EXERCISES CH3

PART A

Q1) Let
$$A = \{a, b, c, d, e, f\}$$

$$B = \{4, 9, 2, 7\}$$

$$C = \{Larry, Moe, Curly\}$$

$$D = \{cat, dog\}$$

$$E = \{2, 4, 6, 8, 10, ...\}$$

$$N = \{1, 2, 3, 4, 5, 6, 7, ...\}$$

$$F = \{x/x \text{ is a person in this room}\}$$

$$G = \{b, c, f\},\$$

determine whether each statement is true or false.

2.
$$n(A) = a$$

3.
$$B \subseteq N$$

4.
$$dog \subseteq D$$

6.
$$\{6, 8, 10\} \subseteq E$$

Q2) Let

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$X = \{2, 4, 6, 8, 10\}$$

$$W = \{x/x \text{ is an odd number}\}$$

$$Y = \{3\},$$

determine whether each statement is true or false.

1.
$$X' = W$$

- 2. *Y⊆W*
- *3. Y⊂W*
- 4. $X \subseteq U$
- 5. $\{\}\subseteq X$
- **Q3**) Let $A = \{a, b, c, d, e, f\}$ How many subsets does A have?

Q4)Let

$$U = \{1, 2, 3, 4, 5, 6, 7, ...\}$$

$$S = \{x/x \text{ is less than } 10\}$$

How many subsets does S have?

Q5) Let

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S = \{1, 2, 4, 7\}$

$$S = \{1, 2, 4, 7\}$$

$$T = \{1, 2, 4, 5, 6, 7\}$$
 $V = \{4, 5, 6\}$

$$V = \{4, 5, 6\}$$

Decide whether each statement is true or false.

1.
$$S \subset T$$

1.
$$S \subset T$$
 2. $n(S) = 7$ 3. $4 \notin V$ 4. $T \subseteq V$ 5. $S \subseteq T$

5.
$$S \subseteq T$$

6.
$$\{2, 4, 6\} = \{x | x \text{ is an even number} \}$$
 7. $T \subseteq \{\}$ **8.** $7 \in T$

10. V has 7 proper subsets 11.
$$\{\}\subseteq V$$

12.
$$V = \{x/x > 3\}$$

13.
$$V = \{1, 2, 3\}$$

12.
$$V = \{x/x > 3\}$$
 13. $V = \{1, 2, 3\}$ **14.** $\{7, 4, 2, 1\} = S$

15. {1}
$$\subset$$
 T

15.
$$\{1\} \subset T$$
 16. $\{1\} \subseteq T$ **17.** $V \subseteq \{5, 6\}$

Q6) Let

$$U = \{a, b, c, d, e, f\}$$
 $A = \{a, c, e, f\}$ $B = \{c, d, e\}$ $C = \{e, f\}$

$$A = \{a, c, e, f\}$$

$$B = \{c, d, e\}$$

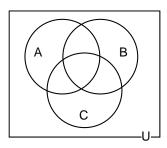
$$C = \{e, f\}$$

Find each of the following:

1. A'

- 2. B'
- 3. C'
- $4. B \cup C$
- $5. A \cap C$
- 6. $B \cap C$
- 7. $(A \cup B)'$
- 8. A'∪B'
- 9. $B' \cap C$
- 10. $A \cup (B' \cap C)$
- **Q7**) Let

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$


$$S = \{2, 5, 7, 9\}$$

$$V = \{3, 4, 5, 6, 7\}$$

$$T = \{1, 3, 4, 5, 8, 9\}$$

Find $(S' \cap T)'$

Q8) On a standard three-circle Venn diagram like the one shown below, shade the region(s) corresponding to the given set expression.

