F is nondecreasing and F(𝐸) ⊂ 𝐸, we
deduce that

V0 ≤ V1 ≤ V2 ≤ ⋅ ⋅ ⋅ ≤ V𝑘 ≤ V𝑘+1 ≤ 𝑐𝜑. (93)

Therefore, the sequence (V𝑘)𝑘 converges by the convergence
monotone theorem to a function V satisfying for each 𝑡 ∈[0, 1]

1𝑐 𝜑 (𝑡) ≤ V (𝑡) ≤ 𝑐𝜑 (𝑡)
and V (𝑡) = 𝑡𝑛−2 ∫1

0
𝐺 (𝑡, 𝑟) 𝑎 (𝑟) 𝑟(2−𝑛)𝜎V𝜎 (𝑟) 𝑑𝑟.

(94)

Using (23) and (84), we prove that V ∈ 𝐶([0, 1]).
Put 𝑢(𝑡) = 𝑡2−𝑛V(𝑡).Then 𝑢 ∈ 𝐶𝑛−2([0, 1]) and satisfies the

equation

𝑢 (𝑡) = 𝑉 (𝑎𝑢𝜎) (𝑡) . (95)

Now since the function 𝑟 → 𝑟𝑛−1(1 − 𝑟)𝑎(𝑡)𝑢𝜎(𝑟) ∈𝐶((0, 1]) ∩ 𝐿1((0, 1)), it follows from Proposition 9 that 𝑢 is
a positive solution of problem (3) satisfying for 𝑡 ∈ (0, 1],

𝑢 (𝑡) ≈ 𝜃 (𝑡) . (96)

For the uniqueness, let 𝑢 and V be two arbitrary solutions of
problem (3) in the cone

𝑆 = {𝑢 ∈ 𝐶𝑛−2 ([0, 1]) , 𝑢 (𝑡) ≈ 𝜃 (𝑡)} . (97)

There exists a constant𝑚 ≥ 1 such that

1𝑚 ≤ 𝑢
V

≤ 𝑚, in (0, 1) . (98)

So the set 𝐽 fl {𝑚 ≥ 1 : 1/𝑚 ≤ 𝑢/V ≤ 𝑚} is not empty. Let𝑚0 fl inf 𝐽. Then𝑚0 ≥ 1 and we have 𝑢𝜎 ≤ 𝑚𝜎0V𝜎.
Let 𝑧 fl 𝑚𝜎0V − 𝑢.Then

−𝑡1−𝑛 (𝑡𝑛−1𝑧) = 𝑎 (𝑡) (𝑚𝜎0V𝜎 − 𝑢𝜎) ≥ 0 in (0, 1) ,
lim
𝑡→0

𝑡𝑛−1𝑧 (𝑡) = 0, 𝑧 (1) = 0, (99)

Which implies by Proposition 9 that 𝑚𝜎0V − 𝑢 = 𝑉(𝑎(𝑚𝜎0V𝜎 −𝑢𝜎)) ≥ 0. By symmetry, we obtain that𝑚𝜎0𝑢 ≥ V. Hence,𝑚𝜎0 ∈𝐽. Using the fact that 𝜎 < 1, we get𝑚0 = 1.Then, we conclude
that 𝑢 = V.

This completes the proof of Theorem 2.

Example 16. Let 𝜎 < 1 and 𝑎 ∈ 𝐶((0, 1)) such that

𝑎 (𝑟) ≈ 𝑟−𝜇 (log(3𝑟))
−𝛽 (1 − 𝑟)−2 (log( 31 − 𝑟))

−2 , (100)

where 𝜇 < 𝑛 + (2 − 𝑛)𝜎 and 𝛽 ∈ R. Then, by Theorem 2,
problem (3) has a unique positive solution 𝑢 in 𝐶𝑛−2([0, 1])
satisfying the following estimates:

(i) If 2 < 𝜇 < 𝑛 + (2 − 𝑛)𝜎, then for 𝑡 ∈ (0, 1),
𝑢 (𝑡) ≈ 𝑡(2−𝜇)/(1−𝜎) (log(3𝑡 ))

−𝛽/(1−𝜎)

⋅ (log( 31 − 𝑡))
−1/(1−𝜎) .

(101)

(ii) If 𝜇 = 2 and 𝛽 > 1 or 𝜇 < 2, then for 𝑡 ∈ (0, 1),
𝑢 (𝑡) ≈ (log( 31 − 𝑡))

−1/(1−𝜎) . (102)

(iii) If 𝜇 = 2 and 𝛽 = 1, then for 𝑡 ∈ (0, 1),
𝑢 (𝑡) ≈ (log2 (3𝑡 ))

1/(1−𝜎) (log( 31 − 𝑡))
−1/(1−𝜎) . (103)

(iv) If 𝜇 = 2 and 𝛽 < 1, then for 𝑡 ∈ (0, 1),
𝑢 (𝑡) ≈ (log(3𝑡 ))

(1−𝛽)/(1−𝜎) (log( 31 − 𝑡))
−1/(1−𝜎) . (104)
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