Exercises 2
Chapter 2 :Pivotal Quantity PQ- Confidence Interval (C.I) by PQ
Definition PQ: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from a population \mathbf{X} with probability density function $f(x ; \theta)$, where θ is an unknown parameter. A pivotal quantity \mathbf{Q} is a function of $X_{1}, X_{2}, \ldots, X_{n}$ and θ whose probability distribution is independent (does not depend) of the parameter θ.
Example 1 :
1- If $X_{1}, ., X_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right), \sigma^{2}$ is known, Then $Q=\frac{\bar{X}-\mu}{\sigma \div \sqrt{n}} \sim N(0,1)$, is \mathbf{Q} Pivotal Quantity for μ, Why ?

Yes is a pivotal quantity (PQ), since it is a function of $X_{1}, X_{2}, \ldots, X_{n}$ and μ and its distribution free of the parameter μ.

2- If $X_{1}, ., X_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right), \sigma^{2}$ is Unknown, Then $Q=\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$, is Q Pivotal Quantity for μ, Why ?

Yes is a pivotal quantity $(\mathbf{P Q})$, since it is a function of $X_{1}, X_{2}, \ldots, X_{n}$ and μ and its distribution free of the parameter μ.

Example 2:
Let $X_{1}, X_{2}, \ldots, X_{n}$ a random sample from $N(\theta, 9)$, then :
1- $Q=\bar{X}-\theta$
2- $Q=\frac{\bar{X}-\theta}{\frac{3}{\sqrt{n}}}$
3- $Q=\frac{\bar{X}}{\theta}$
Are Q Pivotal Quantity for θ and Why ?
Solution 3:
1- Yes, is a pivotal quantity (PQ) since it is a function of $X_{1}, X_{2}, \ldots, X_{n}$ and θ and its distribution free of the parameter θ.
($Q=\bar{X}-\theta$ is normally distributed with mean 0 and variance $\frac{9}{n}$).
2-Yes, is a pivotal quantity $(\mathbf{P Q})$ since it is a function of $X_{1}, X_{2}, \ldots, X_{n}$ and θ and its distribution free of the parameter θ.
($Q=\frac{\bar{X}-\theta}{\frac{3}{\sqrt{n}}}$ has standard normal distribution).
3- No , is not a pivotal quantity (PQ) since $Q=\frac{\bar{X}}{\theta}$ is normally distributed with mean 1 and variance $\frac{9}{n \theta^{2}}$, which depends on θ.

Confidence Interval (C.I) by PQ :

Our aim is to utilize a pivotal quantity to obtain a confidence interval :
1- $P\left(q_{1}<Q(\underline{X}, \theta)<q_{2}\right)=P\left(T_{1}(\underline{X})<\tau(\theta)<T_{2}(\underline{X})\right)=1-\alpha$.
2-The length $L=T_{2}(\underline{X})-T_{1}(\underline{X})$ must be minimum .
Example 3:
Let \mathbf{X} be random variable with normal distribution $N\left(\mu, \sigma^{2}\right), \sigma^{2}$ is known : let $X=\left(X_{1}, ., X_{n}\right)$ be \mathbf{n} copies of \mathbf{X}. Find $(1-\alpha) 100$ Confidence interval for μ ?
Use $Q=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim g(q)=N(0,1)$ as P.Q
Solution 3 :
Step 1:

$$
\begin{equation*}
P\left(q_{1}<Q(\underline{X}, \theta)<q_{2}\right)=1-\alpha \quad \Longleftrightarrow \quad \int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
P\left(q_{1}<Q(\underline{X}, \theta)<q_{2}\right) & =P\left(q_{1}<\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}<q_{2}\right) \\
& =P\left(q_{1} \frac{\sigma}{\sqrt{n}}<\bar{X}-\mu<q_{2} \frac{\sigma}{\sqrt{n}}\right) \\
& =P\left(q_{1} \frac{\sigma}{\sqrt{n}}-\bar{X}<-\mu<q_{2} \frac{\sigma}{\sqrt{n}}-\bar{X}\right) \\
& =P\left(\bar{X}-q_{2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}-q_{1} \frac{\sigma}{\sqrt{n}}\right)
\end{aligned}
$$

Step 2:
The length of confidence interval is given by :

$$
\begin{align*}
L & =T_{2}(\underline{X})-T_{1}(\underline{X}) \\
& =\left[\bar{X}-q_{1} \frac{\sigma}{\sqrt{n}}\right]-\left[\bar{X}-q_{2} \frac{\sigma}{\sqrt{n}}\right] \\
& =\frac{\sigma}{\sqrt{n}}\left(q_{2}-q_{1}\right) \quad \text { must be minimum } \tag{2}
\end{align*}
$$

Now, Differentiate (1)with respect to q_{1}. We get :

$$
\begin{gather*}
\frac{d}{d q_{1}}\left[\quad \int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha\right] \\
g\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}-g\left(q_{1}\right)=0 \quad \gg \quad \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} \tag{3}
\end{gather*}
$$

let us differentiate L with respect to q_{1}, we get :

$$
\begin{array}{rlr}
\frac{d L}{d q_{1}} & =\frac{d}{d q_{1}}\left[\frac{\sigma}{\sqrt{n}}\left(q_{2}-q_{1}\right)\right] & \\
& =\frac{\sigma}{\sqrt{n}}\left(\frac{d q_{2}}{d q_{1}}-1\right) & \text { from (3) }: \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} \\
& =\frac{\sigma}{\sqrt{n}}\left(\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}-1\right) & \mathbf{g}(\mathbf{q}) \text { follows standard normal distribution } \\
& =\frac{\sigma}{\sqrt{n}}\left(\frac{\frac{1}{\sqrt{2 \pi}} e^{-\frac{q_{1}^{2}}{2}}}{\frac{1}{\sqrt{2 \pi}} e^{-\frac{q_{2}^{2}}{2}}}-1\right) \\
& =\frac{\sigma}{\sqrt{n}}\left(e^{-\frac{1}{2}\left(q_{1}^{2}-q_{2}^{2}\right)}-1\right) &
\end{array}
$$

Thus $\frac{d L}{d q_{1}}=0$ if and only if $q_{1}=q_{2}$ or $q_{1}=-q_{2}$.
Since $q_{1}<q_{2}$ (from the first step), then the minimum of the function L is obtained on $q_{1}=-q_{2}$. And it follows that $q_{2}=Z_{1-\frac{\alpha}{2}}$.

C.I for μ :

$$
\begin{gathered}
\mu \in\left(\bar{X}-q_{2} \frac{\sigma}{\sqrt{n}}, \bar{X}-q_{1} \frac{\sigma}{\sqrt{n}}\right) \\
\mu \in\left(\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)
\end{gathered}
$$