- 1. $(A' \cap B) \cap C'$ 2. $A \cap (B \cap C')$
- 3. $(A \cup B) \cap C$
- 4. $(A \cap C') \cup B'$ 5. $(A' \cup B)' \cap C$
- $6. A' \cup (B' \cap C)$

Q9) Let
$$U = \{b, c, d, e, f, g, h, i, j\}$$
 $V = \{e\}$ $W = \{c, f, g, j\}$ Find $(V' \cup W')'$

Q10) Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 $T = \{2, 3, 9\}V = \{8, 9, 10\}$ Find $(T' \cup V)'$

Q11) Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
 $T = \{2, 5\}$ $V = \{1, 2, 3, 7, 8\}$ Find $(V \cap T')'$

Q12)
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
 $S = \{2, 4, 5\}T = \{3, 5, 7\}$ $V = \{2, 3, 4, 5, 7\}$ $W = \{1, 2, 3, 4, 6\}$ Find $(S \cap V)' \cup (W' \cup T)$

Q13) Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
 $S = \{1, 2, 5, 6, 7\}$ $T = \{5, 6\}$ $V = \{1, 2, 3, 5, 6, 9\}$ Find $S' \cup (T \cap V)$

PART B

1. Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2, 3, 4\}$

$$m,n\in A$$
 , $mRn \Leftrightarrow n=m^2$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
 - **2.** Let R be a relation defined on the set $A = \{1,2,3,4,5\}$

$$x, y \in A$$
, $x R y \Leftrightarrow xy \leq 9$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
 - **3.** Let *R* be a relation defined on the set $A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

$$x, y \in A$$
, $x R y \Leftrightarrow y = 2x$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- **4.** Suppose R is a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$, as

$$x, y \in A$$
, $x R y \Leftrightarrow |x - y| < 2$

- (i) What are the ordered pairs in the relation R?
- (ii) Draw the directed graph (diagraph) that represents R
- (iii) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.

5 Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2, 3, 4\}$

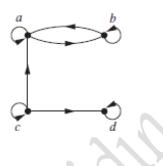
$$a, b \in A$$
, $a R b \Leftrightarrow a^2 = b^2$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.
- 6. Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$

$$a,b \in A$$
, $a R b \Leftrightarrow a,b < 0$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Find R^2 .
- (v) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.
 - 7. Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a.b \ge 2$


- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Find R^2 .
- (v) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.

Let
$$S = \{(1,1), (1,2), (1,3), (2,2), (3,1), (3,3)\}$$
 be a relation on the set $B = \{1, 2, 3\}$

- (i) Draw the directed graph (diagraph) that represents S?
- (ii) Find S^2 , \bar{S} , $So \bar{S}$
- (iii) Find M_S
- (iv) Determine whether the relation S is reflexive, symmetric, antisymmetric, and/or transitive
 - 9. Let $S = \{(1,v), (1,w), (2,u), (2,v), (3,w)\}$ and $T = \{(1,u), (1,w), (2,v), (2,w), (3,u), (3,v)\}$ are relations from the set $A = \{1,2,3\}$ to the set $B = \{u,v,w\}$.
 - (i) Find \bar{S} , $\bar{S} \cap T$, $T \bar{S}$
 - (ii) Find $T^{-1}oS$
 - (iii) Find $S^{-1} \circ T$
 - Suppose R is a relation defined on the integers set $\mathbb{Z}^+ = \{1,2,3,...\}$ $m, n \in \mathbb{Z}^+$, $m R n \Leftrightarrow m + n = 20$ Determine whether the relation T is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.
 - Suppose T is a relation defined on the integers set \mathbb{Z} $m, n \in \mathbb{Z}$, $m T n \Leftrightarrow m + n \geq 2$ Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.
 - **12.** Let T be a relation defined on the integers set $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ $m, n \in \mathbb{Z}$, $m T n \Leftrightarrow m + n$ is odd

 Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.

13. Determine whether the relation for the directed graphs shown in the Figure is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*. *Solution:*

14. Let T be a relation defined on \mathbb{Z} such that:

$$a,b \in \mathbb{Z}$$
, $a T b \Leftrightarrow |a| = |b|$

(i) Show that T is an equivalence relation.